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Abstract. For a general nonautonomous dynamics on a Banach space, we

give a necessary and sufficient condition so that the existence of one-sided ex-
ponential dichotomies on the past and on the future gives rise to a two-sided

exponential dichotomy. The condition is that the stable space of the future at
the origin and the unstable space of the past at the origin generate the whole

space. We consider the general cases of a noninvertible dynamics as well as of

a nonuniform exponential dichotomy and a strong nonuniform exponential di-
chotomy (for the latter, besides the requirements for a nonuniform exponential

dichotomy we need to have a minimal contraction and a maximal expansion).

Both notions are ubiquitous in ergodic theory. Our approach consists in reduc-
ing the study of the dynamics to one with uniform exponential behavior with

respect to a family of norms and then using the characterization of uniform

hyperbolicity in terms of an admissibility property in order to show that the
dynamics admits a two-sided exponential dichotomy. As an application, we

give a complete characterization of the set of Lyapunov exponents of a Lya-

punov regular dynamics, in an analogous manner to that in the Sacker–Sell
theory.

1. Introduction. For a linear nonautonomous dynamics on a Banach space, we
give a necessary and sufficient condition so that the existence of one-sided nonuni-
form exponential dichotomies on the past and on the future gives rise to a two-sided
nonuniform exponential dichotomy. More precisely, we consider a linear nonau-
tonomous dynamics with discrete time defined by a sequence An of linear operators
or a nonautonomous dynamics with continuous time given by an evolution fam-
ily say determined by a nonautonomous linear equation x′ = A(t)x on a Banach
space. For example, in the case of discrete time we give a necessary and sufficient
condition so that a sequence of linear operators admitting nonuniform exponential

2010 Mathematics Subject Classification. Primary: 37D99.

Key words and phrases. Exponential dichotomies, strong exponential dichotomies.
L.B. and C.V. were supported by Portuguese funds through FCT - Fundação para a Ciência e

a Tecnologia: project PEst-OE/EEI/LA0009/2013 (CAMGSD).

2817

http://dx.doi.org/10.3934/dcds.2015.35.2817


2818 LUIS BARREIRA, DAVOR DRAGIČEVIĆ AND CLAUDIA VALLS

dichotomies both on Z+
0 and Z−0 also admits a nonuniform exponential dichotomy

on Z. The condition is that the stable space of Z+
0 at the origin and the unstable

space of Z−0 at the origin generate the whole space. We obtain an analogous result
in the case of continuous time although it requires a separate approach. Moreover,
we consider the general case of a noninvertible dynamics.

A principal motivation for the notion of a nonuniform exponential dichotomy is
that it occurs naturally in measure-preserving dynamics. Namely, let f : M → M
be a diffeomorphism and let µ be an f -invariant finite measure on M . If log+‖df‖
is µ-integrable, then for µ-almost every x ∈M if

lim sup
n→∞

1

n
log‖dxfnv‖ 6= 0

for all v 6= 0, then the sequence An(x) = dfn(x)f admits a nonuniform exponen-
tial dichotomy (see for example [3]). In fact, the sequence even admits a strong
nonuniform exponential dichotomy (this means that besides the requirements for a
nonuniform exponential dichotomy one also assumes that there is a minimal con-
traction and a maximal expansion). Thus, from the point of view of ergodic theory
the nonuniform exponential behavior is ubiquitous. We refer the reader to [3, 8] for
details and references.

Our approach consists in reducing the study of the dynamics to one with uniform
exponential behavior with respect to a family of norms and then using the char-
acterization of uniform hyperbolicity in terms of an admissibility property (partly
inspired by related approaches in [15, 17]) in order to show that the dynamics admits
a two-sided exponential dichotomy. In the particular case of uniform exponential
dichotomies our results are closely related to work of Pliss in [31] (see the discussion
after Theorem 2.9).

While it is difficult to indicate an original reference for considering families of
norms in the classical uniform theory (both for discrete and continuous time), in
the nonuniform theory it first occurred in Pesin’s work on nonuniform hyperbolicity
and smooth ergodic theory [28, 29] (see also the detailed description in [4]). Our
notion of an exponential dichotomy with respect to a family of norms is motivated
by his approach (see [8] for a detailed discussion), although now having in mind the
characterization of the hyperbolicity in terms of an admissibility.

On the other hand, the study of admissibility goes back to pioneering work of
Perron in [27] and referred originally to the existence of bounded solutions of the
equation

x′ = A(t)x+ f(t)

in Rn for any bounded continuous perturbation f : R+
0 → Rn. It turns out that this

property is related to the conditional stability of the linear equation x′ = A(t)x. A
corresponding study for discrete time was initiated by Li in [21]. It was proved by
Maizel’ in [22] (for an integrally bounded coefficient matrix) and by Coppel in [12]
(in the general case) that the admissibility property on R+

0 implies that the linear
equation admits an exponential dichotomy. For the description of some of the most
relevant early contributions in the area see the books by Massera and Schäffer [24]
(see also [23]), by Dalec′kĭı and Krĕın [14] and by Coppel [13]. Related results for
discrete time were obtained by Coffman and Schäffer in [11]. See also [20] for the
description of some early results in infinite-dimensional spaces. For a detailed list
of references, we refer the reader to [10] and for more recent work to Huy [16] and
Todorov [33].
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Finally, as an application, we give a complete characterization of the set of Lya-
punov exponents of a Lyapunov regular dynamics in an analogous manner to that
in the Sacker–Sell theory (see [32]), although now expressed in terms of nonuniform
exponential dichotomies with an arbitrarily small nonuniform part.

2. Discrete time. In this section we give a necessary and sufficient condition so
that a sequence of linear operators admitting nonuniform exponential dichotomies
both on Z+

0 and Z−0 also admits a nonuniform exponential dichotomy on Z. The
condition is that the stable space of Z+

0 at the origin and the unstable space of Z−0 at
the origin generate the whole space. We also consider the case of strong nonuniform
exponential dichotomies.

2.1. Nonuniform exponential dichotomies. Let X = (X, ‖·‖) be a Banach
space and let B(X) be the set of all bounded linear operators on X. Moreover, let
I ∈ {Z+

0 ,Z
−
0 ,Z} be an interval, where

Z+
0 = {n ∈ Z : n ≥ 0} and Z−0 = {n ∈ Z : n ≤ 0}.

Given a sequence (Am)m∈I in B(X), we define

A(n,m) =

{
An−1 · · ·Am if n > m,

Id if n = m
(1)

for n,m ∈ I with n ≥ m. We say that (Am)m∈I admits a nonuniform exponential
dichotomy on I if:

1. there exist projections Pm ∈ B(X) for m ∈ I satisfying

A(n,m)Pm = PnA(n,m) for n ≥ m (2)

such that each map

A(n,m)|KerPm : KerPm → KerPn

is invertible;
2. there exist constants λ,D > 0 and ε ≥ 0 such that for n,m ∈ I we have

‖A(n,m)Pm‖ ≤ De−λ(n−m)+ε|m| for n ≥ m (3)

and

‖A(n,m)Qm‖ ≤ De−λ(m−n)+ε|m| for n ≤ m, (4)

where Qm = Id− Pm and

A(n,m) = (A(m,n)|KerPn)
−1

: KerPm → KerPn

for n < m.

More generally, given a sequence of norms ‖·‖m for m ∈ I on X, we say that
(Am)m∈I admits a nonuniform exponential dichotomy on I with respect to the se-
quence of norms ‖·‖m if conditions 1–2 hold with (3) and (4) replaced respectively
by

‖A(n,m)Pmx‖n ≤ De−λ(n−m)+ε|m|‖x‖m for n ≥ m, x ∈ X (5)

and

‖A(n,m)Qmx‖n ≤ De−λ(m−n)+ε|m|‖x‖m for n ≤ m, x ∈ X. (6)
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Example 2.1. Given ω < 0 and ε, c > 0 such that ω + ε < 0, consider the real
numbers

Am =

{
eω+ε[(−1)mm−1/2]−c(2m+1) if m ≥ 0,

e−ω+ε[(−1)m+1m−1/2]−c(2m+1) if m < 0.

For n ≥ m ≥ 0 we have

A(n,m) = e(ω−ε/2)(n−m)+ε
∑n−1

k=m(−1)kk−c(n2−m2)

= e(ω−ε/2)(n−m)+ε(−1)n−1bn/2c−ε(−1)m−1bm/2c−c(n2−m2)

≤ eω(n−m)+εm

(7)

(see [9]) and thus (Am)m≥0 admits a nonuniform exponential dichotomy on Z+
0 with

Pm = Id for m ≥ 0. On the other hand, for n ≤ m ≤ 0 we have

A(m,n)−1 = e(ω+ε/2)(m−n)+ε
∑m−1

k=n (−1)kk−c(n2−m2)

= e(ω+ε/2)(m−n)+ε(−1)|n|+1b(|n|+1)/2c−ε(−1)|m|+1b(|m|+1)/2c−c(n2−m2)

≤ eε+(ω+ε)(m−n)+ε|m|

(8)

(see [9]) and thus (Am)m≤0 admits a nonuniform exponential dichotomy on Z−0
with Pm = 0 for m ≤ 0. This implies that the sequence (Am)m∈Z does not admit a
nonuniform exponential dichotomy on Z.

Example 2.2 (see [9]). Given ω < 0 and ε ≥ 0 such that ω + ε < 0, consider the
matrices

Am =

(
eω+ε[(−1)mm−1/2] 0

0 e−ω+ε[(−1)m+1m−1/2]

)
and the projections

Pm(x, y) = (x, 0) and Qm(x, y) = (0, y)

for m ∈ Z. Then the sequence (Am)m∈Z admits a nonuniform exponential di-
chotomy on Z.

The following result gives a necessary and sufficient condition so that a sequence
of linear operators admitting nonuniform exponential dichotomies both on Z+

0 and
on Z−0 also admits a nonuniform exponential dichotomy on Z.

Theorem 2.3. A sequence (Am)m∈Z ⊂ B(X) admits a nonuniform exponential di-
chotomy on Z if and only if there exist projections P+

m for m ≥ 0 and projections P−m
for m ≤ 0 such that:

1. (Am)m≥0 admits a nonuniform exponential dichotomy on Z+
0 with projec-

tions P+
m ;

2. (Am)m≤0 admits a nonuniform exponential dichotomy on Z−0 with projec-
tions P−m ;

3. X = ImP+
0 ⊕KerP−0 .

Proof. It is clear that properties 1–3 hold for any sequence (Am)m∈Z that admits a
nonuniform exponential dichotomy on Z.

Now we prove the converse. We divide the proof into steps.
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Step 1. Construction of Lyapunov norms. Assume that properties 1–3 hold. With-
out loss of generality, one can assume that the constants in the notion of a nonuni-
form exponential dichotomy are the same for both dichotomies (on Z+

0 and on Z−0 ).
Namely, there exist constants D,λ > 0 and ε ≥ 0 such that

‖A(n,m)P+
m‖ ≤ De−λ(n−m)+εm for n ≥ m ≥ 0,

‖A(n,m)Q+
m‖ ≤ De−λ(m−n)+εm for 0 ≤ n ≤ m,

‖A(n,m)P−m‖ ≤ De−λ(n−m)+ε|m| for 0 ≥ n ≥ m,

‖A(n,m)Q−m‖ ≤ De−λ(m−n)+ε|m| for n ≤ m ≤ 0,

(9)

where Q+
m = Id− P+

m and Q−m = Id− P−m .
Now we introduce a sequence of Lyapunov norms. For each n ∈ Z and x ∈ X,

let

‖x‖n =

{
‖x‖+n if n ≥ 0,

‖x‖−n if n < 0,
(10)

where

‖x‖+m = sup
n≥m

(
‖A(n,m)P+

mx‖eλ(n−m)
)

+ sup
0≤n≤m

(
‖A(n,m)Q+

mx‖eλ(m−n)
)

and

‖x‖−m = sup
0≥n≥m

(
‖A(n,m)P−mx‖eλ(n−m)

)
+ sup
n≤m

(
‖A(n,m)Q−mx‖eλ(m−n)

)
.

For m ≥ 0 and x ∈ X, by (9) we have

‖x‖ ≤ ‖x‖+m ≤ 2Deεm‖x‖. (11)

Indeed, by definition,

‖x‖+m ≥ ‖P+
mx‖+ ‖Q+

mx‖ ≥ ‖P+
mx+Q+

mx‖ = ‖x‖
and, analogously,

‖x‖−m ≥ ‖P−mx‖+ ‖Q−mx‖ ≥ ‖P−mx+Q−mx‖ = ‖x‖.
These inequalities together with (10) yield the first inequality in (11). For the
second inequality, using (9) we obtain

‖x‖+m ≤ Deεm‖x‖+Deεm‖x‖ = 2Deεm‖x‖
and

‖x‖−m ≤ Deε|m|‖x‖+Deε|m|‖x‖ = 2Deε|m|‖x‖.
The second inequality in (11) follows now readily from (10).

Moreover,

‖A(n,m)P+
mx‖+n ≤ e−λ(n−m)‖x‖+m for n ≥ m ≥ 0 (12)

and
‖A(n,m)Q+

mx‖+n ≤ e−λ(m−n)‖x‖+m for 0 ≤ n ≤ m. (13)

Similarly, for m ≤ 0 and x ∈ X, by (9) we have

‖x‖ ≤ ‖x‖−m ≤ 2Deε|m|‖x‖. (14)

Moreover,

‖A(n,m)P−m‖−n ≤ e−λ(n−m)‖x‖−m for 0 ≥ n ≥ m (15)

and
‖A(n,m)Q−mx‖−n ≤ e−λ(m−n)‖x‖−m for n ≤ m ≤ 0. (16)
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It follows from (11) and (14) that

‖x‖ ≤ ‖x‖n ≤ 2Deε|n|‖x‖ for n ∈ Z, x ∈ X. (17)

Step 2. Strategy of the proof. Let

Y =

{
x = (xn)n∈Z ⊂ X : sup

n∈Z
‖xn‖n < +∞

}
. (18)

The following result was proved in [1].

Lemma 2.4. Assume that for each y = (yn)n∈Z ∈ Y , there exists a unique x =
(xn)n∈Z ∈ Y satisfying

xn+1 −Anxn = yn+1 for n ∈ Z. (19)

Then the sequence (Am)m∈Z admits a nonuniform exponential dichotomy on Z with
respect to the sequence of norms ‖·‖n with ε = 0.

In view of Lemma 2.4 and (17), in order to prove the theorem it is sufficient
to show that for each y = (yn)n∈Z ∈ Y , there exists a unique x = (xn)n∈Z ∈ Y
satisfying (19). Indeed, if (19) holds, then by Lemma 2.4 there exist projections Pm
for m ∈ Z satisfying (2), and inequalities (5) and (6) hold with ε = 0, that is,

‖A(n,m)Pmx‖n ≤ De−λ(n−m)‖xm‖m
for n ≥ m and

‖A(n,m)Qmx‖n ≤ De−λ(m−n)‖xm‖m
for n ≤ m, where Qm = Id− Pm. In view of (17) this implies that

‖A(n,m)Pm‖ ≤ D2e−λ(n−m)+ε|m| (20)

for n ≥ m and
‖A(n,m)Qm‖ ≤ D2e−λ(m−n)+ε|m| (21)

for n ≤ m. In other words, the sequence (An)n∈Z admits a nonuniform exponential
dichotomy on Z.

Step 3. Ranges of the projections. The next step is to describe the ranges of the
projections P+

0 and Q−0 .

Lemma 2.5. We have

ImP+
0 =

{
x ∈ X : sup

m≥0
‖A(m, 0)x‖+m < +∞

}
.

Proof of the lemma. It follows readily from (12) that

sup
m≥0
‖A(m, 0)x‖+m < +∞ (22)

for x ∈ ImP+
0 . Now take x ∈ X satisfying (22). Since x = P+

0 x + Q+
0 x, it follows

from (12) that

sup
m≥0
‖A(m, 0)Q+

0 x‖+m = sup
m≥0
‖A(m, 0)(x− P+

0 x)‖+m

≤ sup
m≥0
‖A(m, 0)x‖+m + sup

m≥0
‖A(m, 0)P+

0 x‖+m < +∞.

On the other hand, by (13), we have

‖Q+
0 x‖

+
0 = ‖A(0,m)A(m, 0)Q+

0 x‖
+
0 ≤ e−λm‖A(m, 0)Q+

0 x‖+m
for m ≥ 0. Letting m→∞ yields that Q+

0 x = 0, i.e., x = P+
0 x ∈ ImP+

0 .
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Lemma 2.6. For each m ≤ 0, the set ImQ−m consists of all x ∈ X for which there
exists a sequence (xn)n≤m such that xm = x, xn+1 = Anxn for n ≤ m − 1 and
supn≤m‖xn‖−n < +∞.

Proof of the lemma. Clearly, each x ∈ ImQ−m has the property in the lemma. Con-
versely, take x ∈ X with that property and write xn = P−n xn + Q−n xn for n ≤ m.
By (2) we have

A(m,n)P−n xn = P−mxm and A(m,n)Q−n xn = Q−mxm

for n ≤ m. Hence, it follows from (16) that supn≤m‖P−n xn‖−n < +∞. On the other
hand, by (15), for n ≤ m we have

‖P−mxm‖−m = ‖A(m,n)P−n xn‖−n ≤ e−λ(m−n)‖P−n xn‖−n .

Letting n→ −∞ yields that P−mxm = 0 and so xm = Q−mxm ∈ ImQ−m.

Step 4. Existence of solutions. Let

Y + =

{
x = (xn)n≥0 ⊂ X : sup

n≥0
‖xn‖+n < +∞

}
.

Lemma 2.7. For each y = (yn)n≥0 ∈ Y + with y0 = 0, there exists x = (xn)n≥0 ∈
Y + with x0 ∈ ImQ−0 such that

xn+1 −Anxn = yn+1 for n ≥ 0. (23)

Proof of the lemma. For each n ≥ 0, let

x∗n =

n∑
k=0

A(n, k)P+
k yk −

∞∑
k=n+1

A(n, k)Q+
k yk.

It follows from (12) and (13) that

‖x∗n‖+n ≤
n∑
k=0

e−λ(n−k)‖yk‖+k +

∞∑
k=n+1

e−λ(k−n)‖yk‖+k

≤ 1 + e−λ

1− e−λ
sup
k≥0
‖yk‖+k

for n ≥ 0 and hence x∗ = (x∗n)n≥0 ∈ Y +. By property 3, one can write x∗0 = x′0 +x′′0
with x′0 ∈ ImP+

0 and x′′0 ∈ ImQ−0 . Let

xn = x∗n −A(n, 0)x′0 for n ≥ 0.

Then x = (xn)n≥0 ∈ Y + and x0 ∈ ImQ−0 . Moreover, it is easy to verify that (23)
holds.

Take y = (yn)n∈Z ∈ Y with yn = 0 for n ≤ 0. By Lemma 2.7, there exists
x∗ = (x∗n)n≥0 ∈ Y + such that x∗0 ∈ ImQ−0 and

x∗n+1 −Anx∗n = yn+1 for n ≥ 0.

Let

xn =

{
x∗n if n ≥ 0,

A(n, 0)x∗0 if n < 0.
(24)

Clearly, x = (xn)n∈Z ∈ Y and (19) holds.
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Now let

Y − =

{
x = (xn)n≤0 ⊂ X : sup

n≤0
‖xn‖−n < +∞

}
.

Lemma 2.8. For each y = (yn)n≤0 ∈ Y −, there exists x = (xn)n≤0 ∈ Y − with
x0 ∈ ImP+

0 such that

xn+1 −Anxn = yn+1 for n ≤ −1. (25)

Proof of the lemma. For each n ≤ 0, let

x∗n = −
0∑

k=n+1

A(n, k)Q−k yk +

n∑
k=−∞

A(n, k)P−k yk.

It follows from (15) and (16) that x∗ = (x∗n)n≤0 ∈ Y −. By property 3, one can
write x∗0 = x′0 + x′′0 , with x′0 ∈ ImP+

0 and x′′0 ∈ ImQ−0 . Let

xn = x∗n −A(n, 0)x′′0 for n ≤ 0.

Then x = (xn)n≤0 ∈ Y − and x0 ∈ ImP+
0 . Moreover, it is easy to verify that (25)

holds.

Take y = (yn)n∈Z ∈ Y with yn = 0 for n > 0. By Lemma 2.8, there exists
x∗ = (x∗n)n≤0 ∈ Y − such that x∗0 ∈ ImP+

0 and

x∗n+1 −Anx∗n = yn+1 for n ≤ −1.

Let

xn =

{
x∗n if n ≤ 0,

A(n, 0)x∗0 if n > 0.
(26)

Clearly, x = (xn)n∈Z ∈ Y and (19) holds.
Finally, we note that each sequence y ∈ Y can be written in the form y = y1 +y2

with y1,y2 ∈ Y such that y1
n = 0 for n ≤ 0 and y2

n = 0 for n > 0. Hence, one can
obtain a solution of (19) by adding the solutions in (24) and (26).

Step 5. Uniqueness of solutions. In order to establish the uniqueness of a solution
x satisfying (19) it is sufficient to consider the case when y = 0. Assume that
x = (xn)n∈Z ∈ Y satisfies xn+1 = Anxn for n ∈ Z. It follows from Lemmas 2.5
and 2.6 that x0 ∈ ImP+

0 ∩ ImQ−0 and thus x0 = 0 (by property 3). Hence, x = 0.
This completes the proof of the theorem.

Now we describe a connection between our work and a result of Pliss in the par-
ticular case of uniform exponential dichotomies. We recall that a sequence (Am)m∈Z
in B(X) admits a uniform exponential dichotomy on I if it admits a nonuniform
exponential dichotomy on I with ε = 0. The following is a direct consequence of
Theorem 2.3 and Lemma 2.4, with the space Y in (18) defined with respect to the
norms ‖·‖n = ‖·‖ for n ∈ Z.

Theorem 2.9. The following statements are equivalent:

1. for each y = (yn)n∈Z ∈ Y , there exists a unique x = (xn)n∈Z ∈ Y satisfy-
ing (19);

2. there exist projections P+
m for m ≥ 0 and P−m for m ≤ 0 such that:

(a) (Am)m≥0 admits a uniform exponential dichotomy on Z+
0 with projec-

tions P+
m ;
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(b) (Am)m≤0 admits a uniform exponential dichotomy on Z−0 with projec-
tions P−m ;

(c) X = ImP+
0 ⊕KerP−0 .

In the finite-dimensional setting, an analogue of Theorem 2.9 was established
earlier by Pliss [31] in the case of continuous time. The following is a version of his
result for discrete time (see [30, 33] for details).

Theorem 2.10. Let X be a finite-dimensional vector space. The following state-
ments are equivalent:

1. for each y = (yn)n∈Z ∈ Y , there exists x = (xn)n∈Z ∈ Y satisfying (19);
2. there exist projections P+

m for m ≥ 0 and P−m for m ≤ 0 such that:
(a) (Am)m≥0 admits a uniform exponential dichotomy on Z+

0 with projec-
tions P+

m ;
(b) (Am)m≤0 admits a uniform exponential dichotomy on Z−0 with projec-

tions P−m ;
(c) X = ImP+

0 + KerP−0 .

Notice that in Theorem 2.10 one does not require the uniqueness of the solution
of equation (19) and that the spaces ImP+

0 and KerP−0 are only required to be
transverse. Of course, this causes that neither of the Theorems 2.9 and 2.10 is an
automatic consequence of the other.

Related results involving the Fredholm properties of the operator defined by
equation (19) (that is, by the uniqueness of its solution) were obtained by Palmer
in [25, 26] (see [18, 19] for the case of continuous time).

2.2. Strong nonuniform exponential dichotomies. In this section we consider
the notion of a strong nonuniform exponential dichotomy.

Let (Am)m∈I be a sequence of invertible operators in B(X). We define A(n,m)
by (1) for n ≥ m and by

A(n,m) = A(m,n)−1 = A−1
n · · ·A−1

m−1

for n < m. We say that (Am)m∈I admits a strong nonuniform exponential di-
chotomy on I if there exist projections Pm ∈ B(X) for m ∈ I satisfying (2) and
there exist constants

λ ≤ λ < 0 < µ ≤ µ and D > 0

such that

‖A(m,n)Pn‖ ≤ Deλ(m−n)+ε|n|,

‖A(n,m)Qm‖ ≤ De−µ(m−n)+ε|m|

for m ≥ n and

‖A(m,n)Pn‖ ≤ Deλ(m−n)+ε|n|,

‖A(n,m)Qm‖ ≤ De−µ(m−n)+ε|m|

for m ≤ n, where Qm = Id− Pm.

Example 2.11. Given ω < 0 and ε > 0 such that ω + ε < 0, consider the real
numbers

Am =

{
eω+ε[(−1)mm−1/2] if m ≥ 0,

e−ω+ε[(−1)m+1m−1/2] if m < 0.
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By (7) with c = 0, for m ≥ n ≥ 0, we have A(m,n) ≤ eω(m−n)+εn. Moreover, for
0 ≤ m ≤ n,

A(m,n) = e(−ω+ε/2)(n−m)−ε
∑n−1

k=m(−1)kk

= e(−ω+ε/2)(n−m)+ε(−1)m−1bm/2c−ε(−1)n−1bn/2c

≤ eω(m−n)+εn

(see [9]). Now we consider nonpositive times. By (8) with c = 0, for m ≤ n ≤ 0, we
have A(m,n) ≤ eε+(ω+ε)(n−m)+ε|n|. Moreover, for n ≤ m ≤ 0,

A(m,n) = e−(ω+ε/2)(m−n)−ε
∑m−1

k=n (−1)kk

≤ e−(ω+ε/2)(m−n)+ε/2(|n|+|m|+2)

≤ eε−ω(m−n)+ε|n|

(see [9]). This shows that the sequence (Am)m∈Z admits a strong nonuniform expo-
nential dichotomy on Z+

0 with projections Pn = Id for n ≥ 0 and a strong nonuni-
form exponential dichotomy on Z−0 with projections Pn = 0 for n ≤ 0. Hence, the
sequence does not admit a strong nonuniform exponential dichotomy on Z.

We note that the nonuniform exponential dichotomies in Example 2.1 are not
strong, due to the presence of the squares in the formulas for A(m,n) (see (7)
and (8)). On the other hand, it is shown in [9] that the sequence (Am)m∈Z in
Example 2.2 admits a strong nonuniform exponential dichotomy.

The following result is a version of Theorem 2.3 for strong nonuniform exponen-
tial dichotomies. It gives a necessary and sufficient condition so that a sequence
admitting strong nonuniform exponential dichotomies both on Z+

0 and Z−0 also ad-
mits a strong nonuniform exponential dichotomy on Z.

Theorem 2.12. A sequence (Am)m∈Z ⊂ B(X) of invertible operators admits a
strong nonuniform exponential dichotomy on Z if and only if there exist projections
P+
m for m ≥ 0 and projections P−m for m ≤ 0 such that:

1. (Am)m≥0 admits a strong nonuniform exponential dichotomy on Z+
0 with pro-

jections P+
m ;

2. (Am)m≤0 admits a strong nonuniform exponential dichotomy on Z−0 with pro-
jections P−m ;

3. X = ImP+
0 ⊕KerP−0 .

Proof. It is clear that properties 1–3 hold for any sequence (Am)m∈Z that admits
a strong nonuniform exponential dichotomy on Z. Now we prove the converse. As-
sume that properties 1–3 hold. Similarly, without loss of generality, one can assume
that the constants in the notion of a strong nonuniform exponential dichotomy are
the same for both dichotomies (on Z+

0 and on Z−0 ).
For each n ∈ Z and x ∈ X, we consider the norm

‖x‖n =

{
‖x‖+n if n ≥ 0,

‖x‖−n if n < 0,

where ‖x‖+m is the maximum of

sup
n≥m

(
‖A(n,m)P+

mx‖e−λ(n−m)
)

+ sup
0≤n≤m

(
‖A(n,m)P+

mx‖e−λ(n−m)
)
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and

sup
0≤n≤m

(
‖A(n,m)Q+

mx‖eµ(m−n)
)

+ sup
n≥m

(
‖A(n,m)Q+

mx‖eµ(m−n)
)
,

and where ‖x‖−m is the maximum of

sup
0≥n≥m

(
‖A(n,m)P−mx‖e−λ(n−m)

)
+ sup
n≤m

(
‖A(n,m)P−mx‖e−λ(n−m)

)
and

sup
n≤m

(
‖A(n,m)Q−mx‖eµ(m−n)

)
+ sup

0≥n≥m

(
‖A(n,m)Q−mx‖eµ(m−n)

)
.

One can easily verify that

‖x‖ ≤ ‖x‖+m ≤ 2Deεm‖x‖ for x ∈ X, m ≥ 0. (27)

Moreover, following arguments in [5] yields that

‖A(m,n)P+
n x‖+m ≤ 2eλ(m−n)‖x‖+n

‖A(n,m)Q+
mx‖n ≤ 2e−µ(m−n)‖x‖+m

(28)

for m ≥ n ≥ 0 and

‖A(m,n)P+
n x‖+m ≤ 2eλ(m−n)‖x‖+n ,

‖A(n,m)Q+
mx‖+n ≤ 2e−µ(m−n)‖x‖+m

(29)

for 0 ≤ m ≤ n. By (28) and (29) we have

‖Anx‖+n+1 ≤ ‖AnP+
n x‖+n+1 + ‖AnQ+

nx‖+n+1 ≤ 4eµ‖x‖+n

and similarly,

‖A−1
n x‖+n ≤ 4e−λ‖x‖+n+1

for x ∈ X and n ≥ 0. Hence,

1

4
eλ‖x‖+n ≤ ‖Anx‖+n+1 ≤ 4eµ‖x‖+n for x ∈ X, n ≥ 0. (30)

Analogously, one can easily verify that

‖x‖ ≤ ‖x‖−m ≤ 2Deε|m|‖x‖ for x ∈ X, m ≤ 0. (31)

Moreover,

‖A(m,n)P−n x‖−m ≤ 2eλ(m−n)‖x‖−n ,

‖A(n,m)Q−mx‖−n ≤ 2e−µ(m−n)‖x‖−m
(32)

for 0 ≥ m ≥ n and

‖A(m,n)P−n x‖−m ≤ 2eλ(m−n)‖x‖−n ,

‖A(n,m)Q−mx‖−n ≤ 2e−µ(m−n)‖x‖−m
for m ≤ n ≤ 0. This implies that

1

4
eλ‖x‖−n ≤ ‖Anx‖−n+1 ≤ 4eµ‖x‖−n for x ∈ X, n ≤ −1. (33)

By (27) and (31) we have

‖x‖ ≤ ‖x‖m ≤ 2Deε|m|‖x‖ for x ∈ X, m ∈ Z. (34)
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Moreover, by (30) and (33) (together with the fact that the norms ‖·‖+0 and ‖·‖−0
are equivalent) there exist constants C1, C2 > 1 such that

1

C2
‖x‖n ≤ ‖Anx‖n+1 ≤ C1‖x‖n for x ∈ X, n ∈ Z. (35)

Indeed, it follows from (30) and (33) that (35) holds for n ≥ 0 and n < −1 with
C1 = 4eµ and C2 = 4e−λ. On the other hand, for n = −1, using also (27) and (31)
we obtain

‖A−1x‖0 = ‖A−1x‖+0 ≤ D‖A−1x‖
≤ D‖A−1x‖−0 ≤ 4Deµ‖x‖−1

and, similarly,

‖A−1x‖0 = ‖A−1x‖+0 ≥ ‖A−1x‖

≥ 1

D
‖A−1x‖−0 ≥

1

4D
eλ‖x‖−1.

Hence, (35) holds for n ∈ Z with C1 = 4Deµ and C2 = 4De−λ.
In a similar manner to that in the proof of Theorem 2.3, inequalities (28) and (32)

imply that the sequence (An)n∈Z admits a nonuniform exponential dichotomy with
respect to the sequence of norms ‖·‖n with ε = 0. Hence, there exist projections Pn
for n ∈ Z satisfying (2) and there exist constants C, λ > 0 such that

‖A(m,n)Pnx‖m ≤ Ce−λ(m−n)‖x‖n,

‖A(n,m)Qmx‖n ≤ Ce−λ(m−n)‖x‖m
(36)

for m ≥ n. Finally, by (34), (35) and (36) we conclude that

‖A(m,n)Pnx‖ ≤ CDe−λ(m−n)+ε|n|‖x‖,

‖A(n,m)Qmx‖ ≤ CDe−λ(m−n)+ε|m|‖x‖

for m ≥ n and

‖A(m,n)Pnx‖ ≤ CDe(logC2)(n−m)+ε|n|‖x‖,

‖A(n,m)Qmx‖ ≤ CDe(logC1)(n−m)+ε|m|‖x‖

for m ≤ n. Therefore, the sequence (An)n∈Z admits a strong nonuniform exponen-
tial dichotomy on Z. This completes the proof of the theorem.

3. Continuous time. In this section we obtain corresponding results to those in
Section 2 for continuous time.

3.1. Nonuniform exponential dichotomies. We continue to denote by B(X)
the set of all bounded linear operators on a Banach space X. Let I ∈ {R,R+

0 ,R
−
0 }

be an interval. A family T (t, τ) for t, τ ∈ I with t ≥ τ of linear operators in B(X)
is said to be an evolution family on I if:

1. T (t, t) = Id for t ∈ I;
2. T (t, s)T (s, τ) = T (t, τ) for t, s, τ ∈ I with t ≥ s ≥ τ ;
3. for each t, τ ∈ I and x ∈ X, the map s 7→ T (t, s)x is continuous on (−∞, t]∩I

and the map s 7→ T (s, τ)x is continuous on [τ,∞) ∩ I.

We say that an evolution family T (t, τ) on I admits an nonuniform exponential
dichotomy on I if:
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1. there exist projections Pt ∈ B(X) for t ∈ I satisfying

PtT (t, τ) = T (t, τ)Pτ for t ≥ τ (37)

such that each map

T (t, τ)|KerPτ : KerPτ → KerPt

is invertible;
2. there exist constants λ,D > 0 and ε ≥ 0 such that each t, τ ∈ I we have

‖T (t, τ)Pτ‖ ≤ De−λ(t−τ)+ε|τ | for t ≥ τ (38)

and

‖T (t, τ)Qτ‖ ≤ De−λ(τ−t)+ε|τ | for t ≤ τ, (39)

where Qτ = Id− Pτ and

T (t, τ) = (T (τ, t)|KerPt)
−1 : KerPτ → KerPt

for t ≤ τ .

More generally, given a family of norms ‖·‖t for t ∈ I on X, we say that T (t, τ)
admits a nonuniform exponential dichotomy on I with respect to the family of norms
‖·‖t if conditions 1–2 hold with (38) and (39) replaced respectively by

‖T (t, τ)Pτx‖t ≤ De−λ(t−τ)+ε|τ |‖x‖τ for t ≥ τ, x ∈ X
and

‖T (t, τ)Qτx‖t ≤ De−λ(τ−t)+ε|τ |‖x‖τ for t ≤ τ, x ∈ X.

Example 3.1. Given ω > ε > 0 and c > 0, consider the evolution family T1(t, s)
on R+

0 defined by

T1(t, s) = e(−ω+ε)(t−s)+εt(cos t−1)−εs(cos s−1)+ε(sin s−sin t)−c(t2−s2).

For t ≥ s ≥ 0, we have

T1(t, s) ≤ e2εe(−ω+ε)(t−s)+2εs.

and thus T1(t, s) admits a nonuniform exponential dichotomy on R+
0 with projec-

tions Pt = Id for t ≥ 0. Now consider the evolution family T2(t, s) on R−0 defined
by

T2(t, s) = e(ω−ε)(t−s)−εt(cos t−1)+εs(cos s−1)−ε(sin s−sin t)−c(t2−s2).

For t ≤ s ≤ 0, we have

T2(t, s) ≤ e2εe(ε−ω)(s−t)+2ε|s|

and thus T2(t, s) admits a nonuniform exponential dichotomy on R−0 with projec-
tions Pt = 0 for t ≤ 0. Then the evolution family T (t, s) on R defined by

T (t, s) =


T1(t, s) if t ≥ s ≥ 0,

T2(t, s) if 0 ≥ t ≥ s,
T1(t, 0)T2(0, s) if t > 0 > s

does not admit a nonuniform exponential dichotomy on R.

In a similar manner to that in Theorem 2.3, the following result gives a neces-
sary and sufficient condition so that a sequence admitting nonuniform exponential
dichotomies both on R+

0 and R−0 also admits a nonuniform exponential dichotomy
on R.
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Theorem 3.2. An evolution family T (t, τ) admits a nonuniform exponential di-
chotomy on R if and only if there exist projections P+

t for t ≥ 0 and projections P−t
for t ≤ 0 such that:

1. T (t, τ) admits a nonuniform exponential dichotomy on R+
0 with projections P+

t ;
2. T (t, τ) admits a nonuniform exponential dichotomy on R−0 with projections P−t ;
3. X = ImP+

0 ⊕KerP−0 .

Proof. As in the proof of Theorem 2.3, it is sufficient to show that if properties 1–3
hold, then the evolution family admits a nonuniform exponential dichotomy on R.

We first introduce Lyapunov norms. For t ≥ 0 and x ∈ X, let

‖x‖+t = sup
τ≥t

(
‖T (τ, t)P+

t x‖eλ(τ−t))+ sup
0≤τ≤t

(
‖T (τ, t)Q+

t x‖eλ(t−τ)
)
.

It follows from (38) and (39) that

‖x‖ ≤ ‖x‖+t ≤ Deεt‖x‖ for t ≥ 0, x ∈ X. (40)

Moreover,

‖T (t, τ)P+
τ x‖+t ≤ e−λ(t−τ)‖x‖+τ (41)

for t ≥ τ ≥ 0 and x ∈ X, and similarly,

‖T (t, τ)P+
τ x‖+t ≤ e−λ(τ−t)‖x‖+τ (42)

for 0 ≤ t ≤ τ and x ∈ X.
On the other hand, for t ≤ 0 and x ∈ X, let

‖x‖−t = sup
0≥τ≥t

(
‖T (τ, t)P−t x‖eλ(τ−t))+ sup

τ≤t

(
‖T (τ, t)Q−t x‖eλ(t−τ)

)
.

It follows from (38) and (39) that

‖x‖ ≤ ‖x‖−t ≤ Deε|t|‖x‖ for t ≤ 0, x ∈ X. (43)

Moreover,

‖T (t, τ)P−τ x‖−t ≤ e−λ(t−τ)‖x‖−t (44)

for 0 ≥ t ≥ τ and x ∈ X, and similarly,

‖T (t, τ)Q−τ x‖−t ≤ e−λ(τ−t)‖x‖−τ (45)

for t ≤ τ ≤ 0 and x ∈ X. In addition, one can show that

s 7→ ‖T (s, t)x‖+s is continuous on [t,+∞)

for t ≥ 0 and x ∈ X, and that

s 7→ ‖T (s, t)x‖−s is continuous on [t, 0]

for t ≤ 0 and x ∈ X (see [2] for a detailed argument). Finally, for t ∈ R and x ∈ X,
let

‖x‖t =

{
‖x‖+t if t ≥ 0,

‖x‖−t if t < 0.
(46)

It follows from (40) and (43) that

‖x‖ ≤ ‖x‖t ≤ Deε|t|‖x‖ for x ∈ X, t ∈ R.

Now we consider the spaces

Y =

{
x : R→ X continuous : sup

t∈R
‖x(t)‖t < +∞

}
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and

Y1 =

{
x : R→ X measurable : sup

t∈R

∫ t+1

t

‖x(τ)‖τ dτ < +∞
}
.

The following result is proved in Appendix A (the argument requires additional
material that would complicate the exposition at this point).

Lemma 3.3. Assume that for each y ∈ Y1, there exists a unique x ∈ Y satisfying

x(t) = T (t, τ)x(τ) +

∫ t

τ

T (t, s)y(s) ds for t ≥ τ. (47)

Then T (t, τ) admits a nonuniform exponential dichotomy with respect to the family
of norms ‖·‖t with ε = 0.

In view of Lemma 3.3, in order to prove Theorem 3.2 it is sufficient to show that
for each y ∈ Y1, there exists a unique x ∈ Y satisfying (47).

The proofs of the following two lemmas are analogous to those of Lemmas 2.5
and 2.6.

Lemma 3.4. We have

ImP+
0 =

{
x ∈ X : sup

t≥0
‖T (t, 0)x‖+t < +∞

}
.

Lemma 3.5. For each t ≤ 0, the set ImQ−t consists of all x ∈ X for which
there exists a continuous function x : (−∞, t] → X such that x(t) = x, x(s1) =
T (s1, s2)x(s2) for t ≥ s1 ≥ s2 and sups≤t‖x(s)‖−s < +∞.

Now we introduce auxiliary spaces. Let

Y + =

{
x : R+

0 → X continuous : sup
t≥0
‖x(t)‖+t < +∞

}
and

Y +
1 =

{
x : R+

0 → X measurable : sup
t≥0

∫ t+1

t

‖x(τ)‖+τ dτ < +∞
}
.

Lemma 3.6. For each y ∈ Y +
1 , there exists x ∈ Y + with x(0) ∈ ImQ−0 such that

x(t) = T (t, τ)x(τ) +

∫ t

τ

T (t, s)y(s) ds for t ≥ τ ≥ 0. (48)

Proof of the lemma. Take y ∈ Y +
1 and extend it to a function y : R→ X by letting

y(t) = 0 for t < 0. Moreover, for t ≥ 0, let

x∗1(t) =

∫ t

0

T (t, τ)Pτy(τ) dτ and x∗2(t) =

∫ ∞
t

T (t, τ)Qτy(τ) dτ.

It follows from (41) that

‖x∗1(t)‖t ≤
∫ t

−∞
‖T (t, τ)P+

τ y(τ)‖t dτ

≤
∫ t

−∞
e−λ(t−τ)‖y(τ)‖τ dτ

=

∞∑
m=0

∫ t−m

t−m−1

e−λ(t−τ)‖y(τ)‖τ dτ
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≤
∞∑
m=0

e−λm
∫ t−m

t−m−1

‖y(τ)‖τ dτ

≤ 1

1− e−λ
sup
t≥0

∫ t+1

t

‖y(τ)‖τ dτ

for t ≥ 0. Similarly, by (42),

‖x∗2(t)‖t ≤
1

1− e−λ
sup
t≥0

∫ t+1

t

‖y(τ)‖τ dτ

for t ≥ 0. Now let x∗(t) = x∗1(t)− x∗2(t). Clearly, supt≥0‖x∗(t)‖t < +∞. For τ ≥ 0,
we have

x∗(t) =

∫ t

τ

T (t, s)y(s) ds−
∫ t

τ

T (t, s)P+
s y(s) ds−

∫ t

τ

T (t, s)Q+
s y(s) ds

+

∫ t

0

T (t, s)P+
s y(s) ds−

∫ ∞
t

T (t, s)Q+
s y(s) ds

=

∫ t

τ

T (t, s)y(s) ds+

∫ τ

0

T (t, s)P+
s y(s) ds−

∫ ∞
τ

T (t, s)Q+
s y(s) ds

=

∫ t

τ

T (t, s)y(s) ds+ T (t, τ)x∗(τ)

for t ≥ τ and so identity (48) holds with x replaced by x∗. In particular, this implies
that x∗ is continuous and so x∗ ∈ Y +. By property 3, one can write x∗(0) = x′0 +x′′0
with x′0 ∈ ImP+

0 and x′′0 ∈ ImQ−0 . We define x : R+
0 → X by

x(t) = x∗(t)− T (t, 0)x′0

for t ≥ 0. Then x ∈ Y +, x(0) ∈ ImQ−0 and (48) holds.

Take y ∈ Y1 with y(t) = 0 for t < 0. By Lemma 3.6, there exists x∗ ∈ Y + such
that (48) holds and x∗(0) ∈ ImQ−0 . Let

x(t) =

{
x∗(t) if t ≥ 0,

T (t, 0)x∗(0) if t < 0.
(49)

Clearly, x ∈ Y and (47) holds.
Similarly, let

Y − =

{
x : R−0 → X continuous : sup

t≤0
‖x(t)‖−t < +∞

}
and

Y −1 =

{
x : R−0 → X measurable : sup

t≤0

∫ t

t−1

‖x(τ)‖−τ dτ < +∞
}
.

Lemma 3.7. For each y ∈ Y −1 , there exists x ∈ Y − with x(0) ∈ ImP+
0 such that

x(t) = T (t, τ)x(τ) +

∫ t

τ

T (t, s)y(s) ds for 0 ≥ t ≥ τ. (50)

Proof of the lemma. Take y ∈ Y −1 . For t ≤ 0, let

x∗(t) = −
∫ 0

t

T (t, τ)Q−τ y(τ) dτ +

∫ t

−∞
T (t, τ)P−τ y(τ) dτ.
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It follows easily from (44) and (45) that supt≤0‖x∗(t)‖−t < +∞. Moreover, it is
easy to verify that identity (50) holds with x replaced by x∗. By property 3, one
can write x∗(0) = x′0 +x′′0 with x′0 ∈ ImP+

0 and x′′0 ∈ ImQ−0 . We define x : R−0 → X
by

x(t) = x∗(t)− T (t, 0)x′′0

for t ≤ 0. Then x ∈ Y −, x(0) ∈ ImP+
0 and (50) holds.

Take y ∈ Y1 with y(t) = 0 for t ≥ 0. By Lemma 3.7, there exists x∗ ∈ Y − such
that (50) holds and x∗(0) ∈ ImP+

0 . Let

x(t) =

{
x∗(t) if t ≤ 0,

T (t, 0)x∗(0) if t > 0.
(51)

Clearly, x ∈ Y and (47) holds.
Finally, each y ∈ Y1 can be written in the form y = y1 + y2 with y1, y2 ∈ Y1 such

that y1(t) = 0 for t ≤ 0 and y2(t) = 0 for t > 0. Hence, we obtain a solution of (47)
by adding the solutions in (49) and (51).

In order to prove the uniqueness of the solution, it is sufficient to consider the
case when y = 0. Assume that x ∈ Y satisfies x(t) = T (t, τ)x(τ) for t ≥ τ . It
follows from Lemmas 3.4 and 3.5 that x(0) ∈ ImP+

0 ∩ ImQ−0 and thus x(0) = 0 (by
property 3). Hence, x = 0. This completes the proof of the theorem.

3.2. Strong nonuniform exponential dichotomies. We say that an invertible
evolution family T (t, τ) for t, τ ∈ I admits a strong nonuniform exponential di-
chotomy on I if there exist projections Pt ∈ B(X) for t ∈ I satisfying (37) and
there exist constants

λ ≤ λ < 0 < µ ≤ µ, ε ≥ 0 and D > 0

such that

‖T (t, τ)Pτ‖ ≤ Deλ(t−τ)+ε|τ |,

‖T (τ, t)Qt‖ ≤ De−µ(t−τ)+ε|t|

for t ≥ τ and

‖T (t, τ)Pτ‖ ≤ Deλ(t−τ)+ε|τ |,

‖T (τ, t)Qt‖ ≤ De−µ(t−τ)+ε|t|

for t ≤ τ , where Qτ = Id− Pτ .

Example 3.8. Given ω > ε > 0, consider the evolution family T1(t, s) on R+
0

defined by

T1(t, s) = e(−ω+ε)(t−s)+εt(cos t−1)−εs(cos s−1)+ε(sin s−sin t).

We have

T1(t, s) ≤ e2εe(−ω+ε)(t−s)+2εs

for t ≥ s ≥ 0 and

T1(t, s) ≤ e2εe(−ω+ε)(t−s)+2εs

for 0 ≤ t ≤ s. Now we consider negative times. Namely, we consider the evolution
family T2(t, s) on R−0 defined by

T2(t, s) = e(ω−ε)(t−s)−εt(cos t−1)+εs(cos s−1)−ε(sin s−sin t).
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We have

T2(t, s) ≤ e2εe(ε−ω)(s−t)+2ε|s|

for t ≤ s ≤ 0 and

T2(t, s) ≤ e2εe(ω−ε)(t−s)+2ε|s|

for 0 ≥ t ≥ s. Then the evolution family T (t, s) on R defined by

T (t, s) =


T1(t, s) if t ≥ s ≥ 0,

T2(t, s) if 0 ≥ t ≥ s,
T1(t, 0)T2(0, s) if t > 0 > s

admits both strong nonuniform exponential dichotomies on R+
0 and on R−0 , but it

does not admit a strong nonuniform exponential dichotomy on R.

The following result is a version of Theorem 2.12 for continuous time.

Theorem 3.9. An evolution family T (t, τ) admits a strong nonuniform exponential
dichotomy on R if and only if there exist projections P+

t for t ≥ 0 and projections
P−t for t ≤ 0 such that:

1. T (t, τ) admits a strong nonuniform exponential dichotomy on R+
0 with projec-

tions P+
t ;

2. T (t, τ) admits a strong nonuniform exponential dichotomy on R−0 with projec-
tions P−t ;

3. X = ImP+
0 ⊕KerP−0 .

Proof. In a similar manner to that in the proof of Theorem 2.12, one can introduce
norms ‖·‖+t for t ≥ 0 such that

‖T (t, τ)P+
τ x‖+t ≤ 2eλ(t−τ)‖x‖+τ ,

‖T (τ, t)Q+
t x‖+τ ≤ 2e−µ(t−τ)‖x‖+t

(52)

for t ≥ τ ≥ 0 and

‖T (t, τ)P+
τ x‖t ≤ 2eλ(t−τ)‖x‖+τ ,

‖T (τ, t)Q+
t x‖+τ ≤ 2e−µ(t−τ)‖x‖+t

(53)

for 0 ≤ t ≤ τ . Then

‖x‖ ≤ ‖x‖+t ≤ 2Deεt‖x‖ for x ∈ X, t ≥ 0

and it follows from (52) and (53) that there exist K, a > 0 such that

‖T (t, τ)x‖+t ≤ Kea|t−τ |‖x‖+τ for x ∈ X, t, τ ≥ 0. (54)

Similarly, one can introduce norms ‖·‖−t for t ≤ 0 such that

‖T (t, τ)P−τ x‖−t ≤ 2eλ(t−τ)‖x‖−τ ,

‖T (τ, t)Q−t x‖−τ ≤ 2e−µ(t−τ)‖x‖−t
(55)

for 0 ≥ t ≥ τ and

‖T (t, τ)P−τ x‖−t ≤ 2eλ(t−τ)‖x‖−τ ,

‖T (τ, t)Q−t x‖−τ ≤ 2e−µ(t−τ)‖x‖−t
(56)

for t ≤ τ ≤ 0. Then

‖x‖ ≤ ‖x‖−t ≤ 2Deε|t|‖x‖ for x ∈ X, t ≥ 0
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and it follows from (55) and (56) that there exist K ′, a′ > 0 such that

‖T (t, τ)x‖−t ≤ K ′ea
′|t−τ |‖x‖−τ for x ∈ X, t, τ ≤ 0. (57)

For each t ≥ 0 and x ∈ X, let

‖x‖t =

{
‖x‖+t if t ≥ 0,

‖x‖−t if t < 0.

We have

‖x‖ ≤ ‖x‖t ≤ 2Deε|t|‖x‖ for x ∈ X, t ∈ R. (58)

It follows easily from (54) and (57) that there exist L, b > 0 such that

‖T (t, τ)x‖t ≤ Leb|t−τ |‖x‖τ for x ∈ X, t, τ ∈ R. (59)

Indeed, it follows from (54) and (57) that (59) holds with L = K when t, τ ≥ 0 and
with L = K ′ when t, τ ≤ 0. For t ≥ 0 > τ , we have

‖T (t, τ)x‖t = ‖T (t, τ)x‖+t ≤ Keat‖T (0, τ)x‖+0
≤ KDeat‖T (0, τ)x‖−0 ≤ KK ′Deat−a

′τ‖x‖τ
and, similarly,

‖T (τ, t)x‖τ ≤ KK ′Deat−a
′τ‖x‖t.

Hence, (59) holds with b = max{a, a′} and L = KK ′D. Moreover, the estimates
in (52) and (55) can be used to repeat arguments in the proof of Theorem 3.2 in
order to show that the evolution family T (t, τ) admits a nonuniform exponential
dichotomy with respect to a family of norms ‖·‖t with ε = 0. Finally, it follows
from (58) and (59) that T (t, τ) admits a strong nonuniform exponential dichotomy
on R.

4. Lyapunov regular dynamics. In this section, as an application of the results
in the former sections, we give a characterization of the set of Lyapunov exponents
of a Lyapunov regular dynamics. We consider both discrete and continuous time.

4.1. Discrete time. We consider a linear difference equation

xn+1 = Anxn (60)

on Rd, where (An)n∈Z is a sequence of invertible d × d matrices. The dynamics
in (60) is said to be Lyapunov regular if there exist a decomposition

Rd =

s⊕
i=1

Ei (61)

and real numbers λ1 < · · · < λs such that:

1. if i = 1, . . . , s and v ∈ Ei \ {0}, then

lim
n→±∞

1

n
log‖A(n, 0)v‖ = λi; (62)

2.

lim
n→±∞

1

n
log|detA(n, 0)| =

s∑
i=1

λi dimEi.
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We shall say that a sequence (An)n∈I admits a nonuniform exponential dichotomy
on I with an arbitrarily small nonuniform part if there exist projections Pm for
m ∈ I, a constant λ > 0 and for each ε > 0 a constant D = D(ε) > 0 such that (2),
(3) and (4) hold. Let Σ be the set of all λ ∈ R for which the sequence (e−λAn)n∈Z
does not admit a nonuniform exponential dichotomy on Z with an arbitrarily small
nonuniform part.

Theorem 4.1. If the dynamics in (60) is Lyapunov regular, then

Σ = {λ1, . . . , λs}.

Proof. Take λ ∈ R such that λ 6= λi for i ∈ {1, . . . , s}. We note that the Lyapunov
exponents associated to the sequence (e−λAn)n∈Z are the nonzero numbers −λ+λi,
for i = 1, . . . , s. By Theorem 3 in [7], the sequence e−λAn admits a nonuniform
exponential dichotomy on Z+

0 with an arbitrarily small nonuniform part, say with
projections P+

n such that

ImP+
0 =

⊕
i:λi<λ

Ei.

Moreover, the corresponding version of the theorem for Z−0 yields that the sequence
e−λAn admits a nonuniform exponential dichotomy on Z−0 with an arbitrarily small
nonuniform part, say with projections P−n such that ImP+

0 = ImP−0 . It follows from
Theorem 2.3 that the sequence e−λAn admits a nonuniform exponential dichotomy
on Z with an arbitrarily small nonuniform part (see (20) and (21)). Thus, λ /∈ Σ
and Σ ⊂ {λ1, . . . , λs}.

Now we establish the reverse inclusion. Take i ∈ {1, . . . , s} and assume that the
sequence (e−λiAn)n∈Z admits a nonuniform exponential dichotomy on Z with an
arbitrarily small nonuniform part. Then there exist projections Pm for m ∈ Z, a
constant λ > 0 and for each ε > 0 a constant D = D(ε) > 0 satisfying (2) as well
as

‖A(m,n)Pn‖ ≤ De−(λ−λi)(m−n)+ε|n| for m ≥ n (63)

and

‖A(m,n)(Id− Pn)‖ ≤ De−(λ+λi)(n−m)+ε|n| for m ≤ n. (64)

Now take v ∈ Ei \ {0}. By (63), we have

lim sup
m→+∞

1

m
log‖A(m, 0)P0v‖ ≤ −λ+ λi < λi. (65)

It follows from (62) and (65) that

lim sup
m→+∞

1

m
log‖A(m, 0)(Id− P0)v‖ ≤ λi. (66)

On the other hand, by (64),

1

D
e(λ+λi−ε)m‖(Id− P0)v‖ ≤ ‖A(m, 0)(Id− P0)v‖

for m ≥ 0. If we would have P0v 6= v, then

lim sup
m→+∞

1

m
log‖A(m, 0)(Id− P0)v‖ ≥ λ+ λi − ε > λi

for any sufficiently small ε > 0, which contradicts to (66). Hence, P0v = v. However,
by (62) and (65) this is impossible. Therefore, λi ∈ Σ and since i is arbitrary, we
conclude that {λ1, . . . , λs} ⊂ Σ. This completes the proof of the theorem.
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4.2. Continuous time. Now we consider a linear differential equation

x′ = A(t)x (67)

in Rd, where A(t) is a d×dmatrix varying continuously with t ∈ R. Let T (t, s) be the
evolution family associated to equation (67). Equation (67) is said to be Lyapunov
regular if there exist a decomposition as in (61) and real numbers λ1 < · · · < λs
such that:

1. if i = 1, . . . , s and v ∈ Ei \ {0}, then

lim
t→±∞

1

t
log‖T (t, 0)v‖ = λi; (68)

2.

lim
t→±∞

1

n
log|detT (t, 0)| =

s∑
i=1

λi dimEi.

We shall say that equation (67) or its evolution family admit a nonuniform
exponential dichotomy on I with an arbitrarily small nonuniform part if there exist
projections Pt for t ∈ I, a constant λ > 0 and for each ε > 0 a constant D = D(ε) >
0 such that (37), (38) and (39) hold. For each λ ∈ R we consider the equation

x′ = (A(t)− λId)x

and its evolution family
Tλ(t, s) = e−λ(t−s)T (t, s).

Let Σ be the set of all λ ∈ R with the property that the evolution family Tλ(t, s)
does not admit a nonuniform exponential dichotomy on R with an arbitrarily small
nonuniform part.

Theorem 4.2. If equation (67) is Lyapunov regular, then

Σ = {λ1, . . . , λs}.

Proof. The proof is analogous to the proof of Theorem 4.1.
Take λ ∈ R such that λ 6= λi for i = 1, . . . , s. We note that the Lyapunov expo-

nents associated to the evolution family Tλ(t, s) are the nonzero numbers −λ+ λi,
for i = 1, . . . , s. It follows from Theorem 4 in [6] that Tλ(t, s) admits a nonuniform
exponential dichotomy on R+

0 with an arbitrarily small nonuniform part, say with
projections P+

t such that

ImP+
0 =

⊕
i:λi<λ

Ei.

Moreover, the corresponding version of the theorem for R−0 yields that Tλ(t, s) ad-
mits a nonuniform exponential dichotomy on R−0 with an arbitrarily small nonuni-
form part, say with projections P−t such that ImP+

0 = ImP−0 . It follows from
Theorem 3.2 that Tλ(t, s) admits a nonuniform exponential dichotomy on R with
an arbitrarily small nonuniform part and thus λ /∈ Σ. Hence, Σ ⊂ {λ1, . . . , λs}.

Now we show that {λ1, . . . , λs} ⊂ Σ. Take i ∈ {1, . . . , s} and assume that the
evolution family Tλi

(t, s) admits a nonuniform exponential dichotomy on R with
an arbitrarily small nonuniform part. Then there exist projections Pt for t ∈ R,
a constant λ > 0 and for each ε > 0 a constant D = D(ε) > 0 satisfying (37) as
well as

‖T (t, s)Ps‖ ≤ De−(λ−λi)(t−s)+ε|s| for t ≥ s (69)

and
‖T (t, s)(Id− Ps)‖ ≤ De−(λ+λi)(s−t)+ε|s| for t ≤ s. (70)
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Now take v ∈ Ei \ {0}. By (69), we have

lim sup
t→+∞

1

t
log‖T (t, 0)P0v‖ ≤ −λ+ λi < λi. (71)

It follows from (68) and (71) that

lim sup
t→+∞

1

t
log‖T (t, 0)(Id− P0)v‖ ≤ λi.

On the other hand, by (70),

‖(Id− P0)v‖ ≤ De−(λ+λi)t+ε|t|‖T (t, 0)(Id− P0)v‖

for t ≥ 0. If we would have P0v 6= v, then

lim sup
t→+∞

1

t
log‖T (t, 0)v‖ ≥ λ+ λi − ε > λi

for any sufficiently small ε > 0, which contradicts to (71). Hence, P0v = v. However,
by (68) and (71) this is impossible. We conclude that λi ∈ Σ and since i is arbitrary,
this completes the proof of the theorem.

Appendix A. Proof of Lemma 3.3. The purpose of this appendix is to prove
Lemma 3.3. Incidentally, it is natural to ask whether the spaces Y and Y1 in the
lemma could be the same. In fact, one could replace Y1 by Y under the additional
assumption of bounded growth. This means that there exist C, d > 0 such that

‖T (t, τ)x‖t ≤ Ced|t−τ |‖x‖τ
for x ∈ X and t, τ ∈ R. However, in general the norms ‖·‖t in (46) need not satisfy
this property. We emphasize that the need for bounded growth is not caused by the
nonuniform exponential behavior. Indeed, the problem already occurs for a uniform
exponential behavior (see [13]), although it does not occur in the case of discrete
time.

We proceed with the proof of the lemma. We first observe that:

1. The family of norms ‖·‖t constructed in the proof of Theorem 3.2 satisfies
the following property: given τ ∈ R, there exists c > 0 such that the map
t 7→ ‖T (t, τ)x‖t is continuous on [τ, τ + c] for each x ∈ X. Indeed, for τ ≥ 0
we can take an arbitrary c > 0, while for τ < 0 we can take any c > 0 such
that τ + c < 0.

2. Given τ 6= 0, there exists c > 0 such that for any map v : [τ − c, τ ] → X
satisfying

v(t) = T (t, s)v(s) for τ ≥ t ≥ s ≥ τ − c,
the function s 7→ ‖v(s)‖s is continuous on [τ − c, τ ]. Indeed, for τ < 0 we
can take an arbitrary c > 0, while for τ > 0 we can take any c > 0 such that
τ − c > 0. Writing

v(t) = T (t, τ − c)v(τ − c) for t ∈ [τ − c, τ ],

the property follows now from the former observation.

Let R be the linear operator defined by Rx = y in the domain D(R) formed by
all x ∈ Y for which there exists y ∈ Y1 such that (47) holds.

Lemma A.1. The operator R : D(R)→ Y1 is closed.



FROM ONE-SIDED TO TWO-SIDED DICHOTOMIES 2839

Proof. Let (xn)n∈N be a sequence in D(R) converging to x ∈ Y such that Rxn
converges to y ∈ Y1. For each τ ∈ R, we have

x(t)− T (t, τ)x(τ) = lim
n→∞

(xn(t)− T (t, τ)xn(τ))

= lim
n→∞

∫ t

τ

T (t, s)yn(s) ds

for t ≥ τ . Moreover,∥∥∥∥∫ t

τ

T (t, s)yn(s) ds−
∫ t

τ

T (t, s)y(s) ds

∥∥∥∥ ≤M ∫ t

τ

‖yn(s)− y(s)‖ ds

≤M
∫ t

τ

‖yn(s)− y(s)‖s ds

≤M(t− τ + 1)‖yn − y‖1,

where

M = sup
{
‖T (t, s)‖ : s ∈ [τ, t]

}
< +∞

(as a consequence of the Banach–Steinhaus theorem). Since yn converges to y in Y1,
we conclude that

lim
n→∞

∫ t

τ

T (t, s)yn(s) ds =

∫ t

τ

T (t, s)y(s) ds,

and so (12) holds. Hence, Rx = y and x ∈ D(R).

By the closed graph theorem, the operator R has a bounded inverse G : Y1 → Y .
For each τ ∈ R let

F sτ =

{
x ∈ X : sup

t≥τ
‖T (t, τ)x‖t < +∞

}
and let Fuτ be the set of all x ∈ X for which there exists a continuous function
v : (−∞, τ ]→ X with v(τ) = x such that supt≤τ‖v(t)‖t < +∞ and

v(t) = T (t, s)v(s) for τ ≥ t ≥ s.

Clearly, F sτ and Fuτ are subspaces of X.

Lemma A.2. For τ ∈ R, we have

X = F sτ ⊕ Fuτ . (72)

Proof. Given x ∈ X and τ ∈ R, let

g(s) = χ[τ,τ+1](s)T (s, τ)x.

Clearly, g ∈ Y1. Since R is invertible, there exists v ∈ D(R) such that Rv = g. It
follows from (47) that

v(t) = T (t, τ)(v(τ) + x) for t ≥ τ + 1.

Since v ∈ Y , we conclude that v(τ) + x ∈ F sτ . Similarly, it follows from (47) that
v(t) = T (t, s)v(s) for τ ≥ t ≥ s. Hence, v(τ) ∈ Fuτ and x ∈ F sτ + Fuτ .

Now take x ∈ F sτ ∩ Fuτ . Then there exists v : (−∞, τ ] → X continuous with
v(τ) = x such that supt≤τ‖v(t)‖t < +∞ and

v(t) = T (t, s)v(s) for τ ≥ t ≥ s.



2840 LUIS BARREIRA, DAVOR DRAGIČEVIĆ AND CLAUDIA VALLS

We define a map u : R→ X by

u(t) =

{
T (t, τ)x if t ≥ τ ,

v(t) if t ≤ τ .

Clearly, u is continuous and supt∈R‖u(t)‖t < +∞. Moreover, it is easy to verify
that

u(t) = T (t, s)u(s) for t ≥ s.
Hence, Ru = 0 and u ∈ D(R). Since R is invertible, we conclude that u = 0 and so
x = u(τ) = 0.

Now let P (τ) : X → F sτ and Q(τ) : X → Fuτ be the projections associated to the
decomposition in (72), with P (τ) +Q(τ) = Id. It is easy to verify that

P (t)T (t, τ) = T (t, τ)P (τ) for t ≥ τ.

Lemma A.3. For each t ≥ τ , the map T (t, τ)|Fuτ : Fuτ → Fut is invertible.

Proof. Assume that T (t, τ)x = 0 for some x ∈ Fuτ . Since x ∈ Fuτ , there exists a
continuous function v : (−∞, τ ]→ X with v(τ) = x such that sups≤τ‖v(s)‖s < +∞
and

v(s1) = T (s1, s2)v(s2) for τ ≥ s1 ≥ s2.

We define a map u : R→ X by

u(s) =

{
T (s, τ)x if s ≥ τ ,

v(s) if s ≤ τ .

Clearly, u is continuous and sups∈R‖u(s)‖s < +∞ (we note that u(s) = 0 for s ≥ t).
Moreover,

u(s1) = T (s1, s2)u(s2) for s1 ≥ s2.

It follows that Ru = 0 and u ∈ D(R). Since R is invertible, we obtain u = 0 and so
x = u(τ) = 0. Therefore, T (t, τ)|Fuτ : Fuτ → Fut is injective.

Now take x ∈ Fut . Then there exists v : (−∞, t] → X continuous with v(t) = x
such that sups≤t‖v(s)‖s < +∞ and

v(s1) = T (s1, s2)v(s2) for t ≥ s1 ≥ s2.

In particular,

x = v(t) = T (t, τ)v(τ)

and since v(τ) ∈ Fuτ , the map T (t, τ)|Fuτ : Fuτ → Fut is onto.

Lemma A.4. There exists M > 0 such that

‖P (τ)x‖τ ≤M‖x‖τ (73)

for x ∈ X and τ ∈ R.

Proof. Given x ∈ X and τ ∈ R, for each h > 0 we define gh : R→ X by

gh(t) =
1

h
χ[τ,τ+h](t)T (t, τ)x.

Clearly, gh ∈ Y1 and so there exists vh ∈ D(R) such that Rvh = gh. We have

‖P (τ)x‖τ = ‖vh(τ) + x‖τ ≤ ‖x‖τ + ‖vh(τ)‖τ
≤ ‖x‖τ + ‖vh‖∞ = ‖x‖τ + ‖Ggh‖∞



FROM ONE-SIDED TO TWO-SIDED DICHOTOMIES 2841

(it follows from the proof of Lemma A.2 that P (τ)x = vh(τ) + x). Moreover,

‖Ggh‖∞ ≤ ‖G‖ · ‖gh‖1 ≤ ‖G‖
1

h

∫ τ+h

τ

‖T (t, τ)x‖t dt.

Letting h→ 0, it follows from the observations before Lemma A.1 that

‖P (τ)x‖τ ≤ (1 + ‖G‖)‖x‖τ
and so (73) holds taking M = 1 + ‖G‖.

Now we establish bounds along the stable and unstable direction.

Lemma A.5. There exist constants λ,D > 0 such that

‖T (t, τ)Pτx‖t ≤ De−λ(t−τ)‖x‖τ (74)

for x ∈ X and t ≥ τ .

Proof. Take x ∈ F sτ and define a function u : R→ X by

u(t) = χ[τ,∞)(t)T (t, τ)x.

Moreover, for each h > 0, define a function φh : R→ R by

φh(t) =


0, t ≤ τ,
(t− τ)/h, τ ≤ t ≤ τ + h,

1, τ + h ≤ t.

Finally, let

gh(t) =
1

h
χ[τ,τ+h](t)T (t, τ)x.

It is easy to verify that φhu ∈ D(R), gh ∈ Y1 and R(φhu) = gh. Moreover,

sup
{
‖u(t)‖t : t ∈ [τ + h,+∞)

}
= sup

{
‖φh(t)u(t)‖t : t ∈ [τ + h,+∞)

}
≤ ‖φhu‖∞ = ‖Ggh‖∞ ≤ ‖G‖ · ‖gh‖1

≤ ‖G‖ 1

h

∫ τ+h

τ

‖u(s)‖s ds.

Letting h→ 0, it follows from the observations before Lemma A.1 that

‖u(t)‖t ≤ ‖G‖ · ‖x‖τ for t ≥ τ. (75)

We claim that there exists N ∈ N such that for every τ ∈ R and x ∈ F sτ ,

‖u(t)‖t ≤
1

2
‖x‖τ for t− τ ≥ N, (76)

where u(t) = T (t, τ)x. Take t0 ∈ R such that t0 > τ and ‖u(t0)‖t0 > ‖x‖τ/2. It
follows from (75) that

1

2‖G‖
‖x‖τ < ‖u(s)‖s ≤ ‖G‖ · ‖x‖τ , τ ≤ s ≤ t0. (77)

Now let

y(t) = χ[τ,t0](t)u(t)‖u(t)‖−1
t and v(t) = u(t)

∫ t

−∞
χ[τ,t0](s)‖u(s)‖−1

s ds

for t ∈ R. It is easy to verify that v ∈ D(R), y ∈ Y1 and Rv = y. Therefore,

‖v‖∞ = ‖Gy‖∞ ≤ ‖G‖ · ‖y‖1 ≤ ‖G‖.
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Hence, it follows from (77) that

‖G‖ ≥ ‖v(t0)‖t0 ≥ ‖u(t0)‖t0
∫ t0

τ

‖u(s)‖−1
s ds ≥ 1

2‖G‖2
(t0 − τ)

and so (76) holds taking N > 2‖G‖3.
Now take t ≥ τ and write t− τ = kN + r, with k ∈ N and 0 ≤ r < N . By (73),

(75) and (76), we obtain

‖T (t, τ)P (τ)x‖t = ‖T (τ + kN + r, τ)P (τ)x‖τ+kN+r

≤ 1

2k
‖T (τ + r, τ)P (τ)x‖τ+r

≤ ‖G‖
2k
‖P (τ)x‖τ

≤ 2‖G‖Me−(t−τ) log 2/N‖x‖τ
for x ∈ X. Taking D = 2M‖G‖ and λ = log 2/N yields property (74).

Lemma A.6. There exist constants λ,D > 0 such that

‖T (t, τ)Qτx‖t ≤ De−λ(τ−t)‖x‖τ (78)

for x ∈ X and t ≤ τ .

Proof. We first consider the case when τ 6= 0. Take x ∈ Fuτ and define a function
u : R→ X by

u(t) = χ(−∞,τ ](t)T (t, τ)x.

Moreover, for each h > 0, define a function ψh : R→ R by

ψh(t) =


1, t ≤ τ − h,
(−t+ τ)/h, τ − h ≤ t ≤ τ,
0, τ ≤ t.

Finally, let gh = − 1
hχ[τ−h,τ ]u. It is easy to verify that ψhu ∈ D(R), gh ∈ Y1 and

R(ψhu) = gh. Moreover,

sup
{
‖u(t)‖t : t ∈ (−∞, τ − h]

}
= sup

{
‖ψh(t)u(t)‖t : t ∈ (−∞, τ − h]

}
≤ ‖ψhu‖∞ = ‖Ggh‖∞ ≤ ‖G‖ · ‖gh‖1

≤ ‖G‖ 1

h

∫ τ

τ−h
‖u(s)‖s ds.

Letting h→ 0, it follows from the observations before Lemma A.1 that

‖u(t)‖t ≤ ‖G‖ · ‖x‖τ for t ≤ τ. (79)

We claim that there exists N ∈ N such that for every τ ∈ R and x ∈ Fuτ ,

‖u(t)‖t ≤
1

2
‖x‖τ for τ − t ≥ N, (80)

Take t0 ∈ R such that t0 < τ and ‖u(t0)‖t0 > ‖x‖τ/2. It follows from (79) that

1

2‖G‖
‖x‖τ < ‖u(s)‖s ≤ ‖G‖ · ‖x‖τ , t0 ≤ s ≤ τ, s 6= 0. (81)

Now let

y(t) = −χ[t0,τ ](t)u(t)‖u(t)‖−1
t and v(t) = u(t)

∫ +∞

t

χ[t0,τ ](s)‖u(s)‖−1
s ds
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for t ∈ R. It is easy to verify that v ∈ D(R), y ∈ Y1 and Rv = y. Therefore,

‖v‖∞ = ‖Gy‖∞ ≤ ‖G‖ · ‖y‖1 ≤ ‖G‖.
Hence, it follows from (81) that

‖G‖ ≥ ‖v(t0)‖t0 ≥ ‖u(t0)‖t0
∫ τ

t0

‖u(s)‖−1
s ds ≥ 1

2‖G‖2
(τ − t0)

and so (80) holds taking N > 2‖G‖3.
Now take t ≤ τ and write τ − t = kN + r, with k ∈ N and 0 ≤ r < N . By (73),

(79) and (80), we obtain

‖T (t, τ)Q(τ)x‖t = ‖T (τ − kN − r, τ)Q(τ)x‖τ−kN−r

≤ 1

2k
‖T (τ − r, τ)Q(τ)x‖τ−r

≤ ‖G‖
2k
‖Q(τ)x‖τ

≤ 2‖G‖(1 +M)e−(τ−t) log 2/N‖x‖τ
for x ∈ X. Taking D = 2(1 +M)‖G‖ and λ = log 2/N yields property (78).

Finally, we consider the case when τ = 0. Take x ∈ Fu0 . For each n ∈ N and
t ≤ 0, we have

‖T (t, 0)x‖t = ‖T (t, 1/n)T (1/n, 0)x‖t
≤ De−λ(1/n−t)‖T (1/n, 0)x‖1/n.

(82)

Since ‖T (1/n, 0)x‖1/n → ‖x‖0 when n→∞, letting n→∞ in (82) yields that

‖T (t, 0)x‖t ≤ Deλt‖x‖0 for x ∈ ImQ0, t ≤ 0.

This shows that (78) also holds for τ = 0.

Therefore, T (t, τ) admits a nonuniform exponential dichotomy with respect to
the family of norms ‖·‖t with ε = 0.
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