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Abstract—For a nonautonomous dynamics defined by a sequence of linear operators acting
on a Banach space, we show that the notion of a nonuniform exponential trichotomy can be
completely characterized in terms of admissibility properties. This refers to the existence of
bounded solutions under any bounded time-dependent perturbation of certain homotheties
of the original dynamics. We also consider the more restrictive notion of a strong nonuniform
exponential trichotomy and again we give a characterization in terms of admissibility properties.
We emphasize that both notions are ubiquitous in the context of ergodic theory. As a nontrivial
application, we show in a simple manner that the two notions of trichotomy persist under
sufficiently small linear perturbations. Finally, we obtain a corresponding characterization of
nonuniformly partially hyperbolic sets.
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1. INTRODUCTION

Our main objective is to give a complete characterization of several variations of the notion
of an exponential trichotomy in terms of admissibility properties. More precisely, we look at the
following three general situations:

1. We consider the general case of a nonuniform exponential trichotomy. This means that we
allow a nonuniform (conditional) exponential stability on the initial time. For example, almost
all orbits of a measure-preserving flow and so, in particular, of any Hamiltonian flow on a
compact energy level have this behavior.

2. We also consider the notion of a strong nonuniform exponential trichotomy and give a
corresponding characterization. This means that there are both lower and upper exponential
bounds on the stable and unstable directions, instead of only on the central direction. We
note that this is again a common behavior in the context of ergodic theory.

3. Finally, we obtain a corresponding characterization of the notion of a nonuniformly partially
hyperbolic set. This corresponds to considering various trajectories simultaneously instead
of a single one. For that we profit from having already given a characterization of the notion
of a nonuniformly hyperbolic set in terms of an admissibility property.

As an application of our results, we give short proofs of the robustness of a nonuniform exponential
trichotomy and of a strong nonuniform exponential trichotomy.

The study of admissibility properties goes back to the pioneering work of Perron in [11] and
referred originally to the existence of bounded solutions of the equation

x′ = A(t)x + f(t)
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in a finite-dimensional space R
n for any bounded continuous perturbation f . In particular, he

showed that such properties can be used to deduce the stability or the conditional stability under
sufficiently small perturbations. We note that the study of the conditional stability is naturally
related to the existence of stable and unstable manifolds. A relatively simple modification of Perron’s
work for continuous time yields the following result for discrete time.

Theorem 1. Let (Am)m∈N be a sequence of n × n matrices. If for each bounded sequence
(fm)m∈N ⊂ R

n there exists x0 ∈ R
n such that the sequence

xm = Am−1xm−1 + fm, m ∈ N (1.1)

is bounded, then any bounded sequence (Am · · ·A1x)m∈N tends to zero as m → ∞.

Theorem 1 can be rephrased by saying that an admissibility property, in this case requiring that
for any bounded perturbation (fm)m∈N the solution (xm)m∈N of system (1.1) is bounded, implies
that the linear dynamics is Lyapunov stable. There is an extensive literature on the relation between
admissibility properties and stability properties. In particular, one can consider different spaces in
which we look for the perturbation (fm)m∈N and the solution (xm)m∈N. Moreover, if the solutions
belong to certain smaller spaces, say with some particular decay at infinity, then one can obtain
information about the speed of decay of the original linear dynamics. For some of the most relevant
early contributions in the area we refer to the books by Massera and Schäffer [9] and by Dalec′kĭı
and Krĕın [5]. See [8] for some early results in infinite-dimensional spaces. For a detailed list of
references we refer to [4, 7].

As detailed above, one of the objectives of our paper is to obtain a characterization of the notion
of a nonuniformly partially hyperbolic set in terms of admissibility properties. This notion arises
naturally in the context of smooth ergodic theory. Indeed, if f is a C1 diffeomorphism preserving a
finite measure μ, then there exists a nonuniformly partially hyperbolic set of full μ-measure (see [3]).
Our work is close in spirit to that of Mather in [10], who obtained a similar characterization for
uniformly hyperbolic sets, as well as to that of Dragičević and Slijepčević [6], where the problem of
extending Mather’s result to nonuniformly hyperbolic dynamics was considered for the first time.
The present paper is the first to deal with a nonuniformly partially hyperbolic dynamics.

2. PRELIMINARIES

Let X = (X, ‖·‖) be a Banach space and let B(X) be the set of all bounded linear operators
acting on X. Given a sequence (Am)m∈Z of invertible linear operators in B(X), we define

A(n, m) =

⎧⎪⎨
⎪⎩

An−1 · · ·Am if n > m,
Id if n = m,
A−1

n · · ·A−1
m−1 if n < m.

We say that (Am)m∈Z admits a nonuniform exponential trichotomy if there exist projections
P i

m : X → X for i ∈ {1, 2, 3} and m ∈ Z satisfying

P 1
m + P 2

m + P 3
m = Id, AmP i

m = P i
m+1Am

for m ∈ Z and i ∈ {1, 2, 3}, and there exist constants

D > 0, 0 � a < b, 0 � c < d, ε � 0 (2.1)

such that

‖A(m, n)P 1
n‖ � De−d(m−n)+ε|n|, ‖A(m, n)P 3

n‖ � Dea(m−n)+ε|n| (2.2)

for m, n ∈ Z with m � n and

‖A(m, n)P 2
n‖ � De−b(n−m)+ε|n|, ‖A(m, n)P 3

n‖ � Dec(n−m)+ε|n| (2.3)

for m, n ∈ Z with m � n. Moreover, we say that the sequence (Am)m∈Z admits a nonuniform
exponential dichotomy if it admits a nonuniform exponential trichotomy with P 3

m = 0 for m ∈ Z.
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ADMISSIBILITY AND NONUNIFORM EXPONENTIAL TRICHOTOMIES 51

We also recall the notion of an exponential dichotomy with respect to a sequence of norms. Let
‖·‖m, for m ∈ Z, be a sequence of norms on X such that ‖·‖m is equivalent to ‖·‖ for each m. We
say that (Am)m∈Z admits an exponential dichotomy with respect to the sequence of norms ‖·‖m if
there exist projections Pm : X → X for m ∈ Z satisfying

AmPm = Pm+1Am for m ∈ Z,

and there exist constants λ, D > 0 such that for each x ∈ X and n, m ∈ Z we have

‖A(n, m)Pmx‖n � De−λ(n−m)‖x‖m for n � m (2.4)

and

‖A(n, m)Qmx‖n � De−λ(m−n)‖x‖m for n � m, (2.5)

where Qm = Id−Pm. The following auxiliary result gives a characterization of the spaces ImPn
and ImQn.

Proposition 1. For each n ∈ Z, we have

ImPn =
{

x ∈ X : sup
m�n

‖A(m, n)x‖m < +∞
}

and

ImQn =
{

x ∈ X : sup
m�n

‖A(m, n)x‖m < +∞
}

.

Proof. It follows readily from (2.4) that

sup
m�n

‖A(m, n)x‖m < +∞ (2.6)

for x ∈ ImPn. Now take x ∈ X satisfying (2.6). Since x = Pnx + Qnx, it follows from (2.4) that

sup
m�n

‖A(m, n)Qnx‖m < +∞.

On the other hand, by (2.5), we have

‖Qnx‖n = ‖A(n, m)A(m, n)Qnx‖n � e−λ(m−n)‖A(m, n)Qnx‖m

for m � n. Letting m → ∞, we obtain Qnx = 0 and thus x = Pnx ∈ ImPn. This establishes the
first identity in the proposition. The second identity can be obtained in a similar manner. �

The following result taken from [1] establishes the connection between the notions of a
nonuniform exponential dichotomy and an exponential dichotomy with respect to a sequence of
norms.

Proposition 2. The following properties are equivalent:

1. (Am)m∈Z admits a nonuniform exponential dichotomy;

2. (Am)m∈Z admits an exponential dichotomy with respect to a sequence of norms ‖·‖m satisfying

‖x‖ � ‖x‖n � Deε|n|‖x‖, n ∈ Z, x ∈ X (2.7)

for some constant D > 0.

We note that the constant ε is the same in both properties (more precisely, in inequalities (2.2)–
(2.3) and in property (2.7)).
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3. EXPONENTIAL TRICHOTOMIES AND ADMISSIBILITY

In this section we characterize the notion of a nonuniform exponential trichotomy via admissi-
bility properties.

First we recall the concept of admissibility with respect to a sequence of norms ‖·‖m. Let Y be
the set of all sequences x = (xm)m∈Z with xm ∈ X for m ∈ Z such that

‖x‖∞ := sup
m∈Z

‖xm‖m < +∞.

It is easy to verify that Y = (Y, ‖·‖∞) is a Banach space. We say that a sequence of linear operators
(Am)m∈Z has an admissibility property with respect to the sequence of norms ‖·‖m if for each
y = (ym)m∈Z ∈ Y there exists a unique x = (xm)m∈Z ∈ Y such that

xm − Am−1xm−1 = ym for m ∈ Z.

The following is our first main result.

Theorem 2. Assume that the sequence (Am)m∈Z admits a nonuniform exponential trichotomy
with ε < b + d. Then there exist sequences of norms ‖·‖1,m and ‖·‖2,m for m ∈ Z and constants
D′, ω > 0 and ω′ < 0 with ε � ω − ω′ such that:

1. (eωAm)m∈Z has an admissibility property with respect to the sequence of norms ‖·‖1,m;

2. (eω′
Am)m∈Z has an admissibility property with respect to the sequence of norms ‖·‖2,m;

3. for m ∈ Z, i ∈ {1, 2} and x ∈ X, we have

‖x‖ � ‖x‖i,m � D′eε|m|‖x‖. (3.1)

Proof. Take ω ∈ (c, d) and consider the sequence Bm = eωAm. Then

B(m, n) = eω(m−n)A(m, n)

and it follows from (2.2) and (2.3) that

‖B(m, n)P 1
n‖ � De−(d−ω)(m−n)+ε|n| (3.2)

for m � n and that

‖B(m, n)P 2
n‖ � De−(b+ω)(n−m)+ε|n| (3.3)

and

‖B(m, n)P 3
n‖ � De−(ω−c)(n−m)+ε|n| (3.4)

for m � n. This shows that the sequence (Bm)m∈Z admits a nonuniform exponential dichotomy
with projections Pm = P 1

m. By Proposition 2, it admits an exponential dichotomy with respect to
a sequence of norms ‖·‖1,m satisfying (3.1) for some D′ > 0.

Now we use the following result established in [1].

Lemma 1. The following statements are equivalent:

1. (Am)m∈Z admits an exponential dichotomy with respect to the sequence of norms ‖·‖m;

2. (Am)m∈Z has an admissibility property with respect to a sequence of norms ‖·‖m.
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It follows from Lemma 1 that the sequence (Bm)m∈Z has an admissibility property with respect
to the sequence of norms ‖·‖1,m.

Now take ω′ ∈ (−b,−a) and consider the sequence B′
m = eω′

Am. Then

B′(m, n) = eω′(m−n)A(m, n)

and it follows from (2.2) and (2.3) that

‖B′(m, n)P 1
n‖ � De−(d−ω′)(m−n)+ε|n| (3.5)

and

‖B′(m, n)P 3
n‖ � De−(−a−ω′)(m−n)+ε|n| (3.6)

for m � n and that

‖B′(m, n)P 2
n‖ � De−(b+ω′)(n−m)+ε|n| (3.7)

for m � n. This shows that the sequence (B′
m)m∈Z admits a nonuniform exponential dichotomy

with projections Pm = P 1
m + P 3

m. Hence, it follows from Proposition 2 and Lemma 1 that it has an
admissibility property with respect to a sequence of norms ‖·‖2,m satisfying (3.1) for some D′ > 0.

Finally, since ε < b + d, one can choose ω and ω′ so that ε � ω − ω′. �

Now we establish the converse of Theorem 2.

Theorem 3. Assume that there exist sequences of norms ‖·‖1,m and ‖·‖2,m for m ∈ Z and
constants D′, ω > 0, ε � 0 and ω′ < 0 with ε � ω − ω′ satisfying properties 1–3 of Theorem 2. Then
the sequence (Am)m∈Z admits a nonuniform exponential trichotomy.

Proof. It follows from Lemma 1 that the sequences Bm = eωAm and B′
m = eω′

Am admit exponential
dichotomies, respectively, with respect to some sequences of norms ‖·‖1,m and ‖·‖2,m. Hence, there
exist projections P 1

m and P 2
m for m ∈ Z satisfying

BmP 1
m = P 1

m+1Bm, B′
mP 2

m = P 2
m+1B

′
m

for m ∈ Z and there exist constants λ, D > 0 such that for each x ∈ X and n, m ∈ Z we have

‖B(m, n)P 1
nx‖1,m � De−λ(m−n)‖x‖1,n, (3.8)

‖B′(m, n)P 2
nx‖2,m � De−λ(m−n)‖x‖2,n (3.9)

for m � n and

‖B(m, n)Q1
nx‖1,m � De−λ(n−m)‖x‖1,n, (3.10)

‖B′(m, n)Q2
nx‖2,m � De−λ(n−m)‖x‖2,n (3.11)

for m � n, where Qi
n = Id−P i

n.

Lemma 2. For each n ∈ Z, we have

ImP 1
n ⊂ Im P 2

n and ImQ2
n ⊂ Im Q1

n. (3.12)

Proof (of the lemma). Take x ∈ Im P 1
n . By (3.1), we have

‖B′(m, n)x‖2,m = eω′(m−n)‖A(m, n)x‖2,m

� D′eω′(m−n)eε|m|‖A(m, n)x‖
� D′eω′(m−n)eε|m|‖A(m, n)x‖1,m

= D′e(ω′−ω)(m−n)eε|m|‖B(m, n)x‖1,m
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for m � n. Since ε � ω − ω′, it follows from Proposition 1 that

sup
m�n

‖B′(m, n)x‖2,m < +∞

and hence x ∈ Im P 2
n (again from Proposition 1). The proof of the second inclusion in (3.12) is

analogous. �

Lemma 3. The map Id−P 1
n − Q2

n is a projection for each n ∈ Z.

Proof (of the lemma). It follows from the previous lemma that

P 1
nQ2

n = Q2
nP 1

n = 0

for n ∈ Z. Hence
(Id−P 1

n − Q2
n)2 = Id−2P 1

n − 2Q2
n + (P 1

n)2 + (Q2
n)2 + P 1

nQ2
n + Q2

nP 1
n

= Id−P 1
n − Q2

n

and the conclusion in the lemma follows. �

Lemma 4. For each n ∈ Z, we have

Im(Id−P 1
n − Q2

n) = ImP 2
n ∩ Im Q1

n.

Proof (of the lemma). Take x ∈ Im P 2
n ∩ Im Q1

n. We have Q2
nx = P 1

nx = 0 and thus,

(Id−P 1
n − Q2

n)x = x.

This implies that x ∈ Im(Id−P 1
n − Q2

n). Now take x ∈ Im(Id−P 1
n − Q2

n). We have P 1
nx = −Q2

nx.
Applying P 1

n , we obtain P 1
nx = 0 and thus x ∈ Im Q1

n. Similarly, x ∈ Im P 2
n and so x ∈ ImP 2

n ∩
Im Q1

n. �

We proceed with the proof of the theorem. It follows from (3.1) and (3.8) that

‖A(m, n)P 1
n‖ � DD′e−(λ+ω)(m−n)+ε|n| for m � n. (3.13)

Similarly, by (3.1) and (3.11) we have

‖A(m, n)Q2
n‖ � DD′e−(λ−ω′)(n−m)+ε|n| for m � n. (3.14)

Moreover, it follows from (3.1), (3.9) and (3.10) together with Lemma 4 that for each x ∈
Im(Id−P 1

n − Q2
n), we have

‖A(m, n)x‖ � DD′e−(λ+ω′)(m−n)+ε|n|

for m � n and

‖A(m, n)x‖ � DD′e−(λ−ω)(n−m)+ε|n|

for m � n. In addition, by (3.1), (3.8) and (3.11),

‖Id−P 1
n − Q2

n‖ � 3DD′eε|n|

for n ∈ Z. Hence,

‖A(m, n)(Id−P 1
n − Q2

n)‖ � 3(DD′)2e−(λ+ω′)(m−n)+2ε|n| for m � n (3.15)

and

‖A(m, n)(Id−P 1
n − Q2

n)‖ � 3(DD′)2e−(λ−ω)(n−m)+2ε|n| for m � n. (3.16)

It follows from (3.13), (3.14), (3.15) and (3.16) that the sequence (Am)m∈Z admits a nonuniform
exponential trichotomy. �
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4. STRONG NONUNIFORM EXPONENTIAL TRICHOTOMIES
In this section we consider the more restrictive notion of a strong nonuniform exponential

trichotomy and we also characterize it via admissibility properties.
We say that a sequence (Am)m∈Z admits a strong nonuniform exponential trichotomy if it admits

a nonuniform exponential trichotomy and there exist constants d′ � d and b ′ � b (see (2.1)) such
that

‖A(m, n)P 1
n‖ � Ded′(n−m)+ε|n| for m � n

and
‖A(m, n)P 2

n‖ � Deb ′(m−n)+ε|n| for m � n.

The following is a version of Theorem 2 for the notion of a strong nonuniform exponential
trichotomy.

Theorem 4. Assume that the sequence (Am)m∈Z admits a strong nonuniform exponential tri-
chotomy with ε < b + d. Then there exist sequences of norms ‖·‖1,m and ‖·‖2,m for m ∈ Z and
constants D′, ω > 0, C1, C2 > 1 and ω′ < 0 with ε � ω − ω′ satisfying properties 1–3 of Theorem 2
and such that

1
C1

‖x‖1,n � ‖Anx‖1,n+1 and ‖Anx‖2,n+1 � C2‖x‖2,n (4.1)

for n ∈ Z and x ∈ X.

Proof. Take ω ∈ (c, d) and consider the sequence Bm = eωAm. In addition to (3.2), (3.3) and (3.4),
we have

‖B(m, n)P 1
n‖ � De(d′−ω)(n−m)+ε|n| for m � n. (4.2)

Now we introduce new norms. For n ∈ Z and x ∈ X, let

‖x‖1,n = sup
m�n

(
‖B(m, n)P 1

nx‖eλ(m−n)
)

+ sup
m�n

(
‖B(m, n)(Id−P 1

n)x‖eλ(n−m)
)

+ sup
m<n

(
‖B(m, n)P 1

nx‖e−(d′−ω)(n−m)
)
,

where
λ = min

{
d − ω, b + ω, ω − c

}
> 0.

It follows from (3.2), (3.3), (3.4) and (4.2) that the norms ‖·‖1,m satisfy property (3.1) with D′ = 4D.

Lemma 5. The sequence (eωAm)m∈Z admits an exponential dichotomy with respect to the sequence
of norms ‖·‖1,m. Moreover, there exists C1 > 0 such that the first inequality in (4.1) holds for n ∈ Z

and x ∈ X.

Proof (of the lemma). For m � n, since λ < d′ − ω we have

‖B(m, n)P 1
nx‖1,m = sup

k�m

(
‖B(k, n)P 1

nx‖eλ(k−m)
)

+ sup
k<m

(
‖B(k, n)P 1

nx‖e−(d′−ω)(m−k)
)

� sup
k�m

(
‖B(k, n)P 1

nx‖eλ(k−m)
)

+ sup
n�k<m

(
‖B(k, n)P 1

nx‖e−λ(m−k)
)

+ sup
k<n

(
‖B(k, n)P 1

nx‖e−(d′−ω)(m−k)
)

� 2e−λ(m−n) sup
k�n

(
‖B(k, n)P 1

nx‖eλ(k−n)
)

+ e−(d′−ω)(m−n) sup
k<n

(
‖B(k, n)P 1

nx‖e−(d′−ω)(n−k)
)

� 2e−λ(m−n)‖x‖1,n.

(4.3)
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One can show in a similar manner that
‖B(m, n)P 1

nx‖1,m � 2e(d′−ω)(n−m)‖x‖1,n for m � n. (4.4)
Moreover,

‖B(m, n)(Id−P 1
n)x‖1,m = sup

k�m

(
‖B(k, m)B(m, n)(Id−P 1

n)x‖eλ(m−k)
)

= e−λ(n−m) sup
k�m

(
‖B(k, n)(Id−P 1

n)x‖eλ(n−k)
)

� e−λ(n−m)‖x‖1,n

(4.5)

for m � n. It follows from (4.3) and (4.5) that the sequence (eωAm)m∈Z admits an exponential
dichotomy with respect to the sequence of norms ‖·‖1,m. By (4.4) and (4.5), we have

e−ω‖A−1
n x‖1,n = ‖B(n, n + 1)x‖1,n

� ‖B(n, n + 1)P 1
n+1x‖1,n + ‖B(n, n + 1)(Id−P 1

n+1)x‖1,n

� 2ed′−ω‖x‖1,n+1 + e−λ‖x‖1,n+1

� 3ed′−ω‖x‖1,n+1

for x ∈ X and n ∈ Z. This shows that the first inequality in (4.1) holds with C1 = 3ed′ . �

By Lemmas 1 and 5, the sequence (eωAm)m∈Z has an admissibility property with respect to the
sequence of norms ‖·‖1,m.

Now take ω′ ∈ (−b,−a) and consider the sequence B′
m = eω′

Am. In addition to (3.5), (3.6)
and (3.7), we have

‖B′(m, n)P 2
n‖ � De(b′+ω′)(m−n)+ε|n| for m � n. (4.6)

For n ∈ Z and x ∈ X, let

‖x‖2,n = sup
m�n

(
‖B′(m, n)(Id−P 2

n)x‖eλ′(m−n)
)

+ sup
m�n

(
‖B′(m, n)P 2

nx‖eλ′(n−m)
)

+ sup
m>n

(
‖B′(m, n)P 2

nx‖e−(b′+ω′)(m−n)
)
,

where
λ′ = min

{
d − ω′,−a − ω′, b + ω′} > 0.

It follows from (3.5), (3.6) and (3.7) and (4.6) that the norms ‖·‖2,m satisfy property (3.1) with
D′ = 4D.
Lemma 6. The sequence (eω′

Am)m∈Z admits an exponential dichotomy with respect to the sequence
of norms ‖·‖2,m. Moreover, there exists C2 > 0 such that the second inequality in (4.1) holds for
n ∈ Z and x ∈ X.
Proof (of the lemma). For m � n, since λ′ < b′ + ω′ we have

‖B′(m, n)P 2
nx‖2,m = sup

k�m

(
‖B′(k, n)P 2

nx‖eλ′(m−k)
)

+ sup
k>m

(
‖B′(k, n)P 2

nx‖e−(b′+ω′)(k−m)
)

� sup
k�m

(
‖B′(k, n)P 2

nx‖eλ′(m−k)
)

+ sup
n�k>m

(
‖B′(k, n)P 2

nx‖eλ′(m−k)
)

+ sup
k>n

(
‖B′(k, n)P 2

nx‖e−(b′+ω′)(k−m)
)

� 2e−λ′(n−m) sup
k�n

(
‖B′(k, n)P 2

nx‖eλ′(n−k)
)

+ e−(b′+ω′)(n−m) sup
k>n

(
‖B′(k, n)P 2

nx‖e−(b′+ω′)(k−n)
)

� 2e−λ′(n−m)‖x‖2,n.

(4.7)
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One can show in a similar manner that

‖B′(m, n)P 2
nx‖2,m � 2e(b′+ω′)(m−n)‖x‖2,n (4.8)

and

‖B′(m, n)(Id−P 2
n)x‖2,m � e−λ′(m−n)‖x‖2,n (4.9)

for m � n. It follows from (4.7) and (4.9) that the sequence (eω′
Am)m∈Z admits an exponential

dichotomy with respect to the sequence of norms ‖·‖2,m. By (4.8) and (4.9), we have

eω′‖Anx‖2,n+1 = ‖B′(n + 1, n)x‖1,n

� ‖B′(n + 1, n)P 2
nx‖2,n+1 + ‖B′(n + 1, n)(Id−P 2

n)x‖2,n+1

� 2eb′+ω′‖x‖2,n + e−λ‖x‖2,n

� 3eb′+ω′‖x‖2,n

for x ∈ X and n ∈ Z. This shows that the second inequality in (4.1) holds with C2 = 3eb′ . �

By Lemmas 1 and 6, the sequence (eω′
Am)m∈Z has an admissibility property with respect to the

sequence of norms ‖·‖2,m. Finally, since ε < b + d, one can choose ω and ω′ so that ε � ω − ω′. �

Now we establish the converse of Theorem 4.
Theorem 5. Assume that there exist sequences of norms ‖·‖1,m and ‖·‖2,m for m ∈ Z and
constants D′, ω > 0, ε � 0, C1, C2 > 1 and ω′ < 0 with ε � ω − ω′ satisfying properties 1–3 of
Theorem 2 and property (4.1) for n ∈ Z and x ∈ X. Then the sequence (Am)m∈Z admits a strong
nonuniform exponential trichotomy.

Proof. Using the same notation as in the proof of Theorem 3, it follows from (4.1) that

‖A(m, n)P 1
nx‖ � ‖A(m, n)P 1

nx‖1,m

� Cn−m
1 ‖P 1

nx‖1,n

� DCn−m
1 ‖x‖1,n

� DD′Cn−m
1 eε|n|‖x‖

for m � n and x ∈ X. Similarly,

‖A(m, n)Q2
nx‖ � ‖A(m, n)Q2

nx‖2,m

� Cm−n
2 ‖Q2

nx‖2,m

� DCm−n
2 ‖x‖2,m

� DD′Cm−n
2 eε|n|‖x‖

for m � n and x ∈ X. In other words, the nonuniform exponential trichotomy given by Theorem 3
is in fact a strong nonuniform exponential trichotomy. �

5. ROBUSTNESS
In this section we establish the persistence of the notions of a nonuniform exponential trichotomy

and of a strong nonuniform exponential trichotomy under sufficiently small linear perturbations.

Theorem 6. Let (Am)m∈Z and (Bm)m∈Z be sequences of invertible linear operators in B(X) such
that:

1. (Am)m∈Z admits a nonuniform exponential trichotomy with ε < b + d;

2. there exists ρ > 0 such that

‖Am − Bm‖ � ρe−ε|m| for m ∈ Z. (5.1)
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If ρ is sufficiently small, then the sequence (Bm)m∈Z also admits a nonuniform exponential
trichotomy.

Proof. We first recall a result established in [1].

Lemma 7. Let (Am)m∈Z and (Bm)m∈Z be sequences of invertible linear operators in B(X) such
that:

1. (Am)m∈Z admits an exponential dichotomy with respect to a sequence of norms ‖·‖m;

2. there exists c > 0 such that
‖(An−1 − Bn−1)x‖n � c‖x‖n−1 for n ∈ Z, x ∈ X.

If c is sufficiently small, then the sequence (Bm)m∈Z admits an exponential dichotomy with respect
to the same sequence of norms.

Let ω′ < 0 < ω be the constants and let ‖·‖i,m, for m ∈ Z and i = 1, 2, be the norms given by
Theorem 2 (in particular, they satisfy property (3.1)). By (3.1) and (5.1), we have∥∥(eωAn−1 − eωBn−1)x

∥∥
1,n

� D′eωeε|n|‖(An−1 − Bn−1)x‖
� ρD′eω−ε‖x‖1,n−1

for x ∈ X and n ∈ Z. Hence, it follows from Lemmas 1 and 7 that for any sufficiently small ρ, the
sequence (eωBm)m∈Z has an admissibility property with respect to the sequence of norms ‖·‖1,m.
Analogously, for any sufficiently small ρ, the sequence (eω′

Bm)m∈Z has an admissibility property
with respect to the sequence of norms ‖·‖2,m. The conclusion of the theorem now follows directly
from Theorem 3. �

The following is a version of Theorem 6 for the notion of a strong nonuniform exponential
trichotomy.

Theorem 7. Let (Am)m∈Z and (Bm)m∈Z be sequences of invertible linear operators in B(X) such
that:

1. (Am)m∈Z admits a strong nonuniform exponential trichotomy with ε < b + d;

2. there exists ρ > 0 such that property (5.1) holds.

If ρ is sufficiently small, then the sequence (Bm)m∈Z admits a strong nonuniform exponential
trichotomy.

Proof. In view of Theorem 6 and the characterization of a strong nonuniform exponential
trichotomy given by Theorems 4 and 5, it is sufficient to show that there exist constants M1, M2 > 1
such that

1
M1

‖x‖1,n � ‖Bnx‖1,n+1 and ‖Bnx‖2,n+1 � M2‖x‖2,n (5.2)

for x ∈ X and n ∈ Z. It follows from (3.1) and (5.1) that
‖Bnx‖1,n+1 � ‖Anx‖1,n+1 − ‖(An − Bn)x‖1,n+1

� 1
C1

‖x‖1,n − ρD′eε‖x‖1,n

and similarly,
‖Bnx‖2,n+1 � ‖Anx‖2,n+1 + ‖(An − Bn)x‖2,n+1

� C2‖x‖2,n + ρD′eε‖x‖2,n.

Taking ρ sufficiently small, we obtain the inequalities in (5.2) and so it follows from Theorem 5
that the sequence (Bm)m∈Z admits a strong nonuniform exponential trichotomy. �
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6. PARTIALLY HYPERBOLIC SETS

In this section we obtain versions of the results in the former sections for the class of nonuniformly
partially hyperbolic sets. This corresponds to considering various trajectories simultaneously instead
of a single trajectory. The latter corresponds to considering a sequence of linear operators as in the
former sections.

Let M be a compact Riemannian manifold and let f : M → M be a C1 diffeomorphism. A
measurable map A defined on M × Z is said to be a linear cocycle over f if for each x ∈ M and
n, m ∈ Z:

1. A(x, n) : TxM → Tfn(x)M is a linear map;

2. A(x, 0) = Id;

3. A(x, n + m) = A(fm(x), n)A(x, m).

The map A(x) = A(x, 1) is called the generator of the cocycle A. We shall always assume that
there exists C > 0 such that

‖A(x)‖ � C and ‖A(x)−1‖ � C

for x ∈ M . For example, this holds if the map x �→ A(x) is continuous and so if A is the derivative
cocycle (in which case A(x) = dxf).

Now let A be a linear cocycle over f . An f -invariant measurable set Λ ⊂ M is said to be
nonuniformly partially hyperbolic with respect to A if given ε > 0, there exist constants 0 � a < b,
0 � c < d, splittings

TxM = Es(x) ⊕ Eu(x) ⊕ Ec(x)

for x ∈ Λ, with projections P s(x), P u(x) and P c(x), and measurable functions C, K : Λ → R
+ such

that for each x ∈ Λ, v ∈ TxM and n ∈ Z:

1. A(x)Es(x) = Es(y), A(x)Eu(x) = Eu(y) and A(x)Ec(x) = Ec(y), where y = f(x);

2. for n � 0,

‖A(x, n)P s(x)v‖fn(x) � C(x)e−dneεn‖v‖x (6.1)

and

‖A(x,−n)P u(x)v‖f−n(x) � C(x)e−bneεn‖v‖x; (6.2)

3.

‖A(x, n)P c(x)v‖fn(x) � C(x)eaneεn‖v‖x

and

‖A(x,−n)P c(x)v‖f−n(x) � C(x)ecneεn‖v‖x; (6.3)

4.

C(fn(x)) � C(x)eε|n|. (6.4)
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Moreover, we say that Λ is nonuniformly hyperbolic with respect to A if it is nonuniformly partially
hyperbolic and P c(x) = 0 for n ∈ Z.

Given a norm ‖·‖′ on the tangent bundle TΛM , for each x ∈ Λ we denote by Yx the set of all
sequences μ = (μn)n∈Z with μn ∈ TxnM and xn = fn(x) for n ∈ Z, such that

‖μ‖ = sup
n∈Z

‖μn‖′xn
< +∞.

One can easily verify that Yx = (Yx, ‖·‖) is a Banach space. Moreover, we define a linear map Rx

by

(Rxμ)n = μn − A(xn−1)μn−1, n ∈ Z,

on the domain formed by all μ = (μn)n∈Z ∈ Yx such that Rxμ ∈ Yx.
The following two results give a characterization of the notion of a partially hyperbolic set in

terms of admissibility properties.

Theorem 8. Let Λ ⊂ M be a nonuniformly partially hyperbolic set with respect to a cocycle A.
Then there exist ε0, ω, D > 0 and ω′ < 0 and given ε ∈ (0, ε0), there exist norms ‖·‖′ = ‖·‖ε,1 and
‖·‖′′ = ‖·‖ε,2 on TΛM and a measurable function G : Λ → R

+ such that for each x ∈ Λ:

1.
1
2
‖v‖x � ‖v‖ε,i

x � G(x)‖v‖x, v ∈ TxM, i = 1, 2;

2.

G(fn(x)) � e2ε|n|G(x), n ∈ Z;

3. the map R1
x : Y 1

x → Y 1
x defined with respect to the cocycle B(x, n) = eωnA(x, n) and the norm

‖·‖′ is well defined, bounded and invertible;

4. the map R2
x : Y 2

x → Y 2
x defined with respect to the cocycle B′(x, n) = eω′nA(x, n) and the norm

‖·‖′′ is well defined, bounded and invertible;

5. ‖(Ri
x)−1‖ � D for i = 1, 2.

Proof. The proof of the theorem is analogous to the proof of Theorem 2. We first recall a result
established in [2].

Lemma 8. Let Λ ⊂ M be a nonuniformly hyperbolic set with respect to a cocycle A. Then there
exist ε0, D > 0 such that given ε ∈ (0, ε0), there exist a norm ‖·‖′ = ‖·‖ε on TΛM and a measurable
function G : Λ → R

+ such that for each x ∈ Λ:

1.
1
2
‖v‖x � ‖v‖ε

x � G(x)‖v‖x, v ∈ TxM ;

2. G(fn(x)) � e2ε|n|G(x) for n ∈ Z;

3. Rx : Yx → Yx is well defined, bounded and invertible;

4. ‖R−1
x ‖ � D.

REGULAR AND CHAOTIC DYNAMICS Vol. 20 No. 1 2015



ADMISSIBILITY AND NONUNIFORM EXPONENTIAL TRICHOTOMIES 61

Take ω ∈ (c, d). It follows from (6.1), (6.2) and (6.3) that for each x ∈ Λ, v ∈ TxM and n � 0,
we have

‖B(x, n)P s(x)v‖fn(x) � C(x)e(ω−d)neεn‖v‖x,

‖B(x,−n)P u(x)v‖f−n(x) � C(x)e−(b+ω)neεn‖v‖x,

and

‖B(x,−n)P c(x)v‖f−n(x) � C(x)e−(ω−c)neεn‖v‖x.

This shows that Λ is a nonuniformly hyperbolic set with respect to the cocycle B. Hence, it follows
from Lemma 8 that there exists ε0 > 0 such that given ε ∈ (0, ε0), there exist a norm ‖·‖′ = ‖·‖ε,1

on TΛM and a measurable function G : Λ → R
+ satisfying properties 1, 2, 3 and 5 in the theorem.

Analogously, take ω′ ∈ (−b,−a). Then Λ is a nonuniformly hyperbolic set with respect to the
cocycle B′. Using again Lemma 8, we obtain norms ‖·‖ε,2 satisfying properties 1, 2, 4 and 5 in the
theorem. �

Now we establish the converse of Theorem 8.

Theorem 9. Let Λ ⊂ M be an f -invariant measurable set. Assume that there exist ε0, ω, D > 0
and ω′ < 0 such that given ε ∈ (0, ε0), there exist norms ‖·‖ε,1 and ‖·‖ε,2 on TΛM and a measurable
function G : Λ → R

+ satisfying properties 1–5 in Theorem 8. Then Λ is a nonuniformly partially
hyperbolic set with respect to the cocycle A.

Proof. We need the following result established in [2].

Lemma 9. Let Λ ⊂ M be an f -invariant measurable set. Assume that there exist ε0, D > 0 such
that given ε ∈ (0, ε0), there exist a norm ‖·‖ε on TΛM and a measurable function G : Λ → R

+

satisfying properties 1–4 of Lemma 8. Then Λ is a nonuniformly hyperbolic set with respect to the
cocycle A.

It follows from Lemma 9 that Λ is a nonuniformly hyperbolic set with respect to both cocycles
B and B′. Hence, there exist projections P 1(x) and P 2(x) on TxM for each x ∈ Λ, a constant λ > 0
and for each ε > 0 a measurable function C : Λ → (0, +∞) satisfying (6.4) such that for each x ∈ Λ,
v ∈ TxM and n � 0:

‖B(x, n)P 1(x)v‖fn(x) � C(x)e−λneεn‖v‖x, (6.5)

‖B(x,−n)Q1(x)v‖f−n(x) � C(x)e−λneεn‖v‖x (6.6)

and

‖B′(x, n)P 2(x)v‖fn(x) � C(x)e−λneεn‖v‖x, (6.7)

‖B′(x,−n)Q2(x)v‖f−n(x) � C(x)e−λneεn‖v‖x, (6.8)

where Qi(x) = Id−P i(x).

Lemma 10. For each x ∈ Λ, we have

Im P 1(x) ⊂ Im P 2(x) and ImQ2(x) ⊂ ImQ1(x). (6.9)

Proof (of the lemma). Proceeding as in the proof of Proposition 1, we find that

Es(x) =
{

v ∈ TxM : sup
n�0

‖A(x, n)v‖fn(x) < +∞
}

(6.10)

and

Eu(x) =
{

v ∈ TxM : sup
n�0

‖A(x,−n)v‖f−n(x) < +∞
}

. (6.11)
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Now take v ∈ Im P 1(x). We have

‖B′(x, n)v‖fn(x) = eω′n‖A(x, n)v‖ = e(ω′−ω)n‖B(x, n)v‖fn(x)

for n � 0. Hence, the first inclusion in (6.9) follows readily from (6.10). The second inclusion can
be obtained in an analogous manner using (6.11). �

Proceeding as in the proof of Theorem 3 (see Lemmas 3 and 4), one can show that Id−P 1(x)−
Q2(x) is a projection on the tangent space TxM with range ImP 2(x) ∩ Im Q1(x) for each x ∈ Λ. It
follows from (6.5) and (6.8) that

‖A(x, n)P 1(x)v‖fn(x) � C(x)e−(λ+ω)neεn‖v‖x (6.12)

and

‖A(x,−n)Q2(x)v‖f−n(x) � C(x)e−(λ−ω′)neεn‖v‖x (6.13)

for x ∈ Λ, v ∈ TxM and n � 0. Similarly, it follows from (6.6) and (6.7) that

‖A(x,−n)v‖f−n(x) � C(x)e−(λ−ω)neεn‖v‖x

and

‖A(x, n)v‖fn(x) � C(x)e−(λ+ω′)neεn‖v‖x

for x ∈ Λ, v ∈ ImP 2(x) ∩ ImQ1(x) and n � 0. Moreover, by (6.6) and (6.7), we have

‖Id−P 1(x) − Q2(x)‖ � 3C(x).
Hence,

‖A(x,−n)(Id−P 1(x) − Q2(x))v‖f−n(x) � 3C(x)2e−(λ−ω)neεn‖v‖x (6.14)

and

‖A(x, n)(Id−P 1(x) − Q2(x))v‖fn(x) � 3C(x)2e−(λ+ω′)neεn‖v‖x (6.15)

for x ∈ Λ, v ∈ TxM and n � 0. It follows from (6.12), (6.13), (6.14) and (6.15) that Λ is a
nonuniformly partially hyperbolic set with respect to A. �
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