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This paper presents an efficient mathematical model for studying the global buckling behavior of concrete-filled
steel tubular (CFST) columns with compliant interfaces. The present mathematical model is used to evaluate
exact critical buckling loads and modes of CFST columns for the first time. The results prove that the presence
of finite interface compliance may significantly reduce the critical buckling load of CFST columns. A good agree-
ment between analytical and experimental buckling loads of circular CFST columns is obtained if at least one
among longitudinal and radial interfacial stiffnesses is high. The designmethods compared in the paper give con-
servative results in comparison with the experimental results and analytical results for almost perfectly bonded
layers. The parametric study reveals that critical buckling loads of CFST columns are very much affected by the
diameter-to-depth ratio and concrete elasticmodulus.Moreover, amaterial nonlinearity has a pronounced effect
for short CFST columns, and a negligible effect for slender ones.

© 2015 Elsevier Ltd. All rights reserved.
1. Introduction

Concrete-filled steel tubular (CFST) columns have been used in-
creasingly in many structural applications including columns
supporting platforms of offshore structures and wind turbines, roofs of
storage tanks, bridge piers, piles, and columns in seismic zones and
high-rise buildings. CFST columns have superior stiffness, strength, duc-
tility, seismic and fire resistance, and deformation characteristics as
compared to hollow steel tubes and reinforced concrete columns. Addi-
tionally, CFST columns are economical and permit rapid construction
because the steel tube serves as a permanent formwork and lateral
confinement to the concrete fill, located at the most efficient position.
On the other hand, the concrete infill increases local and global buckling
resistance of CFST columns and forces the steel tube to buckle
outwards rather than inwards. Moreover, with the development of
self-compacting, high-strength, ultra-high-strength, lightweight,
recycled aggregate concretes, and high-strength and stainless steels,
the CFST construction has become even more popular in the construc-
tion industry world-wide.

Accordingly, a great deal of experimental [1–12], numerical [13–24],
and analytical [25–29] work has been carried out recently to investigate
the behavior of CFST columns under various loading conditions. A state
of the art knowledge on steel–concrete composite columns including
experimental and analytical studies has been reported by Shanmugam
l).
and Lakshimi [30] to highlight the significant research in this area
until 1999. Similarly, Han et al. [31], have reviewed the development
and advanced applications of the family of concrete-filled steel tubular
structures till today.

In addition, it is well known that CFST columns can sustain large
axial loads. Shorter CFST columns may fail by crushing of the concrete
core accompanied by local buckling and yielding of the steel tube
while slender CFST columns may fail by local or overall buckling. De-
spite numerous publications on CFST columns covered in literature,
most of research work is focused on short CFST columns. Much less
literature is available on global buckling behavior of slender CFST col-
umns, and only a few papers have dealt with this subject, see e.g. [21,
32–35]. To date, however, only Han [36] has experimentally investigat-
ed circular CFST columns with very high slenderness ratios.

From the above-mentioned research work done on CFST columns,
most of the approaches seem to be based on a simple prediction of
fully bonded interface between the concrete core and steel tube. How-
ever, there is a major difficulty in the design of CFST columns, which is
the imperfect interface compliance between the concrete and steel
tube during the initial elastic stage with high axial loads. This happens
because steel dilatesmore than concrete. This imperfect bonding can re-
duce the confining pressure provided by the steel tube and may reduce
the initial stiffness and elastic strength of CFST columns considerably.
This situation can be even worse for high-strength CFST columns [37].
Nevertheless, research works on composite action in CFST columns are
very limited in open literature. Over the years, only a few researchers
have studied numerically and experimentally CFST columns with
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special emphasis on the composite action between the concrete core
and the steel tube, see e.g. [28,37–41]. In all these studies it has been
found that composite action in CFST columns is still notwell understood
and remains as a subject of future research.

It is interesting to note that as far as the authors' knowledge is con-
cerned it seems that there is no analyticalwork in open literature for an-
alyzing buckling problems of circular CFST slender columnswith partial
interaction between the constituents.

Consequently, themain objective of this study is to formulate an an-
alytically tractable mathematical model for analyzing the buckling be-
havior of CFST composite columns with compliant interfaces for the
first time. For this purpose, the mechanics of layered column theories
similar to that recently developed by the authors [42–48] is taken as a
theoretical basis in the derivation of themathematicalmodel for the an-
alytical buckling analysis of CFST composite columns with compliant
interfaces.

In thefirst numerical example, the analytical results for critical buck-
ling loads of circular CFST columns with compliant interfaces are com-
pared with the experimental buckling loads obtained by Han [36]. In
the second numerical example, the analytical results are compared to
the results proposed by different design standards. Finally, in the third
numerical example, a parametric study is undertaken to investigate
the effect of interfacial compliance, diameter-to-depth ratio, column
slenderness, concrete elastic modulus, andmaterial nonlinearity of con-
crete and steel on buckling loads and modes of circular CFST composite
columns with interfacial compliance.
Fig. 1. Undeformed and buckled confi
2. Problem formulation and governing equations

Consider an initially straight, planar, CFST circular column as shown
in Fig. 1. The CFST column has an undeformed length L and is in general,
made from concrete core, c, and a steel tube, s, joined by an interface of
negligible thickness and finite stiffness in normal and tangential direc-
tions. D and t denote the outer diameter and the wall thickness of the
steel tube, respectively. The CFST circular column is placed in the (X,Z)
plane of a spatial Cartesian coordinate system with coordinates
(X,Y,Z) and unit base vectors EX, EY and EZ = EX×EY. The undeformed
reference axis of the CFST circular column is common to both layers. It
is parameterized by the undeformed arc-length x. Local coordinate
system (x, y, z) is assumed to coincide initially with spatial coordinates,
and then follows the deformation of the column. Thus, xc ≡ xs ≡ x ≡ X,
yc ≡ ys ≡ y ≡ Y, and zc ≡ zs ≡ z ≡ Z in the undeformed configuration. For
more details on the topic of layered composites, an interested reader
is referred to, e.g. [43,44]. The CFST circular column is subjected to a
conservative compressive load, P, which acts along the neutral axis of
the CFST circular column in such a way that homogeneous stress–strain
state of the column in its primary configuration is achieved.

2.1. Governing equations

Additional to the aforementioned assumptions, the formulation of
governing equations of the CFST circular column uses the following as-
sumptions: (1) the material is linear or nonlinear elastic; (2) the planar
guration of CFST circular column.



Fig. 2. A cross section of a CFST circular column.
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Reissner beam theory [49] is used for each layer; (3) the shear deforma-
tions are not taken into account; (4) the layers can slip over each other,
and radial separation or uplift between them is possible; (5) the layers
are continuously connected and slip and upliftmoduli of the connection
are constant; (6) the shapes of the layers' cross-sections are symmetri-
cal with respect to the plane of deformation and remain unchanged in
the form and size during deformation; and (7) the interlayer slip and
uplift are small.

In further expressions, a compact notation (•)i will be used, where
i=(c,s) indicates to which layer the quantity (•) belongs to.

The system of governing equations of the CFST circular column is
composed of kinematic, equilibrium, and constitutive equations along
with natural and essential boundary conditions for each of the layers.
Furthermore, there are also constraining equations that assemble each
individual layer into a composite structure.

2.1.1. Kinematic equations
The deformed configurations of the layers reference axes are defined

by vector-valued functions (see Fig. 1).

Ri
0 ¼ XiEX þ YiEY þ ZiEZ ¼ xi þ ui

� �
EX þ yiEY þwiEZ : ð1Þ

Functions ui andwi denote the components of the displacement vec-
tor of layer i at the reference axis with respect to the base vectors EX and
Table 1
Comparison of analytical and experimental critical buckling loads of CFST P–P column for vario

Specimen Effective Ncr,e C Pcr[kN]

number length L [cm] λ [kN] [kN/cm2] K = 10−1

SC154-1 415.8 154 342 10−10 177.712
10−5 190.154

SC154-2 415.8 154 292 10−3 295.896
SC154-3♣ 415.8 154 298 10−10 179.866

10−5 192.105
SC154-4♣ 415.8 154 280 10−3 297.890
SC149-1♣ 402.3 149 318 10−10 192.144

10−5 203.669
SC149-2♣ 402.3 149 320 10−3 317.454
SC141-1 380.7 141 350 10−10 212.006

10−5 222.583
SC141-2 380.7 141 370 10−3 350.485
SC130-1 351.0 130 400 10−10 249.420

10−5 258.493
SC130-2 351.0 130 390 10−3 408.493
SC130-3♣ 351.0 130 440 10−10 252.443

10−5 261.368
10−3 411.089

♣ Ec = 2840 kN/cm2.
EZ. The geometrical components ui andwi of the vector-valued function
R0
i are further related to the deformation variables by the following

equations, see, e.g. [49]:

1þ ui0− 1þ εi
� �

cosφi ¼ 0;

wi0 þ 1þ εi
� �

sinφi ¼ 0;

φi0−κ i ¼ 0;

ð2Þ

where the prime (') denotes the derivative with respect to material co-
ordinate x, εi is the extensional strain, κi is the pseudocurvature, whileφi

is the rotation of the layer's reference axis.

2.1.2. Equilibrium equations
The CFST circular column is subjected longitudinally to a compres-

sive force P at the free end. In addition, each layer of the CFST circular
column is subjected to interlayer contact tractions, measured per unit
of layer's undeformed length, which are defined by.

pi ¼ piXEX þ piZEZ ; ð3Þ

mi ¼ mi
YEY : ð4Þ

Hence, the equilibrium equations of an individual layer are, see e.g.
[44,49]:

Ri0
X þ piX ¼ 0;

Ri0
Z þ piZ ¼ 0;

Mi0
Y− 1þ εi

� �
Qi þmi

Y ¼ 0:
ð5Þ

where RX
i , RZi , and MY

i represent the generalized equilibrium internal
forces of a cross-section of the layer i, with respect to the fixed coordi-

nate basis. The equilibrium axial, N i, and shear, Qi, internal forces and
bending moments, ℳi, of the layers' cross-sections with respect to
the rotated local coordinate system can be expressed by.

N i ¼ Ri
X cos φi−Ri

Z sin φi;

Qi ¼ Ri
X sin φi þ Ri

Z cos φi;

ℳi ¼ Mi
Y :

ð6Þ
us K, C, and λ, where εcr ≠ 0, and C and K are in kN/cm2.

0 K = 10−2 K = 10−1 K = 1 K = 10 K = 1010

186.544 240.955 293.753 300.133 300.829
198.154 246.129 293.854 300.134 300.830
295.931 296.222 297.942 300.220 300.830
188.554 242.275 295.682 302.263 302.983
199.978 247.429 295.785 302.264 302.983
297.926 298.227 300.001 302.687 302.983
200.851 256.099 315.333 322.850 323.672
211.662 261.271 315.444 322.851 323.672
317.501 317.891 320.133 322.947 323.672
220.886 279.354 348.803 357.908 358.900
230.882 284.535 348.924 357.909 358.900
350.556 351.142 354.347 358.014 358.900
258.338 320.144 408.252 420.885 422.25
266.992 325.182 408.395 420.887 422.259
408.629 409.741 415.378 421.012 422.259
261.215 322.136 410.841 423.862 425.282
269.729 327.126 410.988 423.864 425.282
411.229 412.372 418.177 423.994 425.282



Fig. 3. Geometric and material properties of tested CFST columns.
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2.1.3. Boundary conditions
Kinematic (2) and equilibrium (5) equations constitute a set of 12

first order linear differential equations with constant coefficients for
12 unknown functions: ui, wi, φi, RXi , RZi , and MY

i . The associated natural
and essential boundary conditions are:

xi ¼ 0 :
Si1 þ Ri

X 0ð Þ ¼ 0 or ui 0ð Þ ¼ ui
1;

Si2 þ Ri
Z 0ð Þ ¼ 0 or wi 0ð Þ ¼ ui

2;

Si3 þMi
Y 0ð Þ ¼ 0 or φi 0ð Þ ¼ ui

3;

ð7Þ

xi ¼ L :
Si4−Ri

X Lð Þ ¼ 0 or ui Lð Þ ¼ ui
4;

Si5−Ri
Z Lð Þ ¼ 0 or wi Lð Þ ¼ ui

5;

Si6−Mi
Y Lð Þ ¼ 0 or φi Lð Þ ¼ ui

6;

ð8Þ

where uki and Sk
i (k=1,2,… ,6) mark the given values of the generalized

boundary displacements and their complementary generalized forces at
the edges of layers, i.e. xi = 0 and xi = L, respectively.

2.1.4. Constitutive equations
The constitutive equations of a linear elastic CFST circular column

are due to the symmetry of the cross section of the individual layer as
follows.

N i−N i
C xi; εi
� �

¼ N i−Ci
11 ε

i ¼ 0;

ℳi−ℳi
C xi; κ i
� �

¼ ℳi−Ci
22 κ

i ¼ 0;
ð9Þ

whereN i
C andℳC

i are the constitutive cross-sectional forces dependent
only on the deformation variables εi and κi. Material and geometric
Fig. 4. Comparison of analytical and experimental critical buckling loads of CFST P-P column fo
loads equivalent to the experimental results for specimens SC154-3♣ and SC154-4♣.
constants are marked by C11
i and C22

i ; where C11
i =EiAi, and Ai and Ei

denote the cross-sectional area and the Young's modulus of the layer i,
respectively; C22i =EiIi, where Ii denotes the moment of inertia of the
layer i with respect to the reference axis of the CFST circular column.

2.1.5. Constraining equations and interface constitutive model
In the CFST circular column a layer s is constrained to follow the de-

formation of a layer c and vice versa. This means that the displacements
of initially coincident particles in the contact are constrained to each
other. This kinematic-constraint relation can be expressed if positions
of the observed particles in the deformed configuration are defined as.

Ri ¼ XiEX þ YiEY þ ZiEZ ; ð10Þ

where the spatial Cartesian coordinates Xi, Yi, and Zi are dependent on
the generalized displacements ui, wi, and φi as.

Xi ¼ xþ ui þ z sin φi; ð11Þ

Yi ¼ y; ð12Þ

Zi ¼ wi þ z cos φi: ð13Þ

Thus, the displacement vector between the two initially coincident
particles that belong to layer c and s, respectively, is given by.

R½ �½ � ¼ Rc−Rs ¼ ΔUEX þ ΔWEZ ; ð14Þ

or, written in component form as

ΔU x;αð Þ ¼ uc−us−r sin α sin φc− sin φsð Þ; ð15Þ

ΔW x;αð Þ ¼ wc−ws−r sin α cos φc− cos φsð Þ; ð16Þ

where ΔU and ΔW mark the interlayer slip and uplift between the ob-
served particles expressed with respect to the unit base vectors EX and
EZ of a spatial Cartesian coordinate system, and r and α are the polar
coordinates of the observed particle in the contact, see Fig. 2.

As a result of the kinematic–constraint relation Eq. (14), interlayer
contact tractions evolve. Their magnitudes are dependent on the type
of the interface connection. In general, a non-linear interface is modeled
using simultaneous sliding and uplifting. Thus, the contact or interlayer
tractions.

pi� ¼ pi�X EX þ pi�Z EZ ; ð17Þ
r various K, C, where εcr = 0, and C and K are in kN/cm2. Contours of normalized buckling
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are dependent on both ΔU and ΔW, see, e.g. [50,51]

pc�X x;αð Þ ¼ −ps�X x;αð Þ ¼ ℱ � ΔU ;ΔWð Þ; ð18Þ

pc�Z x;αð Þ ¼ −ps�Z x;αð Þ ¼ G� ΔU ;ΔWð Þ; ð19Þ

where the functions ℱ * and G� are determined experimentally.
Nevertheless, in most civil engineering applications, the interface
constitutive laws (18)–(19) can be decoupled. Hence, statically equiva-
lent contact tractions per unit of the reference axis of the CFST circular
column are determined by.

piX xð Þ ¼
Z

Ci
x

pi�X dC
i
x ¼

Z 2π

0
ℱ ΔUð Þrdα; ð20Þ

piZ xð Þ ¼
Z

Ci
x

pi�Z dC
i
x ¼

Z 2π

0
G ΔWrdαð Þ; ð21Þ

mi
Y xð Þ ¼

Z
Ci
x

ρi � pi�X ;0;p
i�
Z

� �
dCi

x

¼
Z 2π

0
0;−r cos α;−r sin αð Þ � ℱ ΔUð Þ;0;G ΔWð Þð Þr dα; ð22Þ

where Cxi is the contour of the cross-section of layer i, dCxi is its differen-
tial, and ρi. is the cross-sectional vector-valued position function of the
observed particle of the layer i in the contact, see Fig. 2.

2.2. Linearized governing equations

A derivation of a linearized system of governing equations for de-
termination of critical buckling loads of CFST columns is based on the
first variation (or Gateaux differential, Gateaux variation) of the non-
linear system of governing Eqs. (2)–(22) defined here as follows
[52].

δℱ ðx; δxÞ ¼ lim
β→0

ℱ ðxþ βδxÞ−ℱ ðxÞ
β

¼ d
dβ

ℱ ðxþ βδxÞj
β¼0

; (23)

whereℱ is the functional, x and δx are the generalized displace-
ment field and its increment, respectively, and β is a small scalar
Fig. 5. Comparison between present critical buckling loads and test and code results versus var
parameter. In order to derive linearized equations for a CFST
column buckling problem, the linearized equations have to be eval-
uated at the primary configuration of the CFST column, which is an
arbitrary deformed configuration in which the CFST column re-
mains straight. Therefore, the primary configuration is determined
as.

εi ¼ −
1X

i

Ci
11

P;

κ i ¼ 0;
ui ¼ ui 0ð Þ− xX

i

Ci
11

P

wi ¼ 0;
φi ¼ 0;
ΔU ¼ 0;
ΔW ¼ 0;

Ri
X ¼ N i ¼ −

Ci
11X

i

Ci
11

P;

Ri
Z ¼ Qi ¼ 0;

Mi
Y ¼ ℳi ¼ 0;

piX ¼ 0;
piZ ¼ 0;
mi

Y ¼ 0:

ð24Þ

The linearized stability equations of the CFST composite column,
when written at the primary configuration (24), are:

δui0−δεi ¼ 0;
δwi0 þ 1þ εð Þδφi ¼ 0;
δφi0−δκ i ¼ 0;
δRc0

X−δpX ¼ 0;
δRs0

X þ δpX ¼ 0;
δRc0

Z−δpZ ¼ 0;
δRs0

Z þ δpZ ¼ 0;
δMc0

Y þ Rc
Xδw

c0− 1þ εð ÞδRc
Z−δmY ¼ 0;

δMs0
Y þ Rs

Xδw
s0− 1þ εð ÞδRs

Z þ δmY ¼ 0;
δRi

X−Ci
11δε

i ¼ 0;
δMi

Y−Ci
22δκ

i ¼ 0;
δΔU ¼ δuc−δus−r sinα δφc−δφsð Þ;
δΔW ¼ δwc−δws;

ð25Þ
ious slenderness ratios, λ, and different contact stiffnesses, C and K, for Ec = 2760 kN/cm2.



Fig. 6. Comparison between present critical buckling loads and test and code results versus various slenderness ratios, λ, and different contact stiffnesses, C and K, for Ec = 2840 kN/cm2.
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where.

ε ¼ εi ¼ 1X
i

Ci
11

P;

δpX ¼ δpcX ¼ δpsX ¼
Z 2π

0
KδΔUrdα ¼ 2πrK δuc−δusð Þ;

δpZ ¼ δpcZ ¼ δpsZ ¼
Z 2π

0
CδΔWrdα ¼ 2πrC δwc−δwsð Þ;

δmY ¼ δmc
Y ¼ δms

Y ¼
Z 2π

0
0;−r cosα;−r sinαð Þ

� KδΔU ;0;CδΔWð Þrdα ¼ πr3K δφc−δφsð Þ

;

ð26Þ

and K and C are the longitudinal and radial stiffness of the contact. The
system (25) is a system of 18 linear algebraic-differential equations of
the first order with constant coefficients for 18 unknown functions δεi,
δκi, δui, δwi, δφi, δRXi , δRZi , δMY

i , δΔU, and δΔW alongwith the correspond-
ing natural and essential boundary conditions:

x ¼ 0 :
Si1 þ δRi

X 0ð Þ ¼ 0 or δui 0ð Þ ¼ ui
1;

Si2 þ δRi
Z 0ð Þ ¼ 0 or δwi 0ð Þ ¼ ui

2;

Si3 þ δMi
Y 0ð Þ ¼ 0 or δφi 0ð Þ ¼ ui

3;

ð27Þ
Table 2
Critical buckling loads of circular CFST P–P column for various K and C, where εcr = 0, λ = 154

Pcr[kN]

C⁎⁎

K⁎⁎ 10−10 10−7 10−5 1

10−10 179.802788♠ 179.930873♠ 192.041964 2
10−5 179.811750 179.939827 192.050117 2
10−4 179.892379 180.020386 192.123470 2
10−3 180.696203 180.823493 192.854450 2
10−2 188.484417 188.604452 199.908570 2
10−1 242.160490 242.215593 247.314306 2
1 295.511451 295.512505 295.615418 2
101 302.085640 302.085650 302.086669 3
102 302.733063 302.733063 302.733074 3
103 302.797677 302.797677 302.797677 3
104 302.804137 302.804137 302.804137 3
105 302.804783 302.804783 302.804783 3
1010 302.804855⨀ 302.804855⨀ 302.804855⨀ 3

⁎⁎ In [kN/cm2].
♠ Pcr=Pcr

♠ .
⨀ Pcr=Pcr

⊙.
x ¼ L :
Si4 þ δRi

X Lð Þ ¼ 0 or δui Lð Þ ¼ ui
4;

Si5 þ δRi
Z Lð Þ ¼ 0 or δwi Lð Þ ¼ ui

5;

Si6 þ δMi
Y Lð Þ ¼ 0 or δφi Lð Þ ¼ ui

6;

ð28Þ

where uki and Sk
i (k=1,2,… ,6) mark the given values of the generalized

boundary displacements and their complementary generalized forces at
the edges of layers, i.e. x = 0 and x = L, respectively.

2.3. Exact solution of the buckling problem

The system of linear algebraic-differential Eq. (25) and the corre-
sponding boundary and continuity conditions (27)–(28) can bewritten
as a homogeneous system of 12 first order linear differential equations
as.

Y 0 xð Þ ¼ AY xð Þ; ð29Þ

and.

Y 0ð Þ ¼ Y0; ð30Þ

where Y(x). is the vector of unknown functions, Y(0). is the
vector of unknown integration constants, and A is the constant
, and Ec = 2840 kN/cm2.

0−4 10−3 10−2 105

55.772185 297.723516 302.302152 302.804855⨀

55.774758 297.723552 302.302152 302.804855⨀

55.797905 297.723875 302.302155 302.804855⨀

56.028334 297.727102 302.302187 302.804855⨀

58.232043 297.759154 302.302504 302.804855⨀

73.084338 298.058783 302.305648 302.804855⨀

96.433335 299.828050 302.335054 302.804855⨀

02.095798 302.175767 302.509210 302.804855⨀

02.733166 302.734076 302.742046 302.804855⨀

02.797678 302.797688 302.797778 302.804855⨀

02.804137 302.804137 302.804138 302.804855⨀

02.804783 302.804783 302.804783 302.804855⨀

02.804855⨀ 302.804855⨀ 302.804855⨀ 302.804855⨀



Fig. 8. Effect of diameter-to-thickness ratio on critical buckling loads of circular P–P CFST
composite columns for various interfacial stiffnesses K and C.

Fig. 7. First buckling modes of layers c and s, and critical buckling loads of CFST P–P composite column for various values of K and C.
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real 12 × 12 matrix. The exact solution of the problem is given by,
see e.g. [53]:

Y xð Þ ¼ expAxY0: ð31Þ

The unknown integration constants which are in this case the initial
values of the generalized equilibrium internal forces and components of
the displacement vectors, are determined from the boundary conditions
(27)–(28). As a result, a system of 12 homogeneous linear algebraic
equations for 12 unknown constants is obtained.

KY0 ¼ 0; ð32Þ

where Kdenotes the tangent stiffness matrix. A non-trivial solution
of Eq. (32) is obtained from the condition of vanishing determinant of
the matrix K.

detK ¼ 0: ð33Þ

The condition (33) represents a linear eigenvalue problem. Its solu-
tion, i.e. the eigenvalues and eigenvectors correspond to the critical
buckling loads, Pcr, and critical buckling modes of the column. The
exact solution for the lowest buckling load, Pcr, and corresponding buck-
ling mode can easily be determined but are generally too cumbersome
to be presented as closed-form expressions.

3. Numerical examples and discussion

In the first example, the analytical results for critical buckling loads
of circular CFST composite column with compliant interfaces are com-
pared with the experimental buckling loads obtained by Han [36]. In
the second example, the analytical results are compared to the results
proposed by different design standards. Finally, in the third example, a
parametric study is undertaken to investigate the effect of interfacial
compliance, diameter-to-depth ratio, column slenderness, concrete
elastic modulus, and material nonlinearity on the buckling loads and
modes of circular CFST composite columns with interfacial compliance.

3.1. Comparison of analytical and experimental results

In order to compare the analytical results of the proposed model
with the experimental results in the literature, the critical buckling
loads, Pcr, of the CFST P–P (pinned–pinned) circular column are calculat-
ed and compared to the experimental results, Ncr ,e, obtained by Han
[36]. The details of each tested column are listed in Table 1 and shown
in Fig. 3. Besides, the exact buckling loads of eleven CFST columns are
summarized in Table 1 for various interfacial stiffnesses, K and C, and
column slenderness ratios, λ.

It can be seen from Table 1 that good agreement between analytical
and experimental results exists if at least one (longitudinal or radial)
interface stiffness is high. In all other cases, the analytical buckling
loads are significantly reduced by finite interface compliance. Thus,



Fig. 9. Effect of concrete elastic modulus, Ec, on critical buckling loads of circular P–P CFST
composite columns for various interfacial stiffnessesK and C, whereD/t=24and λ=154.
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the analytical buckling loads are in the case of almost completely
debonded layers up to approximately 60% of those where layers are
fully connected to each other, and in the range of 57–64% of experimen-
tal results. Note also that some of the experimental results (see, SC154-
1, SC141-2, and SC130-3♣) are even higher than those analytical results
where full composite action between the steel tube and the concrete
core is assumed. The reason for this may lie in the fact that average ma-
terial properties of concrete core and steel tube were taken in the ana-
lytical calculations.

Furthermore, it would be interesting to estimate, what interfacial
compliance (C and K) considered in the analytical calculations corre-
sponds to particular experimental results. To this end, the experimental
buckling loads of the specimens SC154-3♣ and SC154-4♣ are compared
to the analytical results calculated for a wide range of parameters C and
K, see Fig. 4. Note that Pcr⁎ is thenormalized buckling loadof theCFST col-
umn defined as Pcr⁎=Pcr/PE, where PE is the Euler buckling load for the
CFST column with perfectly bonded interface between the steel tube
and the concrete core. Hence, if the contours for Pcr,SC154−3♣⁎ =0.984
and Pcr ,SC154−4♣⁎ =0.924 are plotted, see Fig. 4, and estimated as an
upper and lower limit, it could be seen that experimental results in
this case correspond to the interfacial compliance in the range of either
C≅[4.36 ⋅10−5,10−3] kN/cm2 and K ≤ 1.510 kN/cm2 or C ≤ 10−3 kN/cm2

and K≅ [0.354,1.510] kN/cm2. From the results in Table 1, it can be
seen, that the analytical results for relatively stiff connection
(C ≥ 10−3 kN/cm2 and K ≥ 1 kN/cm2) are within the ±10% range mea-
sured from themean experimental results. Finally, from the results pre-
sented in Table 1 and Fig. 4, it can be concluded that compliant
interfaces may lead to a significant reduction of the analytical buckling
loads of CFST columns. On the other hand, a comparison reveals that
Fig. 10. (a) Idealized bilinear elastic–plastic constitutive laws of compressive steel for D/t= 24
concrete in circular CFST tubes for L = 415.8 cm and various D/t ratios.
these particular experimental results correspond to the analytical buck-
ling loads of almost perfectly bonded interfaces.

3.2. Comparison of analytical and code results

The proposed analytical buckling loads of CFST columns with com-
pliant interfaces between the concrete core and steel tube are compared
to the buckling loads calculated from different design methods such as
AIJ [54], Eurocode 4 [55], LRFD [56], and DL/T 5085 [57]. The design re-
sults are summarized from Han [36]. It should be emphasized also that
thematerial partial safety factors proposed by all design codes are set to
unity when comparing design calculations with analytical and experi-
mental results. A comparison between the proposed analytical buckling
loads and test and code results is given in Figs. 5-6 for various slender-
ness ratios, λ, different contact stiffnesses, C and K, and two different
values of concrete elastic modulus, Ec.

It is, however, clear that all the designmethods give conservative re-
sults in comparison with experimental and analytical results and there-
fore underestimate the buckling loads of CFST columns considerably.
This has already been shown bymany researchers, e.g. [7,8,36]. Further-
more, the results shown in Figs. 5-6, indicate, that the buckling loads
calculated by Japanese design code [54] are almost equivalent to the an-
alytical results for totally compliant interfaces between the concrete
core and steel tube. From both figures it can be seen also that the results
of other design codes, namely, American design code [56], Chinese de-
sign code [57], and Eurocode 4 [55], correspond between themselves
and to the analytical results for intermediately compliant interfaces.
As would be expected, an increase of the column slenderness, λ, leads
to a significant decrease of the column buckling loads.

3.3. Parametric study

In this section, four illustrative examples are given. The first example
is introduced to study the effect of the interface compliance on critical
buckling loads andmodes of CFST columns. The secondand third are de-
voted to the effect of the diameter-to-thickness ratio, D/t, and concrete
elastic modulus, Ec, on critical buckling loads, respectively. The last ex-
ample pertains to the effect of material nonlinearity on critical buckling
loads of CFST columns.

3.3.1. Effect of interface compliance on buckling loads and modes
In what follows, a parametric study is undertaken to investigate the

effect of interface compliance on critical buckling loads and modes of
CFST columns. For this purpose, a CFST columnwith the same geometric
andmaterial properties as specimens SC154-3♣ and SC154-4♣ is used in
the parametric analysis, see Fig. 3 and Table 1. The critical buckling loads
and various column lengths; (b) idealized uniaxial stress–strainmaterial laws of confined



Fig. 11. Elastic and inelastic buckling curves of circular P–P CFST composite columns for
various column slenderness,λ anddifferentmaterial laws andD/t=24,where the follow-
ing notation means: ⁎concrete from [15]; □steel from [13]; △steel from [22]; ♣Ec =
2840 kN/cm2.
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are computed by the proposed analytical model for various interlayer
stiffnesses K and C. The results are presented in Table 2.

Evidently, the effect of interface compliance, namely the longitudinal
and radial interlayer stiffnesses, K and C, on critical buckling loads of
CFST columns is significant. It is seen from Table 2 that critical buckling
loads can decrease significantly as the longitudinal and radial interlayer
stiffnesses, K and C, decrease. However, this effect is insignificant if at
least one among stiffnesses is high.Note for example, that in the limiting
case when at least one among stiffnesses tends to infinity, the critical
buckling load becomes K and C independent. In this case, the critical
buckling load of the CFST column corresponds to a total sum of the crit-
ical buckling loads of individual layers, namely the buckling load of the
concrete core, Pcrc , and the steel tube, Pcrs , respectively,

P⊙
cr ¼ Pc

cr þ Ps
cr ¼

π2 Cc
22 þ Cs

22

� �
1þ εð ÞL2 ¼ π2 Ec Jc þ Es Js

� �
1þ εð ÞL2 ; ð34Þ

and is therefore equivalent to PE which is the Euler buckling load for
the CFST column with perfectly bonded layers. On the contrary, in the
limiting case when layers are fully debonded, it may be seen that the
critical buckling load of the CFST column under consideration is

P♠
cr ¼ Pc

cr þ Ps þ Ps ¼ π2Cc
22

1þ εð ÞL2 þ Cs
11ε ¼ π2Ec Jc

1þ εð ÞL2 þ EsAsε; ð35Þ

where Ps is the axial load carried by the steel tube. This result is ex-
pected since the critical buckling load of the concrete core in this partic-
ular case is almost as much as 3 times lower than the steel tube. At the
end of this example, first bucklingmodes of the individual layers c and s
of the CFST P-P composite column are calculated for various Ks and Cs.
The results are plotted in Fig. 7.

It can be seen from Fig. 7 that in case of fully debonded layers, when
K and C are almost negligible, only the concrete core buckles, while the
Table 3
Comparison of elastic and inelastic critical buckling loads of circular P–P CFST composite colum

Pcr[kN]

λ Elastic Inelastic⁎,□ Inelastic
Elastic

⁎,□ Ine

130 425.282 405.598 0.954 374
149 323.672 312.994 0.967 300
159 302.983 293.794 0.970 283

⁎ Concrete from [15..
□ steel from [13].
△ steel from [22].
♣ Ec = 2840 kN/cm2.
steel tube remains straight. However, for all other values of K and C the
deformations of the layers become constrained. This effect, however,
becomes pronounced for rather rigidly connected layers in either of
the two directions. Namely, in that case the first buckling modes of
the two layers practically coincide.

3.3.2. Effect of diameter-to-thickness ratio on buckling loads
The effect of the diameter-to-thickness ratio, D/t, where D and t are

the outer diameter and thewall thickness of the steel tube, respectively,
on critical buckling loads of circular CFST composite columns is studied
using the analytical model developed. The effect is studied for the CFST
column (i.e., specimen SC154-3♣) whose geometric and material prop-
erties are given in Fig. 3 and Table 1. The D/t ratios are considered by
changing the thickness of the steel tube walls. Thus, D/t ratio is small
when the steel tube thickness is relatively large compared with its di-
ameter, and is, on the other hand, large when the steel tube thickness
is relatively small compared with the diameter of the steel tube. The ef-
fects ofD/t ranging from 5 to 110 on critical buckling loads are shown in
Fig. 8 for various interface compliance. As expected, the critical buckling
loads increase as the D/t decreases along with the increase of interface
compliance. A slightly different trend is observed for small D/t ratios
in case of large interface compliance.

It should be noted that the proposed analytical model for buckling
analysis of CFST composite columns is suitable only for their global sta-
bility analysis. However, the local buckling of steel tubes with high D/t
ratios may reduce the strength of thin-walled CFST columns significant-
ly. To avoid the local buckling of circular CFST columns, the local
buckling limit for composite columns and composite compression
members according to Eurocode 4 [55] is considered. Therefore, local
buckling effects may be neglected for D/t ratios smaller than 21150 fy,
where fy is the yield strength of the steel tube in units of N/mm2. The va-
lidity of the results presented in Fig. 8 is thus limited according to
Eurocode 4 [55] by D/t ratio smaller than 60.76.

3.3.3. Effect of concrete elastic modulus on buckling loads
The effect of concrete elastic modulus, Ec, on buckling loads of circu-

lar CFST slender columns is investigated in Fig. 9. To this end, the buck-
ling loads are calculated for the CFST column with the same geometric
andmaterial properties as in the previous examples but for various nor-
malized elastic moduli, Ec⁎=Ec/E0c , and different interfacial stiffnesses K
and C, where E0

c=1700 kN/cm2 is chosen as reference concrete elastic
modulus. As anticipated, there is a general trend showing that increas-
ing the concrete elastic modulus increases the critical buckling load of
CFST columns in all cases of their interface compliance. Note that for
normal-strength concrete, e.g. for concrete of strength class C25/30 ac-
cording to Eurocode 2 [58], with Ec⁎ = 1.82 and K = 10−5 kN/cm2, the
critical buckling loads are Pcr[C = 10−6] = 188.024 kN; Pcr[C =
10−5] = 198.461 kN; Pcr[C = 10−4] = 260.218 kN; Pcr[C = 10−3] =
304.216 kN; while, for high-strength concrete, e.g. for concrete of
strength class C90/105 [58] with Ec⁎ = 2.59, the critical buckling loads
are Pcr[C = 10−6] = 222.818 kN; Pcr[C = 10−5] = 231.555 kN;
Pcr[C = 10−4] = 286.138 kN; Pcr[C = 10−3] = 336.970 kN. Evidently,
the effect of concrete elastic modulus on the critical buckling load is
ns for various column slenderness, λ, and different material laws.

lastic⁎,△ Inelastic
Elastic

⁎,△ Experiment♣ Experiment
Elastic

♣

.258 0.880 440 1.035

.076 0.927 318 (320) 0.982 (0.989)

.497 0.936 280 (298) 0.924 (0.983)
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significant. Thus, comparing a high performance concrete to a normal
strength concrete, it is seen that the critical buckling loads can increase
up to approximately 80% due to the use of higher strength concrete.
3.3.4. Effect of material nonlinearity on buckling loads
The real behavior of CFST columns is rather different from that de-

scribed in the previous sections. The solution for elastic buckling has a
limited use, since such buckling occurs only for very slender columns.
Most columns in practice generally fail by inelastic buckling before
reaching the Euler buckling loads. Thus, the proposed analytical model
for calculating the elastic buckling loads of CFST columns is here simply
extended to account for material nonlinearity in case of stiff connection.
Hence, condition (33) along with the longitudinal boundary condition
constitutes a system of two non-linear algebraic equations

f 1 Pcr; εcrð Þ ¼ detK¼ 1þ εcrð ÞPcr−
π2 Cc

22 þ Cs
22

� �
L2

¼ 0; ð36Þ

f 2 Pcr; εcrð Þ ¼ N c þN s þ Pcr ¼ σ cAc þ σ sAs þ Pcr ¼ 0; ð37Þ

for the two unknowns, i.e. the critical buckling load, Pcr, and the crit-
ical axial strain, εcr, of the CFST composite column, where σc and σs are
the stresses in the concrete core and steel tube, respectively. The system
Eqs. (36)–(37) is solved numerically using a Newton–Raphson iterative
method.

In order to investigate the effect ofmaterial nonlinearity on buckling
behavior of inelastic circular CFST columns, numerical calculations are
carried out bywhich the exact critical buckling loads of inelastic circular
CFST composite columns are determined from Eqs. (36)–(37) using the
tangent modulus method for various stress–strain relations of concrete
and steel under compression. Firstly, the critical buckling loads are cal-
culated for a stress–strain relationship of the confined concrete in circu-
lar CFST columns suggested by Liang and Fragomeni [15], and a bilinear
elastic–plastic constitutive law of the compressive steel proposed by
Shams and Saadeghvaziri [13], see Fig. 10. Secondly, the bilinearmateri-
al law for steel is replaced by the full-range three-stage stress–strain re-
lation for steel presented by Quach et al. [59] and used very recently in
case of circular CFST columns by Patel et al. [22].

The critical buckling loads of inelastic circular CFST columns are
compared with the corresponding elastic buckling loads and with the
experimental results published by Han [36] for various column slender-
ness ratios, λ, in Fig. 11. Also, critical buckling loads for high slenderness
ratios are tabulated in Table 3.

Note that the range of application of the elastic critical buckling loads
is limited in this case by the plastic squashing load Pult= 1025.5 kN. It is
seen from Fig. 11 and Table 3, that the effect of material nonlinearity is
pronounced especially for short and medium columns. The difference
between the elastic and inelastic buckling loads then decreases signifi-
cantly as the columnbecomesmore slender. Thus, for high column slen-
derness ratios the effect of material nonlinearity is negligible and the
analytical elastic and inelastic buckling loads almost coincide. For exam-
ple, the discrepancy of the buckling loads for λ = 154 is only up to
approximately 6%, see Table 3. Similarly, it is evident that the experi-
mental results of circular CFST columns with high slenderness ratios
[36] lie practically on the Euler elastic curve.

Moreover, by referring to Fig. 11, it is perhaps of interest to note, that
if a bilinear elastic–plastic constitutive law for compressive steel is taken
into account, the discontinuity in inelastic buckling curve occurs due to
a sudden decrease of column's flexural stiffness at the yielding point of
steel, which in this particular case corresponds to approximately Pcr =
751.19 kN. Thus, corresponding to this load, two discontinuity points
exist related to slenderness ratio, namely, λ1 = 38.46 and λ2 = 92.94.
4. Conclusions

The paper presented a new mathematical model for studying the
buckling behavior of circular concrete-filled steel tubular (CFST) slender
columns with compliant interfaces. The model is capable of predicting
exact critical buckling loads and modes of CFST columns. The effect of
interface compliance, and various other parameters, on critical buckling
loads of CFST was studied in detail. Based on the results obtained in the
present study, the following conclusions can be drawn:

1. The analytical buckling loads of elastic circular CFST columns with
compliant interfaces are derived for the first time.

2. A good agreement between analytical and experimental buckling
loads of circular CFST composite columns is observed if at least one
among longitudinal and radial interfacial stiffnesses is high. In the
presence of finite interfacial compliance the critical buckling loads
are reduced significantly.

3. The designmethods compared in the paper give conservative results
in comparisonwith the experimental results and analytical results of
circular CFST columns with almost perfectly bonded layers, and
therefore underestimate the buckling loads of CFST considerably.

4. The effect of interface compliance on critical buckling loads and
modes of CFST columns is proved to be significant. The critical buck-
ling loads decrease as the interfacial compliance increases. The first
buckling modes proved to be constrained if a finite interfacial com-
pliance is present.

5. The parametric study reveales that the critical buckling loads of
circular CFST columns are also very much affected by the diameter-
to-depth ratio and concrete elastic modulus.

6. The investigation of the influence of material nonlinearity on buck-
ling behavior of inelastic circular CFST columns showes that this ef-
fect is pronounced for short columns. On the other hand this effect
is negligible for slender columns. In that case, the analytical elastic
and inelastic buckling loads are very much similar to the experimen-
tal buckling loads.

7. The results can be used as a benchmark solution for a buckling prob-
lem of circular CFST columns with compliant interfaces
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