PARKING COMPLEX PROFIT ESTIMATION

Božidar Ivanković, Faculty of Transport and Traffic Science, Zagreb, Croatia, email: <u>ivankob@fpz.hr</u>

Robert Spudić, Road traffic independent expert, Zagreb, Croatia, email: <u>spudic robert@yahoo.com</u>

Luka Spudić, Student VHZK, Krapina, Croatia, email: lukaspudic@gmail.com

ABSTRACT

Salary from the car parking business is mostly known only for the authorities who are charging the money. The mathematics model for external estimating the profit from parking payment on a registered parking place is presented and application is demonstrated. Considering the usually camera partly monitoring, authors are giving the method for general salary calculation based on regression analysis.

KEY WORDS: profit, integral, trapezium formula, correlation, regression, profit control.

INTRODUCTION

The whole income from the parking place is well known only for a subject who is taking it. Failure of this concept is in possible manipulating by origin data, especially if one public firm has many parking complexes in a city. This problem arises when observation time is getting longer.

Parking place occupancy monitoring is possible by video cameras. At the base of recording video snapshots it is possible to calculate, as precise as is required, the exact profit taken from the recorded parking place. If the cameras are able to cover only the part of the parking complex, it is possible to make advanced measuring and estimate the salary by regression analysis.

We use manuals from University of Zagreb. In all literature we considered there is no any similar problem investigating. So this article overgrows from an exact problem we considered.

MATHEMATICAL MODEL

The exact cumulate profit *C* from the parking place complex is depending on the cumulate time that the every car is spending on its parking place:

$$C = c_{1} \cdot \sum_{i} t_{i}$$

where *i* is a parking car, t_i is the hours that the *i*-th car is spending in its parking place and c_1 is the price of one parking hour. When we create the mathematical model, we suppose that every driver is paying his parking. It is because we have only the record of parking with places that are occupied by cars and empty parking places.

Let a(t) be the number of parking cars in a moment t which could be taken from the snapshoot recorded during the parking payment period. If there exist a formula a(t) depending on a variable t, then

$$C = c_1 \int_{t_1}^{t_2} a(t) dt$$
 (1)

with $[t_1, t_2]$ as observed snapshoot interval, usually the daily parking charging time. Under the very special assumption that a(t) is constant during the period from t_1 to t_2 , we get the calculus

$$C = c_1 \int_{t_1}^{t_2} a(t) dt = c_1 \int_{t_1}^{t_2} a dt = c_1 a \int_{t_1}^{t_2} dt = c_1 a t \Big|_{t_1}^{t_2} = a c_1 \Big(t_2 - t_1 \Big).$$
⁽²⁾

Notice that value C is an product of an hour parking price c_1 and the value of area shown on the Figure 1:

Figure 1. Area in a constant car number case

In general, the number of cars in every moment is variable, but a(t) continuously depends on t. So the value given in (1) is again the product of an hour parking price and the value of area shown on the Figure 2:

Figure 2. Area in variable continuous car number case

Parking cars can be counted in discrete moments t_1 , t_2 , t_3 ,..., t_n . So there are discrete values of a(t): a_1 , a_2 , a_3 ,..., a_n . The values between them are approximate by polygonal line as is shown on the Figure 3:

Figure 3. Polygonaly approximated function a(t)

The area below the polygonal line on Figure 3 is calculated by well-known trapezium formula:

$$\int_{t_1}^{t_2} a(t)dt = \frac{a_1 + a_2}{2} \cdot (t_2 - t_1) + \frac{a_2 + a_3}{2} \cdot (t_3 - t_2) + \dots + \frac{a_{n-1} + a_n}{2} \cdot (t_n - t_{n-1})$$
(3)

Formula (3) can be simplified if the counting moments are in advance periodically determined. Then $t_2 - t_1 = t_3 - t_2 = ... = t_n - t_{n-1} = \Delta t$ and the final suitable formula is given:

$$c_1 \int_{t_1}^{t_2} a(t)dt = c_1 \left[\frac{a_1 + a_2}{2} \cdot \Delta t + \frac{a_2 + a_3}{2} \cdot \Delta t + \dots + \frac{a_{n-1} + a_n}{2} \cdot \Delta t \right]$$
(4)

DAILY MEASUREMENT EXAMPLE

On the considered parking place complex, daily payement period begins at 7:00 and ends at 21:00. The cars were counted from 7:15 till 20:30 in the intervals $\Delta t = 15 \text{ min.} = 0.25 \text{ h}$. So we get:

 a_1 = number of parked cars at 07:15 a_2 = number of parked cars at 07:30 a_3 = number of parked cars at 07:45 \vdots a_{n-1} = number of parked cars at 20:15 a_n = number of parked cars at 20:30

The area shown on the Figure 3 is calculated by (4) and results are displayet in the Table 1:

No.	TIME	CARS	ARTICLES	
		<i>a</i> _i	$\frac{a_i + a_{i+1}}{2}$	$\frac{a_{\mathbf{i}} + a_{\mathbf{i}+1}}{2} \cdot \Delta t$
1	7:15	162	163	40.75
2	7:30	164	152.5	38.13
3	7:45	141	137	34.25
4	8:00	133	126	31.50

5	8:15	119	117	29.25
6	8:30	115	114	28.50
7	8:45	113	109	21.80
8	9:00	105	111	27.75
9	9:15	117	118	29.50
10	9:30	119	118.5	29.63
11	9:45	118	118.5	29.63
12	10:00	116	116.5	29.13
13	10:15	117	119.5	29.88
14	10:30	122	119.5	29.88
15	10:45	117	118.5	29.63
16	11:00	120	123.5	30.88
17	11:15	127	130.5	32.63
18	11:30	134	129	32.25
19	11:45	124	128.5	32.13
20	12:00	133	132.5	33.13
21	12:15	132	133	33.25
22	12:30	134	131	32.75
23	12:45	128	131	32.75
24	13:00	128	128	32.00
25	13:15	131	130	32.50
26	13:30	129	130	32.50
27	13:45	131	132.5	33.13
28	14:00	134	135	33.75
29	14:15	136	132.5	33.13
30	14:30	129	127	31.75
31	14:45	125	125	31.25

32	15:00	125	125.5	31.38
33	15:15	126	125	31.25
34	15:30	124	129	32.25
35	15:45	134	132.5	33.13
36	16:00	131	131.5	32.88
37	16:15	132	134	33.50
38	16:30	136	136.5	34.13
39	16:45	137	138.5	34.63
40	17:00	140	144.5	36.13
41	17:15	149	148	37.00
42	17:30	147	150.5	37.63
43	17:45	154	151	37.75
44	18:00	148	149	37.25
45	18:15	150	147.5	36.88
46	18:30	145	144.5	36.13
47	18:45	144	147.5	36.88
48	19:00	151	153	38.25
49	19:15	155	157.5	39.38
50	19:30	160	163	40.75
51	19:45	166	172	43.00
52	20:00	178	179	44.75
53	20:15	180	180	45.00
54	20:30	180		
	1 788.84			

Table 1. Summary result of daily measurement in car-hours

The one hour parking price is 4kn≈0.53€. The total daily income is 7,155.36kn≈954.05€.

LIMITED OBSERVATION PROBLEM

Problem appears when there is impossible to overtake the whole parking complex by cameras. Then we have to estimate the number of parking vehicles in whole complex by the number of parked vehicles which are overtaken by camera. In the purpose of solving the problem, effective number of vehicles that are parked in the whole complex need to be correlated with those which are recorded by camera.

Firstly we calculate the coefficient of correlation and then we construct the linear regression formula for calculating dependence of whole number of parked cars by the number of parked cars recorded with cameras. The original data are presented in the Table 2. Considered parking complex is consisted of 193 parking places. There are 110 places overtaken by camera.

		Counted	Recorded
No.	Time	number	number
n	t	Y	X
1	7:15	162	88
2	7:30	164	95
3	7:45	141	88
4	8:00	133	84
5	8:15	119	77
6	8:30	115	74
7	8:45	113	73
8	9:00	105	68
9	9:15	117	75
10	9:30	119	76
11	9:45	118	76
12	10:00	116	75
13	10:15	117	75
14	10:30	122	78
15	10:45	117	75
16	11:00	120	77
17	11:15	127	80

18	11:30	134	85
19	11:45	124	80
20	12:00	133	84
21	12:15	132	84
22	12:30	134	85
23	12:45	128	82
24	13:00	128	82
25	13:15	131	83
26	13:30	129	82
27	13:45	131	83
28	14:00	134	85
29	14:15	136	86
30	14:30	129	82
31	14:45	125	80
32	15:00	125	80
33	15:15	126	80
34	15:30	124	79
35	15:45	134	85
36	16:00	131	80
37	16:15	132	84
38	16:30	136	86
39	16:45	137	82
40	17:00	140	79
41	17:15	149	93
42	17:30	147	92
43	17:45	154	96
44	18:00	148	90
L	· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·

45	18:15	150	99
46	18:30	145	84
47	18:45	144	91
48	19:00	151	90
49	19:15	155	97
50	19:30	160	100
51	19:45	166	103
52	20:00	178	97
53	20:15	180	98
54	20:30	180	98
	Summary:	7345	4560

Table 2. Comparison of parked vehicles by the way of counting

Correlation coefficient is calculated by formula

$$r = \frac{\sum_{i=1}^{n} x_i y_i - n \cdot \overline{x} \cdot \overline{y}}{\sqrt{\left(\sum_{i=1}^{n} x_i^2 - n \cdot \overline{x}^2\right) \cdot \left(\sum_{i=1}^{n} y_i^2 - n \cdot \overline{y}^2\right)}} \quad , \tag{5}$$

Where:

 $\overline{x} = 84.4$ - recorded number arithmetic mean $\overline{y} = 136.0$ - counted number arithmetic mean n = 54 - correlated pairs number.

Other values required for (5) are shown in Table 3

No.	time	Y	x	XY	X ²	Y ²
1	7:15	162	88	14256	7744	26244
2	7:30	164	95	15580	9025	26896
3	7:45	141	88	12408	7744	19881
4	8:00	133	84	11172	7056	17689

5	8:15	119	77	9163	5929	14161
6	8:30	115	74	8510	5476	13225
7	8:45	113	73	8249	5329	12769
8	9:00	105	68	7140	4624	11025
9	9:15	117	75	8775	5625	13689
10	9:30	119	76	9044	5776	14161
11	9:45	118	76	8968	5776	13924
12	10:00	116	75	8700	5625	13456
13	10:15	117	75	8775	5625	13689
14	10:3	122	78	9516	6084	14884
15	10:45	117	75	8775	5625	13689
16	11:00	120	77	9240	5929	14400
17	11:15	127	80	10160	6400	16129
18	11:30	134	85	11390	7225	17956
19	11:45	124	80	9920	6400	15376
20	12:00	133	84	11172	7056	17689
21	12:15	132	84	11088	7056	17424
22	12:30	134	85	11390	7225	17956
23	12:45	128	82	10496	6724	16384
24	13:00	128	82	10496	6724	16384
25	13:15	131	83	10873	6889	17161
26	13:30	129	82	10578	6724	16641
27	13:45	131	83	10873	6889	17161
28	14:00	134	85	11390	7225	17956
29	14:15	136	86	11696	7396	18496
30	14:30	129	82	10578	6724	16641
31	14:45	125	80	10000	6400	15625

32	15:00	125	80	10000	6400	15625
33	15:15	126	80	10080	6400	15876
34	15:30	124	79	9796	6241	15376
35	15:45	134	85	11390	7225	17956
36	16:00	131	80	10480	6400	17161
37	16:15	132	84	11088	7056	17424
38	16:30	136	86	11696	7396	18496
39	16:45	137	82	11234	6724	18769
40	17:00	140	79	11060	6241	19600
41	17:15	149	93	13857	8649	22201
42	17:30	147	92	13524	8464	21609
43	17:45	154	96	14784	9216	23716
44	18:00	148	90	13320	8100	21904
45	18:15	150	99	14850	9801	22500
46	18:30	145	84	12180	7056	21025
47	18:45	144	91	13104	8281	20736
48	19:00	151	90	13590	8100	22801
49	19:15	155	97	15035	9409	24025
50	19:30	160	100	16000	10000	25600
51	19:45	166	103	17098	10609	27556
52	20:00	178	97	17266	9409	31684
53	20:15	180	98	17640	9604	32400
54	20:30	180	98	17640	9604	32400
Summary:	Σ:	7345	4560	627083	388434	1015201

Table 3. Values required for (5)

Vehicles that are counted are also recorded by camera, so the recorded number of vehicles is the part of counted number of vehicles. Correlation coefficient is high: R=0.027.

The number of all cars parked at the complex (Y) is linearly dependending on the number of parked cars overtaken by camera (X):

$$Y = a + bX , (6)$$

where coefficients are calculated by formulas

$$a = \frac{\sum_{i} y_{i} \cdot \sum_{i} x_{i}^{2} - \sum_{i} x_{i} \cdot \sum_{i} x_{i} y_{i}}{n \cdot \sum_{i} x_{i}^{2} - (\sum_{i} x_{i})^{2}}$$
(7)

$$b = \frac{n \cdot \sum_{i} x_{i} y_{i} - \sum_{i} x_{i} \cdot \sum_{i} y_{i}}{n \cdot \sum_{i} x_{i}^{2} - \left(\sum_{i} x_{i}\right)^{2}}.$$
(8)

Applying the values from Table 3 in (7) and (8) we get (6):

$$Y = 2.03X - 35.48.$$
 (9)

Formula (6) estimates the number of vehicles parked in whole complex by the number of vehicles (X) recorded by cameras. Notice that coefficient 2.03 is not equal with rate 193/110, which means that cameras overtakes those parking places that are low desired by drivers who are parking their cars.

CONCLUSION

In the first part of article we show the method for independent estimating the parking salary and it could be applied for over-sighting the companies which take money from parking places. In the second part we demonstrate the method for collecting data of parked vehicles number when oversight couldn't be completely conducted. This method is suitable for managers to control its incomes easily. The main reason not to take the rate of whole number of places and overtaken number of places is that all parking place are not equally eligible.

LITERATURE:

- 1. E. Kovač Striko, T. Fratrović, B. Ivanković: Vjerojatnost i statistika s primjerima iz tehnologije prometa, Zagreb, 2008.
- 2. S. Kurepa, Matematička analiza I, Školska knjiga, Zagreb, 1980.