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Abstract. J. Lepowsky and R. L. Wilson initiated the approach to combina-

torial Rogers-Ramanujan type identities via vertex operator constructions of
standard (i.e. integrable highest weight) representations of affine Kac-Moody

Lie algebras. A. Meurman and M. Primc developed further this approach for

sl(2,C)̃ by using vertex operator algebras and Verma modules. In this paper
we use the same method to construct combinatorial bases of basic modules

for affine Lie algebras of type C
(1)
n and, as a consequence, we obtain a series

of Rogers-Ramanujan type identities. A major new insight is a combinatorial
parametrization of leading terms of defining relations for level one standard

modules for affine Lie algebra of type C
(1)
n .

1. Introduction

J. Lepowsky and R. L. Wilson [LW] initiated the approach to combinatorial
Rogers-Ramanujan type identities via vertex operator constructions of representa-
tions of affine Kac-Moody Lie algebras. In [MP1] this approach is developed further
for sl(2,C)̃ by using vertex operator algebras and Verma modules. In this paper we
use the same method to construct combinatorial bases for basic modules of affine
Lie algebra of type C

(1)
n .

The starting point in [MP1] is a PBW spanning set of a standard (i.e., integrable
highest weight) module L(Λ) of level k, which is then reduced to a basis by using
the relation

xθ(z)
k+1 = 0 on L(Λ).

In [MP1] this relation was interpreted in terms of vertex operator algebras and it
was proved for any level k standard module of any untwisted affine Kac-Moody Lie
algebra.

After a PBW spanning set is reduced to a basis, it remains to prove its linear
independence. The main ingredient of the proof is a combinatorial use of relation

xθ(z)
d
dz (xθ(z)

k+1) = (k + 1)xθ(z)
k+1 d

dzxθ(z)

for the annihilating field xθ(z)
k+1. This relation was also interpreted in terms of

vertex operator algebras.
By following ideas developed in [MP1] and [MP2], in [P1] and [P2] a general

construction of relations for annihilating fields is given by using vertex operator
algebras, and by using these relations the problem of constructing combinatorial
bases of standard modules is split into a “combinatorial part of the problem” and
a “representation theory part of the problem ”.
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In this paper we use these results to construct combinatorial bases of basic mod-

ules for affine Lie algebras of type C
(1)
n . A major new insight is a combinatorial

parametrization in [PŠ] of leading terms of defining relations for all standard mod-

ules for affine Lie algebra of type C
(1)
n . This is, hopefully, an important step towards

a solution of “combinatorial part of the problem” of constructing combinatorial
bases of standard modules for affine Lie algebras.

In first nine sections we give a detailed outline of ideas and results involved in
this approach, we introduce notation and recall necessary general results from [P1]
and [P2]. The results from [P1] on relations among relations are formulated in
“untwisted setting”—this may alleviate using the results which are quite technical
in “twisted setting”. In Section 10 we prove Proposition 10.1 which is the starting
point of our construction of combinatorial basis of the basic module L(Λ0) for

affine Lie algebra of type C
(1)
n . In Section 11 we prove linear independence of

combinatorial bases by using the combinatorial result from [PŠ] for counting the
number of two-embeddings. As a consequence, in Section 12 we obtain a series of
combinatorial Rogers-Ramanujan type identities.

We thank Arne Meurman for many stimulating discussions and help in under-
standing the combinatorics of leading terms.

2. Vertex algebras and generating fields

Two formal Laurent series a(z) =
∑
anz
−n−1 and b(z) =

∑
bnz
−n−1, with

coefficients in some associative algebra, are said to be mutually local if for some
non-negative integer N

(z1 − z2)Na(z1)b(z2) = (z1 − z2)Nb(z2)a(z1).

A vertex algebra V is a vector space equipped with a specified vector 1 called the
vacuum vector, a linear operator D on V called the derivation and a linear map

V → (EndV )[[z−1, z]], v 7→ Y (v, z) =
∑
n∈Z

vnz
−n−1

satisfying the following conditions for u, v ∈ V :

unv = 0 for n sufficiently large,(2.1)

[D,Y (u, z)] = Y (Du, z) =
d

dz
Y (u, z),(2.2)

Y (1, z) = idV (the identity operator on V ),(2.3)

Y (u, z)1 ∈ (EndV )[[z]] and lim
z→0

Y (u, z)1 = u,(2.4)

Y (u, z) and Y (v, z) are mutually local.(2.5)

Haisheng Li showed [L] that this definition of vertex algebra is equivalent to the
original one given by R. E. Borcherds [B]. The formal Laurent series Y (u, z) is
called the vertex operator (field) associated with the vector (state) u, and (2.4)
gives a state-field correspondence. For coefficients of vertex operators Y (u, z) and
Y (v, z) we have the commutator formula

(2.6) [um, vn] =
∑
i≥0

(
m

i

)
(uiv)m+n−i.
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Let M be a vector space and a(z) and b(z) two formal Laurent series with
coefficients in EndM such that for each w ∈M

(2.7) amw = 0 and bmw = 0 for m sufficiently large.

Then for each integer n we have a well defined product

(2.8) a(z)nb(z) = Resz1 ((z1 − z)na(z1)b(z)− (−z + z1)nb(z)a(z1)) ,

with the convention that (z1 − z)n = zn1 (1 − z/z1)n denotes a series obtained by
the binomial formula for (1− ζ)n. If we think of a vertex algebra as a vector space
given 1, D and multiplications unv, satisfying (2.1)–(2.5), then we can state the
theorem on generating fields due to Haisheng Li [L]:

Theorem 2.1. A family of mutually local formal Laurent series with coefficients
in EndM , satisfying (2.7), generates a vertex algebra with the vacuum 1 = idM ,
the derivation D = d

dz and the multiplications a(z)nb(z).

A vertex operator algebra (see [FLM]) is a vertex algebra V with a conformal
vector ω such that Y (ω, z) =

∑
Lnz

−n−2 gives the Virasoro algebra operators Ln ,
with L−1 = D. It is also required that L0 defines a Z-grading V =

∐
Vn truncated

from below with finite-dimensional eigenspaces Vn.
For u ∈ Vn we write wtu = n. We shall sometimes use another convention for

writing coefficients of vertex operators,

Y (u, z) =
∑
n∈Z

u(n)z−n−wtu,

so that u(n) is a homogeneous operator on the graded space V of degree n.
For a vertex operator algebra V we have a vertex operator algebra structure

on V ⊗ V with fields Y (u ⊗ v, z) = Y (u, z) ⊗ Y (v, z) and the conformal vector
ω ⊗ 1 + 1⊗ ω (see [FHL]).

3. Vertex algebras for affine Lie algebras

Let g be a simple complex Lie algebra, h a Cartan subalgebra of g and 〈 , 〉 a
symmetric invariant bilinear form on g. Via this form we identify h with h∗ and we
assume that 〈θ, θ〉 = 2 for the maximal root θ (with respect to some fixed basis of
the root system). Set

ĝ =
∐
j∈Z

g⊗ tj + Cc, g̃ = ĝ + Cd.

Then g̃ is the associated untwisted affine Kac-Moody Lie algebra (cf. [K]) with the
commutator

[x(i), y(j)] = [x, y](i+ j) + iδi+j,0〈x, y〉c.

Here, as usual, x(i) = x⊗ ti for x ∈ g and i ∈ Z, c is the canonical central element,
and [d, x(i)] = ix(i). Sometimes we shall denote g⊗ tj by g(j). We identify g and
g(0). Set

g̃<0 =
∐
j<0

g⊗ tj , g̃≤0 =
∐
j≤0

g⊗ tj + Cd, g̃≥0 =
∐
j≥0

g⊗ tj + Cd.
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For k ∈ C denote by Cvk the one-dimensional (g̃≥0 + Cc)-module on which g̃≥0

acts trivially and c as the multiplication by k. The affine Lie algebra g̃ gives rise to
the vertex operator algebra (see [FZ] and [L], here we use the notation from [MP1])

N(kΛ0) = U(g̃)⊗U(g̃≥0+Cc) Cvk
for level k 6= −g∨, where g∨ is the dual Coxeter number of g; it is generated by the
fields

(3.1) x(z) =
∑
n∈Z

xnz
−n−1, x ∈ g,

where we set xn = x(n) for x ∈ g. By the state-field correspondence we have

x(z) = Y (x(−1)1, z) for x ∈ g.

The Z-grading is given by L0 = −d.
From now on we shall fix the level k ∈ Z>0, and we shall often denote by V the

vertex operator algebra structure on the generalized Verma g̃-module N(kΛ0).

4. A completion of the enveloping algebra

Let U = U(ĝ)/(c − k), where U(ĝ) is the universal enveloping algebra of ĝ and
(c− k) is the ideal generated by the element c− k. Note that g̃-modules of level k
are U-modules. Note that U(ĝ) is graded by the derivation d, and so is the quotient
U . Let us denote the homogeneous components of the graded algebra U by U(n),
n ∈ Z. We take

(4.1) Wp(n) =
∑
i≥p

U(n− i)U(i), p ∈ Z>0 ,

to be a fundamental system of neighborhoods of 0 ∈ U(n). It is easy to see that

we have a Hausdorff topological group (U(n),+), and we denote by U(n) the cor-
responding completion, introduced in [FZ] (cf. also [H], [FF], and [KL]). Then

U =
∐
n∈Z
U(n)

is a topological ring.
The definition (4.1) of a fundamental system of neighborhoods is so designed

that the product a(z)nb(z) of two formal Laurent series with coefficients in U is well
defined by the formula (2.8). Haisheng Li’s arguments in the proof of Theorem 2.1
apply literally and we have:

Proposition 4.1. The family of mutually local formal Laurent series (3.1) with
coefficients in U generates a vertex algebra V ′ with the vacuum 1 ∈ U , the derivation
D = d

dz and the multiplications a(z)nb(z). Moreover, the linear map

Y : x(−1)1 7→ x(z) for x ∈ g

extends uniquely to an isomorphism Y : V → V ′ of vertex operator algebras.

The map

Y : V → U [[z, z−1]], v 7→ Y (v, z) =
∑
n∈Z

vnz
−n−1,

was first constructed by I. B. Frenkel and Y. Zhu in [FZ, Definition 2.2.2] by using
another method. From now on we shall consider the coefficients vn of Y (v, z) for
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v ∈ V as elements in the completion U . Then for any highest weight g̃-module M
of level k the elements vn ∈ U act on M , defining a representation of the vertex
operator algebra V on M .

By following the notation in [FF] we set

Uloc = C-span{vn | v ∈ V, n ∈ Z} ⊂ U .
From the commutator formula (2.6) we see that Uloc is a Lie subalgebra. Let us
denote by U the associative subalgebra of U generated by Uloc. By construction we
have U ⊂ U . Clearly

U =
∐
n∈Z

U(n),

where U(n) ⊂ U is the homogeneous subspace of degree n.

5. Annihilating fields of standard modules

For the fixed positive integer level k the generalized Verma g̃-module N(kΛ0) is
reducible, and we denote by N1(kΛ0) its maximal g̃-submodule. By [K, Corollary
10.4] the submoduleN1(kΛ0) is generated by the singular vector xθ(−1)k+11, where
xθ is a root vector in g. Set

R = U(g)xθ(−1)k+11, R̄ = C-span{rn | r ∈ R,n ∈ Z}.
Then R ⊂ N1(kΛ0) is an irreducible g-module, and R̄ ⊂ U is the corresponding
loop g̃-module for the adjoint action given by the commutator formula (2.6).

We have the following theorem (see [DL], [FZ], [L], [MP1]):

Theorem 5.1. Let M be a highest weight g̃-module of level k. The following are
equivalent:

(1) M is a standard module,
(2) R̄ annihilates M .

This theorem implies that for a dominant integral weight Λ of level Λ(c) = k we
have

R̄M(Λ) = M1(Λ),

where M1(Λ) denotes the maximal submodule of the Verma g̃-module M(Λ). Fur-
thermore, since R generates the vertex algebra ideal N1(kΛ0) ⊂ V , vertex operators
Y (v, z), v ∈ N1(kΛ0), annihilate all standard g̃-modules L(Λ) = M(Λ)/M1(Λ) of
level k.

We shall call the elements rn ∈ R̄ relations (for standard modules), and Y (v, z),
v ∈ N1(kΛ0), annihilating fields (of standard modules). It is clear that the field

Y (xθ(−1)k+11, z) = xθ(z)
k+1

generates all annihilating fields.

6. Tensor products and induced representations

The vertex operator algebra V has a Lie algebra structure with the commutator

(6.1) [u, v] = u−1v − v−1u =
∑
n≥0

(−1)nD(n+1)(unv),

and g̃<01 is a Lie subalgebra. Moreover, the map

g̃<01→ g̃<0, u 7→ u−1,
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is a Lie algebra isomorphism and we have the “adjoint” action

u−1 : v 7→ [u, v]

of the Lie algebra g̃<0 on V . Since L−1, L0 and y0, y ∈ g, are derivations of the
product u−1v, they are also derivations of the bracket [u, v], and we can extend
the “adjoint” action of the Lie algebra g̃<0 on V to the “adjoint” action of the Lie
algebra

CL−1 n g̃≤0
∼=
(
CL−1 + CL0 + g(0)

)
n g̃<01.

The subspace

R̄ 1 =

∞∐
i=0

DiR ⊂ V

is a g̃≥0-submodule invariant for the action of D = L−1. Then the right hand side
of (6.1) implies that R̄ 1 is invariant for the “adjoint” action of CL−1 n g̃≤0, we
shall denote it by (R̄ 1)ad.

Hence we have the induced g̃-module U(g̃)⊗U(g̃≥0+Cc)R̄ 1 and the tensor product

(R̄ 1)ad ⊗ V of (CL−1 n g̃≤0)-modules, and we have two maps

Ψ: U(g̃)⊗U(g̃≥0+Cc) R̄ 1→ N(kΛ0), u⊗ w 7→ uw,

Φ: (R̄ 1)ad ⊗ V → V, u⊗ w 7→ u−1w.

Note that the map Ψ is a homomorphism of g̃-modules, and that Ψ intertwines the
actions of L−1 and L0. Hence, by restriction, Ψ is a (CL−1 n g̃≤0)-module map.
The following theorem relates ker Φ with induced representations of g̃:

Theorem 6.1. (i) There is a unique isomorphism of (CL−1 n g̃≤0)-modules

Ξ: (R̄ 1)ad ⊗ V → U(g̃)⊗U(g̃≥0+Cc) R̄ 1

such that Ξ(w ⊗ 1) = 1⊗ w for all w ∈ R̄ 1.
(ii) The map Φ is a homomorphism of (CL−1 n g̃≤0)-modules and Φ = Ψ ◦ Ξ.

In particular, ker Φ is a (CL−1 n g̃≤0)-module and

Ξ(ker Φ) = ker Ψ.

We call elements in ker Φ relations for annihilating fields (cf. [P1], [P2]) since∑
: Y (a, z)Y (b, z) : = 0 for

∑
a⊗ b ∈ ker Φ.

By Theorem 6.1 we may identify the relations for annihilating fields with elements
of ker Ψ, which is easier to study by using the representation theory of affine Lie
algebras.

7. Generators of relations for annihilating fields

Let {xi}i∈I and {yi}i∈I be dual bases in g. For r ∈ R we define Sugawara’s
relation

(7.1) qr =
1

k + g∨

∑
i∈I

xi(−1)⊗ yi(0)r − 1⊗Dr

as an element of U(g̃)⊗U(g̃≥0+Cc)R̄ 1. As in the case of Casimir operator, Sugawara’s

relation qr does not depend on a choice of dual bases {xi}i∈I and {yi}i∈I .
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Proposition 7.1. (i) qr is an element of ker Ψ.
(ii) r 7→ qr is a g-module homomorphism from R into ker Ψ.
(iii) x(i)qr = 0 for all x ∈ g and i > 0.

Let us denote the set of all Sugawara’s relations (7.1) by

QSugawara = {qr | r ∈ R} ⊂ ker Ψ,

and let us define the g̃-module homomorphism

Ψ0 : U(g̃)⊗U(g̃≥0+Cc) R→ N(kΛ0), u⊗ w 7→ uw.

Then we have:

Proposition 7.2. As a (CL−1 n g̃≤0)-module ker Ψ is generated by

ker Ψ0 +QSugawara .

Let us denote by α∗ all simple roots of g̃ connected with α0 in a Dynkin diagram:

α∗ 6= α0 , 〈α0, α
∨
∗ 〉 6= 0.

For A
(1)
n , n ≥ 2, there are exactly two such simple roots, for all the other untwisted

affine Lie algebras g̃ there is exactly one such simple root. In the case g̃ 6∼= sl(2,C)̃
we have a root vector xθ−α∗ = [x−α∗ , xθ] in the corresponding finite-dimensional g.

Since R generates the maximal g̃-submodule N1(kΛ0) of N(kΛ0), we have the
exact sequence of g̃-modules

U(g̃)⊗U(g̃≥0+Cc) R
Ψ0−−→ N(kΛ0)→ L(kΛ0)→ 0.

Generators of ker Ψ0 can be determined by using Garland-Lepowsky’s resolution

· · · → E2 → E1 → E0 → L(kΛ0)→ 0

of a standard module in terms of generalized Verma modules [GL], or by using
the BGG type resolution of a standard module in terms of Verma modules, due to
A. Rocha-Caridi and N. R. Wallach [RW]:

Proposition 7.3. Let g̃ 6∼= sl(2,C)̃ be an untwisted affine Lie algebra. Then ker Ψ0

is generated by the singular vector(s)

xθ−α∗(−1)⊗ xθ(−1)k+11−xθ(−1)⊗ xθ−α∗(−1)xθ(−1)k1, 〈α0, α
∨
∗ 〉 6= 0.

By combining Theorem 6.1 and Propositions 7.2 and 7.3 we have a description
of generators of relations for annihilating fields:

Theorem 7.4. Let g̃ 6∼= sl(2,C)̃ be an untwisted affine Lie algebra. Then the
(CL−1 n g̃≤0)-module ker Φ is generated by vectors

xθ(−1)k+11⊗ xθ−α∗(−1)1− xθ−α∗(−1)xθ(−1)k1⊗ xθ(−1)1, 〈α0, α
∨
∗ 〉 6= 0,

1
k+g∨

∑
i∈I

yi(0)xθ(−1)k+11⊗ xi(−1)1 + L−1

(
1

k+g∨ Ω− 1
)
xθ(−1)k+11⊗ 1.

This description of generators of relations for annihilating fields has some disad-
vantages when it comes to combinatorial applications. Namely, the obvious relation

xθ(z)
k+1 d

dzxθ(z)−
1
k+1

d
dz (xθ(z)

k+1)xθ(z) = 0

for the annihilating field xθ(z)
k+1 comes from the element

(7.2) q(k+2)θ = xθ(−2)⊗ xθ(−1)k+11−xθ(−1)⊗ xθ(−2)xθ(−1)k1
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in ker Ψ. This element q(k+2)θ has length k + 2 in the natural filtration, but when
written in terms of generators described in Theorem 7.4, it is expressed in terms of
elements of length > k + 2. On the other hand, we can obtain from (7.2) both the
singular vector(s)

q(k+2)θ−α∗ = xθ−α∗(−1)⊗ xθ(−1)k+11−xθ(−1)⊗ xθ−α∗(−1)xθ(−1)k1

in ker Ψ0 and the Sugawara singular vector

q(k+1)θ = 1
k+g∨

∑
i∈I

xi(−1)⊗ yi(0)xθ(−1)k+11− 1⊗Dxθ(−1)k+11

by using the action of g̃≥0 on ker Ψ:

Lemma 7.5. Let Ω be the Casimir operator for g 6∼= sl(2,C) and λ = (k+2)θ−α∗.
Then

q(k+2)θ−α∗ = x−α∗(1)q(k+2)θ,

q(k+1)θ = k+1
2(k+2)(k+g∨)

(
Ω− (λ+ 2ρ, λ)

)
x−θ(1)q(k+2)θ.

For any untwisted affine Lie algebra g̃, including sl(2,C)̃ , the (CL−1ng̃)-module
ker Ψ is generated by the vector q(k+2)θ. This generator plays an important role in
combinatorial applications.

8. Leading terms

The associative algebra U = U(ĝ)/(c − k) inherits from U(ĝ) the filtration U`,
` ∈ Z≥0; let us denote by S ∼= S(ḡ) the corresponding commutative graded algebra.

Let B be a basis of g. We fix the basis B̃ of g̃,

B̃ = B̄ ∪ {c, d}, B̄ =
⋃
j∈Z

B ⊗ tj ,

so that B̄ may also be viewed as a basis of ḡ = ĝ/Cc. Let � be a linear order on B̄
such that

i < j implies x(i) ≺ y(j).

The symmetric algebra S has a basis P consisting of monomials in basis elements
B̄. Elements π ∈ P are finite products of the form

π =
∏̀
i=1

bi(ji), bi(ji) ∈ B̄,

and we shall say that π is a colored partition of degree |π| =
∑`
i=1 ji ∈ Z and length

`(π) = `, with parts bi(ji) of degree ji and color bi. We shall usually assume that
parts of π are indexed so that

b1(j1) � b2(j2) � · · · � b`(j`).
We associate with a colored partition π its shape shπ, the “plain” partition

j1 ≤ j2 ≤ · · · ≤ j`.
The basis element 1 ∈ P we call the colored partition of degree 0 and length 0, we
may also denote it by ∅, suggesting it has no parts. The set of all colored partitions
of degree n and length ` is denoted as P`(n). The set of all colored partitions with
parts bi(ji) of degree ji < 0 (respectively ji ≤ 0) is denoted as P<0 (respectively
P≤0).
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Note that P ⊂ S is a monoid with the unit element 1, the product of monomials
κ and ρ is denoted by κρ. For colored partitions κ, ρ and π = κρ we shall write
κ = π/ρ and ρ ⊂ π. We shall say that ρ ⊂ π is an embedding (of ρ in π), notation
suggesting that π “contains” all the parts of ρ.

We shall fix a monomial basis

u(π) = b1(j1)b2(j2) . . . bn(j`), π ∈ P,
of the enveloping algebra U .

Clearly B̄ ⊂ P, viewed as colored partitions of length 1. We assume that on P
we have a linear order � which extends the order � on B̄. Moreover, we assume
that order � on P has the following properties:

• `(π) > `(κ) implies π ≺ κ.
• `(π) = `(κ), |π| < |κ| implies π ≺ κ.
• Let `(π) = `(κ), |π| = |κ|. Let π be a partition b1(j1) � b2(j2) � · · · �
b`(j`) and κ a partition a1(i1) � a2(i2) � · · · � a`(i`). Then π � κ implies
j` ≤ i`.
• Let ` ≥ 0, n ∈ Z and let S ⊂ P be a nonempty subset such that all π in S

have length `(π) ≤ ` and degree |π| = n. Then S has a minimal element.
• µ � ν implies πµ � πν.
• The relation π ≺ κ is a well order on P≤0.

Remark 8.1. An order with these properties is used in [MP1]; colored partitions
are compared first by length and degree, and then by comparing degrees of parts
and colors of parts in the reverse lexicographical order.

For π ∈ P, |π| = n, set

UP[π] = C-span{u(π′) | |π′| = |π|, π′ � π} ,

UP(π) = C-span{u(π′) | |π′| = |π|, π′ � π} ,

the closure taken in U(n). Set

UP(n) =
⋃

π∈P, |π|=n

UP[π], UP =
∐
n∈Z

UP(n) ⊂ U .

The construction of UP depends on a choice of (P,�). Since by assumption µ � ν
implies πµ � πν, we have that UP is a subalgebra of U . Moreover, we have a
sequence of subalgebras:

Proposition 8.2. U ⊂ U ⊂ UP ⊂ U .

As in [MP1], we have:

Lemma 8.3. For π ∈ P we have UP[π] = Cu(π) + UP(π). Moreover,

dimUP[π]/U
P
(π) = 1.

For u ∈ UP[π], u /∈ U
P
(π) we define the leading term

t̀ (u) = π.

Proposition 8.4. Every element u ∈ UP(n), u 6= 0, has a unique leading term
t̀ (u).
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By Proposition 8.4 every nonzero homogeneous u has the unique leading term.
For a nonzero element u ∈ UP we define the leading term t̀ (u) as the leading
term of the nonzero homogeneous component of u of smallest degree. For a subset
S ⊂ UP set

t̀ (S) = { t̀ (u) | u ∈ S, u 6= 0}.
We are interested mainly in leading terms of elements in U ⊂ UP , which have the
following properties:

Proposition 8.5. For all u, v ∈ UP\{0} we have t̀ (uv) = t̀ (u) t̀ (v).

Proposition 8.6. Let W ⊂ UP be a finite-dimensional subspace and let
t̀ (W )→W be a map such that

ρ 7→ w(ρ), t̀
(
w(ρ)

)
= ρ.

Then {w(ρ) | ρ ∈ t̀ (W )} is a basis of W .

Since R is finite-dimensional, the space R̄ ⊂ U is a direct sum of finite-dimension-
al homogeneous subspaces. Hence Proposition 8.6 implies that we can parametrize
a basis of R̄ by the set of leading terms t̀ (R̄): we fix a map

t̀ (R̄)→ R̄, ρ 7→ r(ρ) such that r(ρ) ∈ U(|ρ|), t̀ (r(ρ)) = ρ,

then {r(ρ) | ρ ∈ t̀ (R̄)} is a basis of R̄. We will assume that this map is such that the
coefficient C of “the leading term” u(ρ) in “the expansion” of r(ρ) = Cu(ρ)+ . . . is
chosen to be C = 1. Note that our assumption R ⊂ N1(kΛ0) implies that 1 6∈ t̀ (R̄)
and that t̀ (R̄) · P is a proper ideal in the monoid P.

For an embedding ρ ⊂ π, where ρ ∈ t̀ (R̄), we define the element u(ρ ⊂ π) in U
by

u(ρ ⊂ π) = u(π/ρ)r(ρ).

9. A rank theorem

Let a ∈ V be a homogeneous element. Then we have

Y (a, z) =
∑
n∈Z

a(n)z−n−wt a , a(n) ∈ U(n).

If M is a level k highest weight g̃-module, then the action of coefficients a(n) on
M makes M a V -module with vertex operators

YM (a, z) =
∑
n∈Z

a(n)z−n−wt a , a(n) ∈ EndM.

Then M ⊗M is a V ⊗ V -module. For a homogeneous element q = a⊗ b the vertex
operator is defined by

YM⊗M (q, z) = YM (a, z)⊗ YM (b, z) =
∑
n∈Z

( ∑
i+j=n

a(i)⊗ b(j)
)
z−n−wt a−wt a .

Since the condition (2.7) is satisfied, the coefficient

q(n) =
∑
i+j=n

a(i)⊗ b(j)



COMBINATORIAL BASES OF BASIC MODULES FOR C(1)
n 11

is a well defined operator on M ⊗M . On the other hand, we want to make sense
of this formula for a(i), b(j) ∈ U , where the condition (2.7) is replaced by the
convergence in the completion U . For this reason set(

U⊗̄U
)
(n) =

∏
i+j=n

(
U(i)⊗ U(j)

)
, U⊗̄U =

∐
n∈Z

(
U⊗̄U

)
(n).

The elements of U⊗̄U are finite sums of homogeneous sequences in U ⊗U , we shall
denote them as

∑
i+j=n a(i)⊗ b(j). For a fixed n ∈ Z we have a linear map

χ(n) : V ⊗ V →
(
U⊗̄U

)
(n)

defined for homogeneous elements a and b by

χ(n) : a⊗ b 7→
∑

p+r=n

a(p)⊗ b(r).

We think of χ(n)(q) as “the coefficient q(n) of the vertex operator Y (q, z)”. We
shall write q(n) = χ(n)(q) for an element q ∈ V ⊗ V and Q(n) = χ(n)(Q) for a
subspace Q ⊂ V ⊗ V .

Since we have the adjoint action of ĝ on U , we define “the adjoint action” of ĝ
on U⊗̄U by

[x(m),
∑

p+r=n

a(p)⊗ b(r)] =
∑

p+r=n

[x(m), a(p)]⊗ b(r) +
∑

p+r=n

a(p)⊗ [x(m), b(r)].

Note that we have the action of ĝ on V ⊗ V given by

xi(a⊗ b) = (xia)⊗ b+ a⊗ (xib) , x ∈ g, i ∈ Z.

As expected, we have the following commutator formula for q(n) = χ(n)(q):

Proposition 9.1. For x(m) ∈ ĝ and homogeneous q ∈ V ⊗ V we have

[x(m), q(n)] =
∑
i≥0

(
m

i

)
(xiq)(m+ n), (Dq)(n) = −(n+ wt q)q(n).

So if a subspace Q ⊂ V ⊗ V is invariant for g̃≥0, then∐
n∈Z

Q(n)

is a loop ĝ-module, in general reducible.
Now assume that q =

∑
a⊗ b is a homogeneous element in R̄1⊗ V . Note that

for a ∈ R̄1 the coefficient a(i) of the corresponding field Y (a, z) can be written as
a finite linear combination of basis elements r(ρ), ρ ∈ t̀ (R̄). Hence each element
of the sequence q(n) = χ(n)(

∑
a⊗ b) ∈

(
U⊗̄U

)
(n), say ci, can be written uniquely

as a finite sum of the form

ci =
∑

ρ∈ t̀ (R̄)

r(ρ)⊗ bρ,

where bρ ∈ U . If bρ 6= 0, then it is clear that |ρ| + | t̀ (bρ)| = n. Let us assume
that q(n) 6= 0, and for nonzero “i-th” component ci let πi be the smallest possible
ρ t̀ (bρ) that appears in the expression for ci. Denote by S the set of all such πi.
Since q is a finite sum of elements of the form a ⊗ b, it is clear that there is `
such that `(πi) ≤ `. Then, by our assumptions on the order �, the set S has the
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minimal element, and we call it the leading term t̀
(
q(n)

)
of q(n). For a subspace

Q ⊂ R̄1⊗ V set
t̀ (Q(n)) = { t̀ (q(n)) | q ∈ Q, q(n) 6= 0}.

For a colored partition π of set

N(π) = max{#E(π)−1, 0}, E(π) = {ρ ∈ t̀ (R̄) | ρ ⊂ π}.
Note that V ⊗ V has a natural filtration (V ⊗ V )`, ` ∈ Z≥0, inherited from the

filtration U `, ` ∈ Z≥0. Then we have the following “rank theorem”:

Theorem 9.2. Let Q ⊂ ker
(
Φ | (R̄1⊗ V )`

)
be a finite-dimensional subspace and

n ∈ Z. Assume that `(π) = ` for all π ∈ t̀ (Q(n)). If

(9.1)
∑

π∈P`(n)

N(π) = dimQ(n),

then for any two embeddings ρ1 ⊂ π and ρ2 ⊂ π in π ∈ P`(n), where ρ1, ρ2 ∈ t̀ (R̄),
we have a relation

(9.2) u(ρ1 ⊂ π) ∈ u(ρ2 ⊂ π) + C-span{u(ρ ⊂ π′) | ρ ∈ t̀ (R̄), ρ ⊂ π′, π ≺ π′}.

Combinatorial relations (9.2) for the defining relations r(ρ) of standard modules
are needed for construction of combinatorial bases of standard modules. The left
hand side of (9.1) is, for a given degree n, the total number N(n) of relations needed,
and the right hand side of (9.1) is the number of relations that we can construct
by using the representation theory. As expected, N(n) ≥ dimQ(n).

It should be noted that relations of the form (9.2) are easy to obtain when
ρ1ρ2 ⊂ π. The problem is when two embeddings “intersect”. Such relations for
r(ρ) of the combinatorial form (9.2) are obtained as linear combinations of relations
constructed from “coefficients q(n) of vertex operators Y (q, z)”. In another words,
a relation of the form (9.2) is a solution of certain system of linear equations, its
existence is guaranteed by the condition (9.1).

10. The problem of constructing a combinatorial basis of L(kΛ0)

We shall illustrate the (desired) construction of combinatorial bases of standard
modules on the simpler case of L(kΛ0).

We assume we have an ordered basis B and we define the order � on P by
comparing partitions gradually

(1) by length,
(2) by degree,
(3) by shape with reverse lexicographical order,
(4) by colors with reverse lexicographical order.

Set r(k+1)θ = xθ(−1)k+11. Then, as in [MP1], we have

t̀
(
r(k+1)θ(n)

)
= xθ(−j − 1)axθ(−j)b

with a+b = k+1 and (−j−1)a+(−j)b = n. Since we can obtain all other elements
r(n) for r ∈ R by the adjoint action of g, which does not change the length and
degree, we have that shapes of leading terms of r(n) remain the same:

(10.1) sh t̀
(
r(n)

)
= (−j − 1)a(−j)b

with a+ b = k + 1 and (−j − 1)a+ (−j)b = n. Let us introduce the notation

D = t̀ (R̄) ∩ P<0 , RR = P<0\
(
D · P<0

)
.
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We shall denote by 1 the highest weight vector in the standard module L(kΛ0) =
N(kΛ0)/N1(kΛ0).

Proposition 10.1. If for each ` ∈ {k + 2, . . . , 2k + 1} there exists a finite-dimen-
sional subspace Q` ⊂ ker

(
Φ | (R̄1⊗ V )`

)
such that `(π) = ` for all π ∈ t̀ (Q`(n))

and ∑
π∈P`(n)

N(π) = dimQ`(n),

for all n ≤ −k − 2, then the set of vectors

(10.2) u(π)1 , π ∈ RR,
is a basis of the standard module L(kΛ0).

Proof. Since elements in R are of degree k+ 1, and there is no element in N1(kΛ0)
of smaller degree, for ρ ∈ t̀ (R̄) we have that r(ρ)1 = 0 whenever |ρ| > −k − 1.
Hence (10.1) implies that ρ ∈ D whenever r(ρ)1 6= 0. Since N1(kΛ0) = R̄N(kΛ0) =
U(g̃<0)R̄1, we have a spanning set of N1(kΛ0)

u(κ)r(ρ)1 = u(ρ ⊂ κρ)1 , κ ∈ P<0 , ρ ∈ D.
For each π ∈ D · P<0 choose exactly one ρπ ∈ D such that ρπ ⊂ π. Since by our
assumptions we can apply Theorem 9.2, for each π ∈ D ·P<0 such that π = κ1ρ1 =
κ2ρ2 we have a relation (9.2). Hence, by using induction, we se that

(10.3) u(ρπ ⊂ π)1 , π ∈ D · P<0 ,

is a spanning set of N1(kΛ0). Since by Proposition 8.5

t̀
(
u(π/ρπ)r(ρπ)

)
=
(
π/ρπ) · ρπ = π ,

we have that

u(ρπ ⊂ π)1 ∈ u(π)1 + UP(π) 1,

and by induction we see that the set (10.3) is linearly independent. Hence this set
is a basis of N1(kΛ0).

In the obvious way we can assign to each colored partition π its weight wtπ, and
we have characters

chN(kΛ0) =
∑

π∈P<0

ewtπ, chN1(kΛ0) =
∑

π∈D·P<0

ewtπ.

Hence we have

(10.4) chL(kΛ0) =
∑
π∈RR

ewtπ.

To find a basis of L(kΛ0) we start with the PBW spanning set

u(π)1 , π ∈ P<0 .

For π ∈ D · P<0 we have

u(π) ∈ u(π/ρπ)r(ρπ) + UP(π).

Since r(ρπ)1 = 0 in L(kΛ0), we have

u(π)1 ∈ UP(π) 1 for π ∈ D · P<0,

and by using induction we can reduce the PBW spanning set to a spanning set
(10.2). By the character formula (10.4) this set is linearly independent. �
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Remarks. (i) At the moment just a few examples are known where the conditions of
Theorem 9.2 are satisfied, the simplest is for the basic sl(2,C)̃ -module (see [MP1]).
With the usual notation x = xθ, h = θ∨ and y = x−θ, the set of leading terms
t̀ (R̄) is:

b1(−j)b2(−j) with colors b1b2 : yy, yh, hh, hx, xx,

b1(−j − 1)b2(−j) with colors b1b2 : yy, hy, xy, xh, xx.

If one takes

Q3 = U(g)q2θ ⊕ U(g)q3θ,

then, by using Proposition 9.1 and loop modules, dimQ3(n) = 5+7 and (9.1) holds
for all n. If one takes (1, 2)-specialization of the Weyl-Kac character formula on
one side, and (10.4) on the other side, one obtains a Capparelli identity [C].

(ii) The results in Section 9 can be extended to twisted affine Lie algebras (see
[P1]). In such formulation of Theorem 9.2 the equality (9.1) also holds for level 1
twisted sl(3,C)̃ -modules (see [S]).

(iii) The character formula (10.4) is a generating function for numbers of colored
partitions in RR satisfying “difference D conditions”, and combined with the Weyl-
Kac character formula gives a Rogers-Ramanujan type identity.

11. Combinatorial bases of basic modules for C
(1)
n

We fix a simple Lie algebra g of type Cn, n ≥ 2. For a given Cartan subalgebra
h and the corresponding root system ∆ we can write

∆ = {±(εi ± εj) | i, j = 1, ..., n} \ {0} .

We chose simple roots as in [Bou]

α1 = ε1 − ε2, α2 = ε2 − ε3, · · · αn−1 = εn−1 − εn, αn = 2εn.

Then θ = 2ε1 and α? = α1. By Lemma 7.5 for each degree m we have a space of
relations for annihilating fields

Q3(m) = U(g)q2θ(m)⊕ U(g)q3θ(m)⊕ U(g)q3θ−α∗(m) .

The Weyl dimension formula for g gives

dimL(2θ) =

(
2n+ 3

4

)
,(11.1)

dimL(3θ) =

(
2n+ 5

6

)
,(11.2)

dimL(3θ − α?) =
(2n+ 5)(n− 1)

3

(
2n+ 3

4

)
.(11.3)

Hence we have

(11.4) dimQ3(m) = dimL(2θ) + dimL(3θ) + dimL(3θ − α?) = 2n

(
2n+ 4

5

)
.

For each α ∈ ∆ we chose a root vector xα such that [xα, x−α] = α∨. For root
vectors xα we shall use the following notation:

xij or just ij if α = εi + εj , i ≤ j ,
xij or just ij if α = −εi − εj , i ≥ j ,
xij or just ij if α = εi − εj , i 6= j .
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With previous notation xθ = x11. We also write for i = 1, . . . , n

xii = α∨i or just ii .

These vectors xab form a basis B of g which we shall write in a triangular scheme.
For example, for n = 3 the basis B is

11
12 22
13 23 33
13 23 33 33
12 22 32 32 22
11 21 31 31 21 11.

In general for the set of indices {1, 2, · · · , n, n, · · · , 2, 1} we use order

1 � 2 � · · · � n− 1 � n � n � n− 1 � · · · � 2 � 1

and a basis element xab we write in ath column and bth row,

(11.5) B = {xab | b ∈ {1, 2, · · · , n, n, · · · , 2, 1}, a ∈ {1, · · · , b}}.

By using (11.5) we define on B the corresponding reverse lexicographical order, i.e.

(11.6) xab � xa′b′ if b � b′ or b = b′ and a � a′ .

In other words, xab is larger than xa′b′ if xa′b′ lies in a row b′ below the row b, or
xab and xa′b′ are in the same row b = b′, but xa′b′ is to the right of xab.

For r ∈ {1, · · · , n, n, · · · , 1} we introduce the notation

4r and r4

for triangles in B consiting of rows {1, . . . , r} and columns {r, . . . , 1}. For example,
for n = 3 and r = 3 we have triangles 43 and 34

11
12 22
13 23 33
13 23 33 33

32 22
31 21 11.

With order � on B we define a linear order on B̄ = {x(j) | x ∈ B, j ∈ Z} by

(11.7) xα(i) ≺ xβ(j) if i < j or i = j, xα ≺ xβ .

With order � on B̄ we define a linear order on P by

π ≺ κ if

• `(π) > `(κ) or
• `(π) = `(κ), |π| < |κ| or
• `(π) = `(κ), |π| = |κ|, shπ ≺ shκ in the reverse lexicographical order or
• `(π) = `(κ), |π| = |κ|, shπ = shκ and colors of π are smaller than the

colors of κ in reverse lexicographical order.

Lemma 11.1. The set of leading terms of relations R̄ for level 1 standard g̃-modules
consists of quadratic monomials

xa1b1(−j)xa2b2(−j), j ∈ Z, b2 � b1 and a2 � a1,
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and quadratic monomials

xa1b1(−j − 1)xa2b2(−j), j ∈ Z, b1 � a2.

This lemma is a special case of Theorem 6.1 in [PŠ]. The proof for this level one
case reduces to a very simple argument.

Remark 11.2. Note that a quadratic monomial xa1b1(−j− 1)xa2b2(−j) is a leading
term of relation if and only if there is r such that

xa1b1 ∈ 4r and xa2b2 ∈ r4.

Theorem 11.3. The set of monomial vectors which have no leading term as a
factor, i.e., the set of vectors

(11.8) u(π)1 , π ∈ RR,
is a basis of the basic g̃-module L(Λ0).

Proof. By Proposition 10.1 and (11.4) it is enough to show

(11.9)
∑

π∈P3(m)

N(π) = 2n

(
2n+ 4

5

)
.

In order to simplify the counting of embeddings of leading terms we introduce a
slightly different indexation of a triangular scheme for a basis B. By using

(11.10) k 7→ k k 7→ 2n− k + 1

and matrix notation for rows and columns we can rewrite the basis

B = {xk,l | k ∈ {1, · · · , 2n} , l ∈ {1, · · · , k}} .
We need to count embeddings in (11.9) for m = −3j − 1, −3j − 2 and −3j − 3,
that is, we need to consider three cases:

(I) xk1l1(−j − 1)xk2l2(−j)xk3l3(−j) where xk2l2 � xk3l3
(II) xk1l1(−j − 1)xk2l2(−j − 1)xk3l3(−j) where xk1l1 � xk2l2

(IIIa) xk1l1(−j − 2)xk2l2(−j − 1)xk3l3(−j)
(IIIb) xk1l1(−j − 1)xk2l2(−j − 1)xk3l3(−j − 1) where xk1l1 � xk2l2 � xk3l3 .

Denote by N the number of embeddings. During counting embeddings of leading
terms we need to multiply the count by a factor N − 1. We describe calculation of
the first case in all details.

The first case xk1l1(−j − 1)xk2l2(−j)xk3l3(−j) where xk2l2 � xk3l3 .

Depending on the type and number of embeddings the first case is split in the
following five subcases:

(I1) N = 3; xk1l1(−j−1)xk2l2(−j), xk1l1(−j−1)xk3l3(−j) and xk2l2(−j)xk3l3(−j)
are leading terms (+ condition xk2l2 6= xk3l3)

(I2) N = 2; xk1l1(−j−1)xk2l2(−j), xk1l1(−j−1)xk3l3(−j) and xk2l2(−j)xk3l3(−j)
are leading term (+ condition xk2l2 = xk3l3)

(I3) N = 2; xk1l1(−j − 1)xk2l2(−j), xk1l1(−j − 1)xk3l3(−j) are leading terms
and xk2l2(−j)xk3l3(−j) not leading terms (+ condition xk2l2 6= xk3l3)

(I4) N = 2; xk1l1(−j − 1)xk2l2(−j) not leading term, xk1l1(−j − 1)xk3l3(−j)
and xk2l2(−j)xk3l3(−j) are leading terms (+ condition xk2l2 6= xk3l3)

(I5) N = 2; xk1l1(−j − 1)xk2l2(−j) is leading term, xk1l1(−j − 1)xk3l3(−j) not
leading term and xk2l2(−j)xk3l3(−j) is leading term (+ condition xk2l2 6=
xk3l3)
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Subcase (I1): Note that xk1l1(−j − 1) ∈ 4r and xk2l2(−j) ∈ r4 and selection of
their position is entirely free. Therefore, the number of embedded leading terms in
this subcase is given by

(11.11)
∑
I1

=

2n∑
k1=1

k1∑
l1=1

2n∑
k2=k1

k2∑
l2=k1

[(N − 1)(] xk3l3)]

where ] xk3l3 is number of admissible position for xk3l3 . Since xk2l2 � xk3l3 then
] xk3l3 = (l2 − k1) + [1 + 2 + · · ·+ (k2 − l2)] (see Figure 1) and the sum (11.11) is

(11.12)
∑
I1

=

2n∑
k1=1

k1∑
l1=1

2n∑
k2=k1

k2∑
l2=k1

[2(l2 − k1) + (k2 − l2)(k2 − l2 + 1)]

Figure 1. Subcase (I1)

Subcase (I2): This subcase is similar as subcase (I1) for N = 2 and ] xk3l3 = 1.
From this immediately follows

(11.13)
∑
I2

=

2n∑
k1=1

k1∑
l1=1

2n∑
k2=k1

k2∑
l2=k1

1 .

Subcase (I3): In this subcase we have again the same following setting

N = 2 ;xk2l2 ≺ xk3l3 ; xk1l1(−j − 1) ∈ 4r ; xk2l2(−j) ∈ r4 .

Since the xk2l2(−j)xk3l3(−j) is not the leading term then ] xk3l3 = (l2−k1)(2k2−k1−l2+1)
2

(see Figure 2) and the sum
∑
I3 is

(11.14)
∑
I3

=

2n∑
k1=1

k1∑
l1=1

2n∑
k2=k1

k2∑
l2=k1

[
(l2 − k1)(2k2 − k1 − l2 + 1)

2
] .
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Figure 2. Subcase (I3)

Subcase (I4): In this subcase we have the following setting

N = 2 ;xk2l2 ≺ xk3l3 ; xk1l1(−j − 1) ∈ 4r ; xk2l2(−j) ∈ r4 .

Since the xk1l1(−j − 1)xk3l3(−j) is not the leading term then ] xk3l3 = k1 − 1 (see
Figure 3) and the sum

∑
I4 is

(11.15)
∑
I4

=

2n∑
i1=1

i1∑
j1=1

2n∑
i2=i1

i2∑
j2=i1

[i1 − 1] .

Figure 3. Subcase (I4)

Subcase (I5): Since in this subcase xk1l1(−j−1)xk2l2(−j) is not the leading term
then we select entirely free the position of xk1l1(−j − 1) ∈ 4r and xk3l3(−j) ∈ r4.
Then the corresponding setting is

N = 2 ;xk2l2 ≺ xk3l3 ; xk1l1(−j − 1) ∈ 4r ; xk3l3(−j) ∈ r4 .
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Since the xk1l1(−j−1)xk2l2(−j) is not the leading term then ] xk2l2 = (2n−k3)(k1−
1) (see Figure 4) and the sum

∑
I5 is

(11.16)
∑
I5

=

2n∑
k1=1

k1∑
l1=1

2n∑
k3=k1

k3∑
l3=k1

(2n− k3)(k1 − 1) .

Figure 4. Subcase (I5)

Finally we have ∑
I1

+
∑
I2

+
∑
I3

+
∑
I4

+
∑
I5

= 2n

(
2n+ 4

5

)
.

In other two cases counting of embeddings of the leading terms is similar and
shows that (11.9) holds. �

12. Combinatorial Rogers-Ramanujan type identities

As a consequence of Theorem 11.3 we have a combinatorial Rogers-Ramanujan
type identities by using Lepowsky’s product formula for principaly specialized char-

acters of C
(1)
n -modules L(Λ0) (see [L] and [M], cf. [MP2] for n = 1)

(12.1)
∏
j≥1

j 6≡0 mod 2

1

1− qj
∏
j≥1

j 6≡0,±1 modn+2

1

1− q2j
.

This product can be interpreted combinatorially as a generating function for number
of partitions

(12.2) N =
∑
m≥1

mfm.

of N with parts m satisfying congruence conditions.

(12.3) fm = 0 if m ≡ 0,±2 mod 2n+ 4.

On the other hand, in the principal specialization e−αi 7→ q1, i = 0, 1, . . . , n, the

sequence of basis elements in C
(1)
n

(12.4) Xab(−1), ab ∈ B, Xab(−2), ab ∈ B, Xab(−3), ab ∈ B, . . .
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obtains degrees

|Xab(−j)| = a+ b− 1 + 2n(j − 1),

where we prefer row and column indices of basis elements Xab ∈ B to be natural
numbers

b = 1, . . . , 2n, a = 1, . . . , b.

For example, the basis elements for C
(1)
2 in the sequence (12.4) obtan degrees

(12.5)

1
2 3
3 4 5
4 5 6 7

5
6 7
7 8 9
8 9 10 11

9
10 11
11 12 13
12 13 14 15

. . .

As we see, there are several basis elements of a given degree m,

m = a+ b− 1 + 2n(j − 1),

so we make them “distinct” by assigning to each degree m a “color” b, the row
index in which m appears:

mb, |mb| = m.

For example, for n = 2 we have

(12.6)

11

22 32

33 43 53

44 54 64 74

51

62 72

73 83 93

84 94 104 114

91

102 112

113 123 133

124 134 144 154

. . . ,

so that numbers in the first row have color 1, numbers in the second row have color
2, and so on. In general we consider a disjoint union Dn of integers in 2n colors,
say m1,m2, . . . ,m2m, satisfying the congruence conditions

(12.7)

{m1 | m ≥ 1,m ≡ 1 mod 2n},
{m2 | m ≥ 2,m ≡ 2, 3 mod 2n},
{m3 | m ≥ 3,m ≡ 3, 4, 5 mod 2n},

. . .

{m2n | m ≥ 2n,m ≡ 2n, 2n+ 1, . . . , 4n− 1 mod 2n}
and arranged in a sequence of triangles.

For fixed m and b parameters a and j are completely determined. We see this
easily for the last row

2n2n, . . . , (4n− 1)2n; 4n2n, . . . , (6n− 1)2n; 6n2n, . . . ,

and then for all the other rows as well. So instead of mb we may write mab(−j).

Theorem 12.1. For every positive integer N the number of partitions

N =
∑
m≥1

mfm

with congruence conditions fm = 0 if m ≡ 0,±2 mod 2n + 4 equals the number
of colored partitions

(12.8) N =
∑

mb∈Dn

|mb|fmb

with difference conditions fmb
+ fm′

b′
≤ 1 if
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• mb = mab(−j − 1) and m′b = m′a′b′(−j) such that b ≥ a′, or
• mb = mab(−j) and m′b = m′a′b′(−j) such that b ≤ b′, a ≥ a′.

For adjacent triangles corresponding to

. . . , Xab(−j), ab ∈ B, Xab(−j − 1), ab ∈ B, . . .

in (12.4) and a fixed row r ∈ {1, . . . , 2n} we consider the corresponding two trian-
gles: r4 on the left and 4r on the right. For example, for n = 2 and the third row
we have r = 3 and two triangles denoted by bullets:

(12.9) . . .

·
· ·
· · ·
· · · ·

·
· ·
· · •
· · • •

•
• •
• • •
· · · ·

·
· ·
· · ·
· · · ·

. . .

are 34 on the left and 43 on the right.
Then the first difference condition does not allow two parts in a colored par-

tition (12.8) such that

m′b = m′a′b′(−j) ∈ r4 and mb = mab(−j − 1) ∈ 4r.

On the other hand, the second difference condition does not allow two parts in a
colored partition (12.8) such that

m′b = m′a′b′(−j), mb = mab(−j)

to be in any rectangle such as:

(12.10) . . .

·
· ·
· · ·
· · · ·

·
· ·
• • •
• • • ·

·
· ·
· · ·
· · · ·

·
· ·
· · ·
· · · ·

. . .
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