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aFaculty of Civil Engineering, University of Rijeka, Radmile Matejčić 3, 51000 Rijeka,
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Abstract

In this work we assess the extent to which a beam model is suitable for the

finite-element analysis of composite structures undergoing a large-displacement

delamination process. We lay down the necessary theory needed for the geo-

metrically non-linear analysis using Reissner’s beam theory for the layers to be

applied to layered structures involving dual-mode damage-type bi-linear con-

stitutive law for the interconnections, run a number of representative examples

and compare the results to those obtained using a geometrically linear analy-

sis. The formulation is given in a general form where the number of layers and

nodes of the beam finite elements is arbitrary. To solve numerical problems, the

equilibrium of which is necessarily more complex and demanding to satisfy than

in the geometrically linear case, the standard cylindrical arc-length procedure is

used only when there is no damage at the interconnection. When damage at the

interconnection occurs, the standard arc-length method has been modified so

that in each load step the converged solution is required to result in an increase

in the total damage of the system. It is concluded that the geometrically linear

formulations can be used with satisfactory accuracy only in limited number of

cases where displacements and rotations remain small.

Keywords: multi-layered structure, mixed-mode delamination, bilinear

damage law, non-linear analysis, multi-layered beam finite element

∗Corresponding author
Email address: gordan.jelenicuniri.hr (Gordan Jelenić)
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1. Introduction

Structures composed of multiple layers can be found in many areas of en-

gineering as well as in nature. The most prevalent failure mechanism of such

structures is delamination in which the connection between the layers is be-

ing progressively damaged due to cracking and is eventually completely lost.5

Obviously, this failure mechanism is very complex for a variety of reasons.

To start with, it exhibits overall structural softening upon reaching a par-

ticular strength of the interconnection [1] and in order to assess this strength it

becomes necessary to invoke the fundamental energy principles from the theory

of fracture mechanics [2]. The actual softening may be described exponentially,10

as in the linear fracture mechanics (see e.g. [3]) or as a linear or multi-linear

curve, often used in numerical analyses. The global manifestation of post-critical

softening may often become apparent in considerably larger overall displace-

ments compared to those in the pre-critical range necessitating a geometrically

non-linear structural analysis.15

In addition, instead of considering the delamination stress at the crack tip as

infinite, which follows from the principles of linear fracture mechanics [4], in real

practical problems it becomes necessary to recognise that the fracturing process

is governed by a finite stress distribution over a small region around the crack

tip, the so-called ”process zone” in Barenblatt’s cohesive zone models (CZM)20

[5]. The cohesive zone models enable the stresses to ’straddle’ a narrow crack

and describe a variety of physical phenomena rather well, from generation and

localisation of a principal crack [6, 7, 8] to aggregate interlocking in concrete

structures [9].

Also, a crack between two layers may occur for different reasons leading25

to the so-called Mode I, II or III openings (normal to the crack surface, or

tangential to it due to slippage or tearing) [1]. Obviously, these may not be

considered separately since even a limited damage in a particular mode always

comes as a consequence of some underlying physical re-arrangement of particle

bonds on a sufficiently small scale which necessarily reduces also the strengths30
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in the other modes. It thus becomes necessary to define a certain scalar measure

of overall damage (see e.g. [10]), which involves contribution from all possible

modes and governs the phenomenon of damage-induced strength reduction in

all the modes.

When modelling engineering problems we are naturally led by the demands35

of (i) accuracy and (ii) computational efficience, which need to be met to within

a prescribed measure and in some sense optimised. For the class of problems

analysed here, in our previous work [11] it has been shown that using beam

finite elements instead of 2D solids for planar geometrically linear delamination

gives results of comparable accuracy using significantly less degrees of freedom.40

Such elements do not appear to be as wide-spread in this type of analysis as the

solids, and it is thus argued that they should be considered as a valid alternative

in a variety of situations, including mixed-mode delamination. The efficiency of

multi-layer beam finite elements in comparison with commonly used 2D solids

has been shown also in authors’ previous work [12] where the connection between45

the layers was assumed to be absolutely rigid (see also [13] and [14]).

In this work we attempt to assess the extent to which the beam model and,

more generally the geometrically linear set-up itself, are applicable to the anal-

ysis of the composite structures undergoing a delamination process. Not unex-

pectedly, such structures are usually designed to take advantage of the particu-50

lar properties of the materials forming the composite without being damaged in

the operational state. However, if we want to trace the post-critical equilibrium

path after the process of delamination has initiated, possibly all the way up

to full rupture, we have to recognise that the ratio between the displacement

and the loading magnitudes may increase considerably. There also exist such55

delamination phenomena, e.g. peeling, in which the displacements are of the

order of magnitude of the geometry of the problem analysed.

In such situations, obviously, geometrically linear analysis may not return

the results representative of the real behaviour of the problem analysed. Given

the complexity of the delamination process, it is not always possible to tell in60

advance if the geometrically non-linear effects may not in fact become consider-
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able even for deformation magnitudes which we may be tempted to intuitivelly

classify as ’small’.

In this work we will lay down the necessary theory needed for the geometri-

cally non-linear analysis using Reissner’s beam theory for the layers to be applied65

to layered structures involving dual-mode damage-type bi-linear constitutive law

for the interconnections. In order to assess the need for the geometrically non-

linear analysis presented, we will run a number of representative examples and

compare the results to those obtained using a geometrically linear analysis.

2. Problem description70

Geometry of deformation of a multi-layer beam is described in [11] and here

we reproduce it for reference. An initially straight multi-layer beam composed of

n layers and n− 1 interconnections is considered. An arbitrary interconnection

α is placed between layers i and i+ 1.

Figure 1: Position of a segment of a multi-layer beam with interconnection in the material

co-ordinate system

Material co-ordinate system of each layer is defined by an orthonormal triad75

of vectors E1,i, E2,i, E3,i, with axes X1,i, X2,i, X3,i (see Fig. 1). The axes X1,i

are parallel with the layer’s edges and mutually (E1 = E1,i and X1 = X1,i)

coincide with the reference axes of each layer. The position of a reference axis

over the layer’s height ai ∈ 〈0, hi〉 may be chosen arbitrarily, where hi is the

layer’s height. However, in [11] it was shown that the position of the reference80
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axis may influence the numerical results. The cross-sections of all layers have

a common vertical principal axis X2 defined by a base vector E2 = E2,i (a

condition for a planar deformation). Note that, according to Fig. 1, the co-

ordinate X2,i is different for each layer i. Axes X3,i are mutually parallel (X3 =

X3,i and E3 = E3,i), but they do not necessarily coincide with the horizontal85

principal axes of the layers’ cross-sections. The first and the second moment of

area of the layer’s cross-section with respect to axis X3,i are defined as

Si =

∫
Ai

X2,idA, Ii =

∫
Ai

(X2,i)
2dA, (1)

where Ai is the area of the cross-section of the layer. In our model it is

assumed that the thickness of the interconnection is very small compared to

the layers’ thicknesses, i.e. the geometry of an interconnection α is completely90

defined by its height and width, denoted as sα and bα, respectively.

The direction of reference axes of all the layers in the initial undeformed

state is defined by the unit vector t01 which closes an angle ψ with respect to

the axis defined by the base vector e1 of the spatial co-ordinate system (see

Fig. 2). Vector t02 defines the orientation of layers’ cross-sections which are95

orthogonal to the layers’ reference axes. Thus, the following relationship can be

established:

t0j = Λ0ej =

cosψ − sinψ

sinψ cosψ

 ej , where j = 1, 2. (2)

According to Fig. 2, the position of a material point in the layer i, T (X1, X2,i)

in the undeformed state is defined by the vector

x0,i(X1, X2,i) = r0,i(X1) +X2,it02, (3)

where r0,i(X1) is the position of the intersection of the plane of the cross-100

section containing the point T and the reference axis of the layer i in the unde-

formed state. The cross-sections of the layers remain planar but not necessarily
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Figure 2: Position of a layer of the composite beam in the spatial co-ordinate systam in the

undeformed and a deformed state

orthogonal to their reference axes during the deformation of the beam (Timo-

shenko beam theory with the Bernoulli hypothesis) and the material base vector

E3 remains orthogonal to the plane spanned by the spatial base e1 and e2. Ori-105

entation of the cross-section of layer i in the deformed state is defined by the

base vectors

ti,j =

cos(ψ + θi) − sin(ψ + θi)

sin(ψ + θi) cos(ψ + θi)

 ej = Λiej , where j = 1, 2. (4)

Rotation of the cross-section of layer i is denoted as θi and it is entirely

dependent on X1, thus θi = θi(X1). The position of material point T in the

deformed state can be thus expressed as110

xi(X1, X2,i) = ri(X1) +X2,iti,2(X1), (5)
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where ri(X1) is the position of the intersection of the plane of the cross-

section containing the point T and the reference axis of layer i in the deformed

state. Thus, the displacement between the deformed and the undeformed refer-

ence axis can be defined for each layer as

ui(X1) = ri(X1)− r0,i(X1). (6)

3. Governing equations

The first group of governing equations defines how the layers and the inter-

connections are assembled into a multi-layer beam. The kinematic, constitutive

and equilibrium equations are then defined for the layers, as well as for the

interconnections.115

3.1. Assembly equations

A segment of the multi-layer beam is shown in Fig. 3 in its undeformed and

deformed state.

Figure 3: Undeformed and deformed state of a segment of a multi-layer beam with intercon-

nection
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To define relative displacement between layers i and i+ 1 at interconnection

α it is necessary to define the displacements at the top and the bottom of the120

interconnection as

uT,α = ui+1 + (t02 − ti+1,2)ai+1, (7)

uB,α = ui + (ti,2 − t02)(hi − ai), (8)

Vector zα, which represents a directed stretched thickness of interconnection

α, can be expressed according to Fig. 3 using (7) and (8) as

zα = sαt02 + uT,α − uB,α =

= ui+1 − ui + ai+1(t02 − ti+1,2) + (hi − ai)(t02 − ti,2) + sαt02. (9)

3.2. Governing equations for layers

Governing equations for each layer consist of kinematic, constitutive and125

equilibrium equations.

3.2.1. Kinematic equations

The kinematic equations are the exact non-linear equations according to

Reissner’s beam theory [15] and notation introduced by Simo & Vu-Quoc [16]:

γi =

εiγi
 = ΛT

i r
′
i −E1 = ΛT

i (t01 + u′i)−E1, (10)

κi = θ′i, (11)

where εi, γi, κi are the axial, shear and rotational strain (infinitesimal change130

of the cross-sectional rotation) at the reference axis of layer i, respectively. Since

these quantities are functions of only X1, the differentiation with respect to X1

is introduced and denoted as (•)′.
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3.2.2. Constitutive equations

In this work the layers are assumed do be made of linear elastic material135

with Ei and Gi as Young’s and shear moduli of each layer’s material. The axial

strain of a fibre at the distance X2,i from the reference axis of the layer i can

be computed as

εi = εi(X1, X2,i) = εi(X1)−X2,iκi(X1), (12)

where εi(X1) is the axial strain of a fibre at the layer’s reference axis. For

the linear elastic material the normal stress follows as140

σi = σi(X1, X2,i) = Eiεi(X1, X2,i), (13)

while the shear stress is assumed to be constant over the cross section

(Ti = Giγi). From (12) and (13), in contrast, it can be clearly noted that

the distribution of normal stresses over the layer’s height is linear. The stress

resultants then read

Ni =

∫
Ai

σidA, (14)

Ti = GikiAiγi, (15)

Mi = −
∫
Ai

X2,iσidA, (16)

where Ni, Ti,Mi are the axial force, shear force and bending moment with145

respect to the reference axis of layer i, respectively. The shear correction coef-

ficient for layer i comes as a consequence of the assumption of constant shear

over the cross section introduced earlier and is denoted as ki [17]. Substituting

(12) and (13) in (14)-(16) we finally obtain

N i

Mi

 = Ci

γiκi
 , (17)
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where NT
i = 〈Ni Ti〉T, γi

T = 〈εi γi〉T and150

Ci =


EiAi 0 −EiSi

0 GikiAi 0

−EiSi 0 EiIi

 (18)

is the constitutive matrix of layer i.

3.2.3. Equilibrium equations

3.2.3.1 Continuous form. Equilibrium equations for layer i are derived from the

principle of virtual work, where the total virtual work of the layer V Li is the

difference between the virtual work of internal forces V inti and the virtual work155

of external forces V exti acting on layer i. This can be written as

V Li ≡V inti − V exti =

L∫
0

(γi ·N i + κiMi) dX1 −
L∫

0

(
ui · f i + θiwi

)
dX1−

− ui(0) · F i,0 − θi(0)Wi,0 − ui(L) · F i,L − θi(L)Wi,L, (19)

where γi and κi are the virtual strains, while ui and θi denote the virtual

displacements and rotations, which are all functions of X1. The distributed

external forces and moments over the beam’s length are denoted as f i and wi,

while the corresponding point loads concentrated on the beam ends are denoted160

as F i,0, Wi,0, F i,L, Wi,L. The virtual strains are the linear parts of the strains

in (10) and (11) with respect to the (virtual) displacements and rotations and

can be expressed as

γiκi
 =

ΛT
i 0

0T 1

I2 d
dX1

−t̂3(t01 + u′i)

0T d
dX1

uiθi

 = Li(Dipi), (20)

where 0 = {0 0}T, I2 is a 2 × 2 identity matrix and t̂3 =

0 −1

1 0

.
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Expression (19) now becomes165

V Li =

L∫
0

(Dipi)
TLT

i

N i

Mi

− pTi
f iwi


dX1−pTi (0)

F i,0Wi,0

−pTi (L)

F i,LWi,L

 .

(21)

3.2.3.2 Discrete form. The resulting expression is highly non-linear in terms of

the basic unknown functions (ui and θi) and eventually leads to equilibrium

which cannot be found in a closed form. Thus, the shape of the virtual (test)

functions (ui and θi) is chosen in advance assuming that for a finite number of

nodes N on a finite element the virtual displacements and rotations are known170

at the nodes (ui,j and θi,j , j ∈ {1, N}) and interpolated between them as

pi
.
=

N∑
j=1

Ψj(X1)

ui,jθi,j

 =

N∑
j=1

Ψj(X1)pi,j , (22)

where Ψj is a 3×3 matrix of interpolation functions. If we further introduce

the nodal global vector of virtual unknown parameters pG,j = 〈p1,j p2,j . . .pn,j〉
T

for all the layers in the finite element, we can write

pi =

N∑
j=1

[
δi1Ψj δi2Ψj . . . δinΨj

]
pG,j =

N∑
j=1

P i,jpG,j , (23)

where δij is the Kronecker delta defined as175

δij =

 1 if i = j,

0 otherwise.
(24)

At this point, expression (21) can be written as

V Li =

N∑
j=1

pTG,j

{ L∫
0

(DiP i,j)
T
LT
i

N i

Mi

− P T
i,j

f iwi

dX1−

− P T
i,j(0)

F i,0Wi,0

− P T
i,j(L)

F i,LWi,L


}

=

N∑
j=1

pTG,jg
L
i,j , (25)
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where gLi,j (the term within the braces of (25)) is the nodal vector of residual

forces for the layer i which will be later introduced to the global equilibrium

equation of the multi-layer beam with interconnection. It should be noted that

Di and Li now depend on the current configuration (see (20)), in contrast to180

the procedure given in [11]. This is where the geometric non-linearity of the

layers’ deformation is accounted for.

3.3. Governing equations for interconnections

Each interconnection allows for delamination in single modes (I and II), as

well as for the mixed-mode delamination. Non-linear constitutive law with the185

embedded cohesive zone model (CZM) [10] is assumed for directions correspond-

ing to modes I and II. Mixed-mode delamination is determined by combining the

influence of individual modes. The governing equations for each interconnection

again consist of kinematic, constitutive and equilibrium equations.

3.3.1. Kinematic equations190

In order to determine the delamination in individual modes, first we have to

define the directions corresponding to modes I and II. In case of large displace-

ments and rotations defining tangential and normal separation at the intercon-

nection is not unique and may be defined in a number of ways. The line along

which tangential separation between layers (mode II delamination) occurs lays195

somewhere between the tangent to the reference axes of layers i and i + 1 and

can be defined by the angle

θmα = ζ(ψ + θi) + (1− ζ)(ψ + θi+1) = ψ + ζθi + (1− ζ)θi+1, (26)

where ζ represents the weight with a value between 0 and 1. In the present

work value ζ = 0.5 has been used in all numerical examples. Analysis of the

impact of coefficient ζ on the results has been performed in [18] and it has200

been shown there that variation of ζ between 0 and 1 has a small influence

on the results for the examples analysed there. The relative displacements at
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interconnection α according to (9) can be now decomposed in two directions

corresponding to delamination modes I and II and written in a vector as

dα =

d1,αd2,α

 = Λm
α (zα − sαt02) = Λm

α (uT,α − uB,α), (27)

where205

Λm
α =

cos θmα − sin θmα

sin θmα cos θmα

 . (28)

Note that index 1 corresponds to mode II and index 2 to mode I delamina-

tion.

3.3.2. Constitutive equations

For an arbitrary interconnection α the constitutive law for the directions

corresponding to delamination modes I and II is shown in Fig. 4. This concept210

was proposed by Alfano and Crisfield [10] who used the so-called interface finite

elements with embedded cohesive zone model (CZM).

Figure 4: Constitutive law for the interconnection: a) mode II (direction 1) and b) mode I

(direction 2)

The current state of damage is defined using a parameter which combines

delamination in both modes as

βα(τ ′) =

[(
|d1,α(τ ′)|
d01,α

)η
+

(
〈d2,α(τ ′)〉
d02,α

)η] 1
η

− 1, (29)

13



where d01,α and d02,α are the relative displacements at the interconnection215

α at the start of the softening process in modes II and I (directions 1 and 2),

respectively, τ ′ is the pseudo-time variable and 〈•〉 is the McCauley bracket [10].

In all numerical examples in the present work η = 2 is used. The maximum

rate of delamination in the pseudo-time history

βα(τ) = max
0≤τ ′≤τ

βα(τ ′) (30)

ensures that the damage of the interconnection is irreversible. The tractions220

at the interconnection ωα = 〈ωα,1 ωα,2〉T are obtained from the following

constitutive law:

ωα =

 Sαdα if βα ≤ 0,

[I −Gα]Sαdα if βα > 0,
(31)

where

Sα =

S1,α 0

0 S2,α

 , Si,α =
ω0i,α

d0i,α
, Gα =

g1,α 0

0 〈sgn(d2,α)〉g2,α

 ,
gi,α = min

{
1,

dci,α
dci,α − d0i,α

βα
1 + βα

}
i = 1, 2, (32)

ω0i,α is the contact traction at the interconnection α at the start of the

softening process in direction i, while dco,α represents the relative displacement225

corresponding to the total damage of the interconnection α in direction i. When

βα ≤ 0 we have the linear-elastic behaviour of the interconnection, while βα > 0

indicates the ongoing delamination and damage process at the interconnection.

The degree of the damage is defined by the parameter gi,α ∈ 〈0, 1], where

gi,α = 1 means that total damage of the interconnection has occurred and the230

connection between layers is completely lost (ωα = 0).

3.3.3. Equilibrium equations

3.3.3.1 Continuous form. Equilibrium equations for the interconnection can be

derived from the principle of virtual work. It is assumed that no external loads
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are applied directly on the interconnections and the virtual work of internal235

forces of the interconnection α reads

V Cα = bα

L∫
0

dα · ωαdX1. (33)

From (27) it can be obtained

dα = Λ
m

α (zα − sαt02) + Λm
α zα (34)

where

Λ
m

α =θ
m

α t̂3Λ
m
α ,

θ
m

α ={0T ζ 0T (1− ζ)}

 pi

pi+1

 = ϕTpC,α, (35)

zα =
[
−I2 ti,1(hi − ai) I2 ti+1,1ai+1

] pi

pi+1

 = BαpC,α.

Now, (34) becomes

dα =
[
t̂3Λ

m
α (zα − sαt02)ϕT + Λm

αBα

]
pC,α = Y αpC,α. (36)

3.3.3.2 Discrete form. Using240

pC,α =

 pi

pi+1

 .
=

N∑
j=1

 P i,j

P i+1,j

pG,j =

N∑
j=1

Rα,jpG,j (37)

we finally obtain

V Cα =

N∑
j=1

pTG,jbα

L∫
0

(Y αRα,j)
TωαdX1 =

N∑
j=1

pTG,jg
C
α,j , (38)

where gCα,j is the vector of residual (internal) forces for interconnection α.

Again, it should be noted that Y α in gCα,j is dependent on Bα and Λm
α which, in

contrast to [11], now depend on the unknown kinematic fields, thus introducing

geometric non-linearity into the residual vector for the interconnection.245
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4. Solution procedure

From (25) and (38) total virtual work for a multi-layer beam with n layers

and n− 1 interconnections now reads

V TOT =

n∑
i=1

[
V Li + (1− δin)V Ci

]
=

N∑
j=1

pTG,j

n∑
i=1

[
gLi,j + (1− δin)gCi,j

]
, (39)

where the same counter i is used for the layers and for the interconnections.

Since the total virtual work of the multi-layer beam must equal zero (V TOT = 0)250

and pG,j can be chosen arbitrarily, if follows that the nodal vector of residual

forces for the multi-layer beam is

gj =

n∑
i=1

[
gLi,j + (1− δin)gCi,j

]
= qintj − qextj = 0, (40)

with

qintj =

n∑
i=1

 L∫
0

(DiP i,j)
TLT

i

N i

Mi

dX1 + (1− δin)bi

L∫
0

(Y iRi,j)
TωidX1

 ,

qextj =

n∑
i=1

 L∫
0

P T
i,j

f iwi
dX1 + P T

i,j(0)

F i,0Wi,0

+ P T
i,j(L)

F i,LWi,L


 , (41)

acting as the vectors of internal and external forces of the multi-layer beam,

respectively. Expression (40) is highly non-linear in terms of the basic unknown255

parameters, thus the solution should be obtained numerically. To obtain the

tangent stiffness matrix, the vector of residual forces has to be linearised. Since

∆qextj = 0, only vector of the internal forces has to be linearised (∆gj = ∆qintj ).

For the layers, from (20) we have
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∆Di =

02 −t̂3∆u′i

0T 0

 ,
∆LT

i =

∆θit̂3 0

0T 0

LT
i , (42)

∆N i

∆Mi

 = Ci

∆γi

∆κi

 = CiLi(Di∆pi),

where ∆Di and ∆Li come as a consequence of geometric non-linearity of260

the layers’ deformation and 02 is 2 × 2 zero matrix. These terms do not exist

in the procedure given in [11], and will result in the geometric stiffness matrix.

For the interconnections, from (36) we have

∆Y i = t̂3 [∆Λm
i (zi − sit02) + Λm

i ∆zi]ϕ
T + ∆Λm

i Bi + Λm
i ∆Bi,

∆Λm
i = ∆θmi t̂3Λ

m
i ,

∆zi = Bi∆pC,i, (43)

∆Bi =
[
02 (hi − ai)∆θiti,2 02 ai+1∆θi+1ti+1,2

]
,

∆ωi = U i∆di = U iY i∆pC,i,

where ∆Λm
i , ∆zi and ∆Bi in ∆Y i come as a consequence of geometric non-

linearity of the interconnection deformation. These terms do not exist in [11]265

and will contribute to the geometric stiffness matrix. Material non-linearity, in

contrast is treated in the same manner as in [11], i.e.
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U i =


Si if βi ≤ 0,

(I −Gi)Si if βi > 0 and βi < βi,

(I −Gi)Si − J iSidivTi if βi > 0 and βi = βi,

∆pC,i = {∆pi ∆pi+1
}T,

J i =

ξ1,i 0

0 〈sgn(d2,α)〉ξ2,i

 , ξj,i =
dcj,i

dcj,i − d0j,i
sgn(1− gj,i)
(1 + βi)

η+1
, j = 1, 2, (44)

vTi =

〈
1

d1,i

(
|d1,i|
d01,i

)η
1

d2,i

(
〈d2,i〉
d02,i

)η〉
.

Here it has to be emphasised that the third case (when βi > 0 and βi = βi)

in U i is, in contrast to [11], now correctly derived. However, this error in lineari-

sation did not cause any significant convergence problem in numerical examples270

presented in [11].

If we introduce

 ni

ni,3

 = LT
i

N i

Mi

, the layers’ part of the linearised vector

of residual forces becomes

∆gLj =

n∑
i=1

L∫
0

{
P T
i,jQi + (DiP i,j)

T
[
Si +LT

i CiLiDi

]}
∆pidX1, (45)

where275

Qi =

 02 0

−nT
i t̂3

d
dX1

0

 , Si =

02 t̂3ni

0T 0

 , (46)

which obviously depend on the current stress state and thus vanishes in the

geometrically linear case. Since

∆pi =

∆ui

∆θi

 =

N∑
k=1

Ψk(X1)∆pi,k =

N∑
k=1

P i,k∆pG,k (47)
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we can finally obtain

∆gLj =

N∑
k=1

KL
j,k∆pG,k, (48)

where

KL
j,k =

n∑
i=1

L∫
0

{
P T
i,jQiP i,k + (DiP i,j)

TSiP i,k + (DiP i,j)
TLT

i CiLi(DiP i,k)
}

dX1

(49)

is the nodal tangent stiffness block-matrix for all layers related to nodes j280

and k in which the first two terms make its geometric part, and the last term

makes its material part. The interconnections’ part of the linearised vector of

residual forces reads

∆gCj =

n−1∑
i=1

bi

L∫
0

RT
i,j(Ωi + Y T

i U iY i)∆pC,idX1, (50)

where

Ωi = ϕωT
i t̂3Y i + (Λm

i Bi)
T(ϕωT

i t̂3)T +Zi,

Zi =


02 0 02 0

0T (hi − ai)(Λm
i ti,2)Tωi 0T 0

02 0 02 0

0T 0 0T ai+1(Λm
i ti+1,2)Tωi

 , (51)

which vanish in the geometrically linear case owing to the presence of current285

interconnection tractions ωi. Considering that

∆pC,i =

N∑
k=1

Ri,k∆pG,k, (52)

we finally obtain

∆gCj =

N∑
k=1

KC
j,k∆pG,k, (53)
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where

KC
j,k =

n−1∑
i=1

L∫
0

(RT
i,jΩiRi,k +RT

i,jY
T
i U iY iRi,k)dX1 (54)

is the nodal tangent stiffness block-matrix for all interconnections related to

nodes j and k. The first term represents its geometric part, while the second290

term represents its material part. Since ∆gj = ∆gLj + ∆gCj , it follows that the

total nodal tangent stiffness block-matrix for a multi-layer beam composed of n

layers and n− 1 interconnections related to nodes j and k can be computed as

Kj,k = KL
j,k +KC

j,k. (55)

On the element level, the vector of residual forces, the tangent stiffness

matrix and the vector of increments of unknown parameters are assembled as295

in [11], while their global counterparts g, K and ∆p are assembled using the

standard finite-element procedure [19]. The following equations are then repeat-

edly solved and the unknown parameters, stress resultants and interconnection

tractions, and the internal force vectors updated until satisfying accuracy is

achieved:300

∆p = −K−1g, (56)

i.e. using the Newton-Raphson method. For integration in (41), (49) and

(54) we use Gauss quadrature with N − 1 points for the layers and Simpson’s

rule with 3 points for the interconnections (for additional information about

numerical integration for the interconnections see [10]).

Solution algorithm has been implemented within the computer package Wol-305

fram Mathematica. For the geometrically linear problems presented in [11] the

solution path is obtained using the modified arc-length procedure [10], which,

unlike the standard arc-length procedure, was able to overcome the sharp snap-

backs which eventually occur in the load displacement diagram. However, the

procedure sometimes returned to previously obtained equilibrium states (”back-310

20



tracking”) which was overcome by not taking into account solutions that close

a very sharp angle with the previously obtained equilibrium path, and reducing

the arc-length. If after a certain number of arc-length reductions the conver-

gence to a satisfactory solution still was not obtained, the arc-length would

be then repeatedly increased. In general, we assumed that the procedure has315

converged to a solution when the norm of the residual vector is smaller than a

pre-defined tolerance, i.e. |g| < tol. In all numerical examples presented in the

present work tol = 10−4.

For the geometrically non-linear problems, obtaining the equilibrium path

using the same method as for the geometrically linear problems has often proven320

to be more difficult and sometimes impossible. This has served as the motivation

to propose a new, more robust method, which is based on the principle that the

total damage of the system in delamination problems can only increase (in the

case of ongoing delamination) or at least remain unchanged (when delamination

process has not started, is interrupted or it is over) with each new load step.325

To measure the total delamination of the system a ”total damage” parameter

gTOT =

n−1∑
α=1

Ne∑
el=1

Ns∑
s=1

gmα (el, s) (57)

is introduced, where for an element el and a Simpson’s integration point s,

gmα (el, s) takes the mean value between the mode I and mode II damage as

gmα (el, s) =
g1,α(el, s) + g2,α(el, s)

2
. (58)

According to (32), gi,α(el, s), i = 1, 2, can take values between 0 and 1,

where 0 means no damage, while 1 represents the total damage. Thus, when330

total damage is reached in both directions (total mixed-mode delamination) in

an element n and Simpson’s integration point s, we have gmα (el, s) = 1.

In this new, damage-based arc-length procedure, at the start of an analysis

gTOT = 0 and the solution algorithm uses the standard arc-length procedure

until the value of gTOT is changed at the beginning of a load step. Then, since335

the damage process has obviously started, a new method of choosing the correct
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root δλ of the arc-length quadratic equation is used (see [20, 21] for more detail

about this issue with standard and modified arc-length procedure). This new

method first checks if al least one root of the quadratic arc-length equation

gives gTOT which is greater than the gTOT from the previous load step. If this340

is not the case, which means that there is no increase in the total damage of the

system, the standard arc-length procedure is used. If there is only one δλ which

gives gTOT greater than the one from the previous load step, this δλ is taken

to be the correct root as the one which gives the increase of the total damage

of the system. In case when both roots of the arc-length quadratic equation345

give solutions which result in an increase in the total damage of the system,

the correct root is taken to be the one which gives smaller norm of the residual

vector (similar as in the modified arc-length method).

Independent of the method used (standard or the new damage-based arc-

length procedure) the arc-length size can be assigned as constant, with occa-350

sional reductions when the convergence cannot be achieved, or adaptive, defined

by the following equation:

c(i) =

√
Nd
it

Nit(i− 1)
c(i− 1), (59)

where c(i) is the arc-length size in the current load step i, Nd
it is the desired

number of iterations (which is defined at the start of an analysis), Nit(i−1) is the

number of iterations needed to obtain convergence in the previous load step i−1355

and c(i−1) is the arc-length size from the previous load step. If the convergence

is not obtained after a pre-defined maximum number of iterations Nmax
it , the

load step is repeated with a reduced arc length cr(i) = µ1c
r−1(i), where r is the

ordinal number of the load-step repetition, c0(i) := c(i) and µ1 < 1 is an arc-

length reduction factor. If after a pre-defined maximum number of arc-length360

reductions Nmax
red there is still no convergence, the arc-length is set to a new,

larger value cj(i) = µ2cj−1(i), where j is the ordinal number of the load-step

repetition with an arc-length increase and µ2 > 1 is an arc-length augmentation

coefficient, and the procedure with arc-length reductions is repeated again for a
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pre-defined maximum number of arc-length increases Nmax
aug . In the numerical365

examples presented in the present paper µ1 = 0.5 and µ2 = 1.25 are used.

5. Numerical examples

5.1. Single mixed-mode delamination

In this example, a so-called ”end-notch flexure” (ENF) specimen is simply

supported and loaded with two forces F1 = 0.4535F2 and F2 causing the mixed-370

mode delamination at the interconnection as shown in Fig. 5. This numerical

test was proposed by Mi et al. [3] and also analysed in our previous work [11],

where the geometrically linear model was used.

Figure 5: End-notch flexure specimen for mixed-mode delamination

Geometrical properties of the specimen are shown in Fig. 5, with width375

of the beam bi = 1 mm (i = 1, 2, the beam is modelled as two-layered) and

the notch length a0 = 30 mm. Since the material properties for the bulk ma-

terial in [3] were given for the orthotropic material (two Young’s moduli, one

shear modulus and two Poisson’s coefficients), in [11], as well as in the present

work, only Young’s modulus in the longitudinal direction and the shear modu-380

lus in the corresponding transverse direction are used and given as Ei = 135300

N/m2 and Gi = 5200 N/mm2, i = 1, 2, respectively. The material properties

for the interconnection are ω0j = 57 N/mm2, d0j = 10−7 mm, dcj = 0.14 mm

and Sj = 5.7 · 108 N/mm3, j = 1, 2. In this example, the damage-based arc-

length procedure presented in Section 4 is used with adaptive arc-length and385

c(0) = 10−3, Nd
it = 15, Nmax

it = 25, Nmax
red = 10, Nmax

aug = 10. The reference
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axes of both layers are positioned at the plane of the interconnection (a1 = h1

and a2 = 0) and 80 equal linear two-layer beam finite elements are used.

Since in our previous work [11] we noted that the displacements at the end390

of the equilibrium path reported in [3] considerably exceeded the limit of small

displacements and rotations (displacements up to 40% of the total length of the

beam), we have found quite interesting to investigate if the use of geometrically

exact formulation has any significant influence on the results. In fact, the differ-

ences are very pronounced, as can be noticed in Fig. 6, where the displacements395

of the reference axis of the upper layer at the left-hand end obtained by both the

geometrically linear and the geometrically non-linear formulation are plotted.

It should be noticed that, in contrast to the geometrically linear formulation, in

the geometrically exact formulation the horizontal displacement of the free end

of the upper layer also exists and even for the range of loading values in [3, 11]400

takes considerable values (cca 20% of the value of the vertical displacement for

F1 = 20 N).

Figure 6: Results for the mixed-mode delamination test on the ENF specimen obtained using

both geometrically linear and non-linear multi-layer beam models
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Fig. 6 shows only a part of the diagram which we obtain using the geomet-

rically exact model for which F1 ≡ 0.4535F2 ≤ 40N. If we continue to increase405

the forces F1 and F2 further, the system behaves as shown in Fig. 7. It can

be observed that the force F1 reaches the peak at about 136 N, but the ver-

tical displacement never reaches 40 mm shown in Fig. 6 as obtained for the

geometrically linear case. In contrast to the geometrically linear analysis, in

geometrically non-linear analysis the distance between forces F1 and F2 reduces410

as they increase. The force F2 causes bending of the beam, while the force F1 is

responsible for the mixed-mode delamination at the interconnection. It is very

important to note that in the geometrically linear case the bending moment in

the upper layer at the mid-span is equal to F1L, whereas in the geometrically

non-linear case it gets progressively smaller than F1L as the loading increases.415

For this reason, in the latter case the vertical displacement of the left-hand end

of the upper layer necessarily becomes bounded, and so does the mode 1 crack

propagation, too. After the crack reaches the midspan, a significant increase in

the force F1 is needed to obtain further delamination progress and the left-hand

side end of the upper layer is actually decreasing as the midspan deflection of420

the whole beam increases. In Fig. 7 can be also noted that the right-hand side

support slides and approaches the left-hand side support as the beam deforms,

reducing the span of the beam. It can be concluded that this example, which is

often reported in the literature, has to be treated as geometrically non-linear,

especially when the vertical displacement at the free end of the upper layer425

exceeds cca 10% of the total beam length (see Fig. 6).

5.2. Double mixed-mode delamination

This example, first proposed by Robinson et al. [22] and later investigated

by Alfano & Crisfiled [10, 23], was also reported in our previous work [11], where

we obtained an excellent agreement of the results using significantly less degrees430

of freedom. The original HTA913 specimen is originally made of 24 layers of

equal thickness, but since the connections between all layers are assumed to

be rigid wherever they exist, the structure is modelled as a three-layer beam
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Figure 7: Behaviour of the ENF specimen under large displacements and rotations

with two interconnections in the planes where the initial cracks are positioned

and expected to propagate. Fig. 8 shows the geometry of the specimen, where435

h1 = 1.325 mm, h2 = 0.265 mm, h3 = 1.59 mm and width bi = 20 mm,

i = 1, 2, 3 (note different length and height scales in Fig. 8). The reference

axes of all layers coincide with their centroidal axes, i.e. ai = 0.5hi, i = 1, 2, 3.

The support at the bottom of the left-hand side keeps the bottom layer fixed

(allowing only rotation), while the upper layer can slide in only the vertical440

direction under the load F . As it was reported in [11], as the force F increases,

first the upper crack propagates and, when the horizontal position of its tip

reaches the bottom crack, both cracks continue to propagate simultaneously.

It was also noticed that, before it starts to propagate, compressive contact

tractions occur at the bottom crack.445

The orthotropic material properties for HTA913 given in [22] are adapted

for the beam model as Ei = 115.0 GPa, Gi = 4.5 GPa, (i = 1, 2, 3), whereas for

the interconnection, according to [23] three sets of material properties are used
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Figure 8: Double mixed-mode delamination specimen (all dimensions are in mm)

(see Table 1).

Table 1: Material properties of the interconnection for the double mixed-mode delamination

example

Case Gc1,α Gc1,α d0j,α/dcj,α ω01,α ω02,α d0j,α dcj,α S1,α S2,α

[N/mm] [N/mm] [MPa] [MPa] [mm] [mm] [N/mm3] [N/mm3]

A 0.8 0.33 5·10−5 8.0 3.3 1·10−5 0.2 8·105 3.3·105

B 0.8 0.33 1.25·10−3 40.0 16.5 5·10−5 0.04 8·105 3.3·105

C 0.8 0.33 5·10−3 80.0 33.0 1·10−4 0.02 8·105 3.3·105

The meshing is this example is performed as in [11], where two different450

meshes of quadratic three-layer beam finite elements are used: mesh 1 for ma-

terial case A and mesh 2 for material cases B and C (see Table 2).

Table 2: Finite-element meshes for the double mixed-mode delamination example with differ-

ent material properties for the interconnection

Zone 1 Zone 2 Zone 3 Zone 4 Zone 5 Total

Length [mm] 40 20 20 50 20 150

Initial crack α = 2 none α = 1 none none

Mesh 1 / No. of FE 2 20 20 50 5 97

Mesh 2 / No. of FE 4 40 40 100 5 189

In the numerical simulations for both the geometrically linear and non-

linear analysis a constant arc-length c = 5 is used with occasional reductions

(µ1 = 0.5), while the maximum number of iteration Nmax
it , the maximum num-455
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ber of arc-length reductions Nmax
red and the maximum number of arc-length

augmentations Nmax
aug are set to Nmax

it = 50, Nmax
red = 15 and Nmax

aug = 10. To

reach the value of the vertical displacement of the left-hand end of the upper

layer v3(0) = 35 mm (see Figs. 9-11) we need 193, 326 and 510 load steps for the

geometrically linear analysis, and 318, 518 and 1426 load steps for the geometri-460

cally non-linear analysis, respectively for the cases A, B and C. Using the above

arc-length, the algorithm jumps over certain parts of the load-displacement di-

agram (including spurious oscillations) without losing convergence, but many

times the arc-length has had to be reduced (one or more times) in order to

obtain convergence. Every reduction of the arc-length basically increases the465

number of the load steps needed to complete the analysis and there are more

reductions in the geometrically non-linear analysis. From Figs. 9-11 we can

note that spurious oscillations for cases B and C are larger than for the case A,

although the FE meshes used for cases B and C are twice denser than the one

used for the case A. This means that the material model of the interconnection470

has more influence on the spurious oscillations than the finite-element length

itself (see Tabs. 1 and 2). Obviously, larger oscillations demand more load steps

because the total length of the equilibrium path is longer (especially for the case

C). However, in comparison with the geometrically linear analysis, the spurious

oscillations for each case are smaller.475

The results of the multi-layer beam model for the geometrically linear anal-

ysis for this example have been already compared with the results from the

literature (see [11] for details) where it was concluded that the the presented

model gives comparable accuracy using significantly less degrees of freedom. In480

this work we further analyse how the introduction of geometrical non-linearity

affects the results in this example where the displacements and rotations are not

small and the problem itself is rather complex (irregular positions of the initial

cracks, non-symmetric layering). For all three sets of the material parameters

for the interconnection, the difference between the geometrically linear and non-485

linear analysis is more pronounced for the parts of the diagram where the bottom
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Figure 9: Applied force F against the vertical displacement of the left-hand side of the upper

layer v3(0) for the case A of the material parameters

Figure 10: Applied force F against the vertical displacement of the left-hand side of the upper

layer v3(0) for the case B of the material parameters

initial crack has propagated (the part with v3(0) in the region from cca. 7 to

35 mm). In addition, only for the case A the equilibrium path after v3(0) ≈ 19

mm in the geometrically non-linear analysis is quite different in comparison not

only to that in the geometrically linear analysis, but to the experiment as well.490
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Figure 11: Applied force F against the vertical displacement of the left-hand side of the upper

layer v3(0) for the case C of the material parameters

The exact kinematic equations (10) and the new definition of the directions for

the delamination modes I and II (26)-(28), in combination with the material

parameters of the interconnection, for the case A result in a behaviour where

the bottom initial crack for v3(0) between cca. 7 and 19 mm opens and then

closes again, but does not continue to propagate to the right-hand side for larger495

values of v3(0) (only the upper crack continues to propagate). Using a denser

mesh (Mesh 2 from Table 2) for the case A gives exactly the same behaviour (not

shown). Obviously, the material properties of the interconnection given for the

case A do not model the real behaviour obtained by the experiment accurately.

In contrast to the geometrically linear analysis, the overall results of which have500

turned out to be largely insensitive to the variation of the material properties

of the interconnection described by the cases A, B and C, in the geometrically

non-linear analysis this can be asserted only for the variation of the material

parameters lying int the range defined by the cases B and C. We can conclude

that in this example the case B is the most suitable both in geometrically linear505

and non-linear analysis because of its rather good agreement with the experi-

mental results and acceptable size of the spurious oscillations (although Mesh
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2 is used). In addition, it is useful to note that for the range of values of v3(0)

between cca. 7 and 35 mm the actual response of the specimen lies between the

predictions of the linear and the non-linear analysis for both case B and case C.510

5.3. Buckling of a double-cantilever beam

Allix and Corigliano [24] proposed an example where the layers of a double-

cantilever beam (DCB) were loaded by two compressional axial forces which

caused buckling of the layers and crack propagation along the interconnection

(see Fig. 12). The width of the specimen was b = bi = 1 mm and the material515

properties for the layers read Ei = 135000 N/mm2 and Gi = 5700 N/mm2,

i = 1, 2. Two perturbational forces F0 = 0.001 N were applied on each layer to

induce the buckling in the desired direction. Since the geometrical and material

properties of the layers, as well as the applied loading, were symmetric with

respect to the plane of interconnection, pure mode I delamination occurred as520

the initial cracks began to propagate. For the interconnection, the following

material parameters were given: S1 = 106 N/mm3, ω01 = 50 N/mm2 and a

set of fracture energies Gc,1 = {0.2, 0.4, 0.8, 1.6} N/mm with the corresponding

separations at the complete damage dc,1 = {0.008, 0.016, 0.032, 0.064} mm. No

data regarding the FE mesh used in the analysis were given in [24].525

Figure 12: Specimen for buckling in a DCB

The example is here run using the proposed algorithm, where first the forces

F0 are applied to obtain the initial deformed configuration and then the damage-

based modified arc-length procedure is applied (as presented in Section 4), where

only the load F is variable, while F0 is kept constant. After the first load step,
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where arc-length is c(1) = 0.001, the arc-length is changed in each load step ac-530

cording to (59) with Nd
it = 15, Nmax

it = 25, Nmax
red = 10, Nmax

aug = 10, µ1 = 0.75,

µ2 = 1.5 and a constraint c(i) ≤ 2, i > 1. 200 linear two-layer beam finite ele-

ments are used in the analysis, where the reference axes of each layer coincide

with their centroidal axes (ai = 0.5hi, i = 1, 2) in order to avoid eccentricity of

the axial loads.535

The present model, where the exact geometrical non-linearity is accounted

for, is compared to the model presented by Allix and Corigliano [24], where

geometrical non-linearity is introduced in a multi-layer beam model only as an

influence of transversal displacements on axial strains (the second-order theory).540

In Fig. 13, where the displacement of the free end of the upper layer v2(L) is

plotted against the applied force F , for both cases we can observe the same

behaviour at the beginning of the process, where we have an almost vertical line

(very small change of displacement with increasing the load F ) before reach-

ing the buckling force somewhere around 2 N. After the buckling has started545

it can be noticed that the displacement rapidly increases with a slowly increas-

ing force F . At a certain point, depending on the material properties of the

interconnection, the buckling deformation of individual layers damages the in-

terconnection, which is presented by the softening branches in Fig. 13. There

is also a graph presenting how the system would behave if the interconnection550

were completely rigid (Gc = ∞), where it can be noted that the non-physical

displacement v2(L) ≥ 10 mm, obtained by the model presented in [24], cannot

be obtained using the geometrically exact formulation presented in this work

even for F > 3 N. The differences between the two models, as expected, are

more pronounced for larger displacements, especially in the case where the in-555

terconnection is completely rigid.
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Figure 13: Comparison of the results for the buckling of the DCB specimen

6. Conclusions and future work

In this work we have proposed a geometrically exact multi-layer beam finite

element formulation with interconnection allowing for mixed-mode delamina-560

tion. The formulation is given in a general form where the number of layers

and nodes of the beam finite elements is arbitrary, as well as the geometrical

parameters for the layers and the interconnections, while the constitutive laws

are assumed to be linear elastic for the layers and a bi-linear mixed-mode dam-

age law for the interconnection. In order to solve numerical problems that are,565

due to the introduction of the exact kinematic equations, more complex and

numerically demanding, we have proposed a new modification of the arc-length

method, where the standard arc-length procedure is used only when there is

no damage at the interconnection, else in each load step the converged solution

has to result in an increase in the total damage of the system. In the numeri-570

cal examples, we have shown that using the geometrically linear formulation in

cases when the displacements of the system are moderate to large can lead to
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significant differences in the results. On the other hand, for examples that can

be solved using only geometrically non-linear formulations (e.g. DCB buckling

in Section 5.3), we have shown that the proposed geometrically exact formu-575

lation gives significant differences in the results compared to the second-order

beam theory in the post-critical region. Since the presented geometrically exact

formulation is more accurate, gives considerable differences in the results and is

not significantly computationally expensive than the other formulations used in

our comparisons, it can be successfully applied to all types of planar delamina-580

tion problems. The geometrically linear formulations, as shown in the examples

presented in the present work, can be used with satisfactory accuracy only in

limited number of cases where displacements and rotations remain small.

The presented model will be further developed by introducing rate-dependence

into the interface’s cohesive law (see [25] and [26]). Other developments may585

include the introduction of material non-linearity (such as plasticity or hyper-

elasticity) in the layers and application of some higher-order beam theories which

would allow warping of the layers’ cross-sections and non-linear stress distribu-

tion over layers’ height. It is also possible to introduce layers with deformable

thickness where strains and stresses transverse to layer’s reference axes appear590

(see [27] for application in multi-layer beams with rigid interconnection).
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