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Abstract

In this work we assess the extent to which a beam model is suitable for the
finite-element analysis of composite structures undergoing a large-displacement
delamination process. We lay down the necessary theory needed for the geo-
metrically non-linear analysis using Reissner’s beam theory for the layers to be
applied to layered structures involving dual-mode damage-type bi-linear con-
stitutive law for the interconnections, run a number of representative examples
and compare the results to those obtained using a geometrically linear analy-
sis. The formulation is given in a general form where the number of layers and
nodes of the beam finite elements is arbitrary. To solve numerical problems, the
equilibrium of which is necessarily more complex and demanding to satisfy than
in the geometrically linear case, the standard cylindrical arc-length procedure is
used only when there is no damage at the interconnection. When damage at the
interconnection occurs, the standard arc-length method has been modified so
that in each load step the converged solution is required to result in an increase
in the total damage of the system. It is concluded that the geometrically linear
formulations can be used with satisfactory accuracy only in limited number of
cases where displacements and rotations remain small.
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1. Introduction

Structures composed of multiple layers can be found in many areas of en-
gineering as well as in nature. The most prevalent failure mechanism of such
structures is delamination in which the connection between the layers is be-
ing progressively damaged due to cracking and is eventually completely lost.
Obviously, this failure mechanism is very complex for a variety of reasons.

To start with, it exhibits overall structural softening upon reaching a par-
ticular strength of the interconnection [I] and in order to assess this strength it
becomes necessary to invoke the fundamental energy principles from the theory
of fracture mechanics [2]. The actual softening may be described exponentially,
as in the linear fracture mechanics (see e.g. [3]) or as a linear or multi-linear
curve, often used in numerical analyses. The global manifestation of post-critical
softening may often become apparent in considerably larger overall displace-
ments compared to those in the pre-critical range necessitating a geometrically
non-linear structural analysis.

In addition, instead of considering the delamination stress at the crack tip as
infinite, which follows from the principles of linear fracture mechanics [4], in real
practical problems it becomes necessary to recognise that the fracturing process
is governed by a finite stress distribution over a small region around the crack
tip, the so-called ”process zone” in Barenblatt’s cohesive zone models (CZM)
[5]. The cohesive zone models enable the stresses to ’straddle’ a narrow crack
and describe a variety of physical phenomena rather well, from generation and
localisation of a principal crack [6l [7, [§] to aggregate interlocking in concrete
structures [9].

Also, a crack between two layers may occur for different reasons leading
to the so-called Mode I, II or III openings (normal to the crack surface, or
tangential to it due to slippage or tearing) [I]. Obviously, these may not be
considered separately since even a limited damage in a particular mode always
comes as a consequence of some underlying physical re-arrangement of particle

bonds on a sufficiently small scale which necessarily reduces also the strengths
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in the other modes. It thus becomes necessary to define a certain scalar measure
of overall damage (see e.g. [10]), which involves contribution from all possible
modes and governs the phenomenon of damage-induced strength reduction in
all the modes.

When modelling engineering problems we are naturally led by the demands
of (i) accuracy and (ii) computational efficience, which need to be met to within
a prescribed measure and in some sense optimised. For the class of problems
analysed here, in our previous work [II] it has been shown that using beam
finite elements instead of 2D solids for planar geometrically linear delamination
gives results of comparable accuracy using significantly less degrees of freedom.
Such elements do not appear to be as wide-spread in this type of analysis as the
solids, and it is thus argued that they should be considered as a valid alternative
in a variety of situations, including mixed-mode delamination. The efficiency of
multi-layer beam finite elements in comparison with commonly used 2D solids
has been shown also in authors’ previous work [12] where the connection between
the layers was assumed to be absolutely rigid (see also [13] and [I4]).

In this work we attempt to assess the extent to which the beam model and,
more generally the geometrically linear set-up itself, are applicable to the anal-
ysis of the composite structures undergoing a delamination process. Not unex-
pectedly, such structures are usually designed to take advantage of the particu-
lar properties of the materials forming the composite without being damaged in
the operational state. However, if we want to trace the post-critical equilibrium
path after the process of delamination has initiated, possibly all the way up
to full rupture, we have to recognise that the ratio between the displacement
and the loading magnitudes may increase considerably. There also exist such
delamination phenomena, e.g. peeling, in which the displacements are of the
order of magnitude of the geometry of the problem analysed.

In such situations, obviously, geometrically linear analysis may not return
the results representative of the real behaviour of the problem analysed. Given
the complexity of the delamination process, it is not always possible to tell in

advance if the geometrically non-linear effects may not in fact become consider-
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able even for deformation magnitudes which we may be tempted to intuitivelly
classify as ’small’.

In this work we will lay down the necessary theory needed for the geometri-
cally non-linear analysis using Reissner’s beam theory for the layers to be applied
to layered structures involving dual-mode damage-type bi-linear constitutive law
for the interconnections. In order to assess the need for the geometrically non-
linear analysis presented, we will run a number of representative examples and

compare the results to those obtained using a geometrically linear analysis.

2. Problem description

Geometry of deformation of a multi-layer beam is described in [II] and here
we reproduce it for reference. An initially straight multi-layer beam composed of
n layers and n — 1 interconnections is considered. An arbitrary interconnection

« is placed between layers ¢ and 7 + 1.
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Figure 1: Position of a segment of a multi-layer beam with interconnection in the material

co-ordinate system

Material co-ordinate system of each layer is defined by an orthonormal triad
of vectors E1 ;, Es;, E3;, with axes X1 ;, X2 ,, X3, (see Fig. . The axes X ;
are parallel with the layer’s edges and mutually (E; = E;; and X; = X3 ;)
coincide with the reference axes of each layer. The position of a reference axis
over the layer’s height a; € (0, h;) may be chosen arbitrarily, where h; is the

layer’s height. However, in [I1] it was shown that the position of the reference
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axis may influence the numerical results. The cross-sections of all layers have
a common vertical principal axis Xy defined by a base vector Ey = E3; (a
condition for a planar deformation). Note that, according to Fig. the co-
ordinate X3 ; is different for each layer i. Axes X3 ; are mutually parallel (X3 =
X3, and E3 = E3;), but they do not necessarily coincide with the horizontal
principal axes of the layers’ cross-sections. The first and the second moment of

area of the layer’s cross-section with respect to axis X3 ; are defined as

Si= [ Xp,dA, I, = /(Xz,i)QdA, (1)
A; A;

where A; is the area of the cross-section of the layer. In our model it is
assumed that the thickness of the interconnection is very small compared to
the layers’ thicknesses, i.e. the geometry of an interconnection « is completely
defined by its height and width, denoted as s, and b,, respectively.

The direction of reference axes of all the layers in the initial undeformed
state is defined by the unit vector ty; which closes an angle 1) with respect to
the axis defined by the base vector e; of the spatial co-ordinate system (see
Fig. . Vector tpe defines the orientation of layers’ cross-sections which are

orthogonal to the layers’ reference axes. Thus, the following relationship can be

established:

cosy —siny ]
to; = Aoej = e;, where j =1,2. (2)
siny  cosv
According to Fig. [2| the position of a material point in the layer ¢, (X7, X2 ;)

in the undeformed state is defined by the vector

0,i(X1,X2,;) = 10,:(X1) + X2,:t02, (3)

where r( ;(X1) is the position of the intersection of the plane of the cross-
section containing the point 7" and the reference axis of the layer ¢ in the unde-

formed state. The cross-sections of the layers remain planar but not necessarily
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Figure 2: Position of a layer of the composite beam in the spatial co-ordinate systam in the

undeformed and a deformed state

orthogonal to their reference axes during the deformation of the beam (Timo-
shenko beam theory with the Bernoulli hypothesis) and the material base vector
s F3 remains orthogonal to the plane spanned by the spatial base e; and es. Ori-
entation of the cross-section of layer i in the deformed state is defined by the

base vectors

cos(vp +6;) —sin(v + 6;

tij = W ) W ) e; = Aje;, where j =1,2. (4)
sin(y) 4+ 6;)  cos(¢ + 6;)

Rotation of the cross-section of layer ¢ is denoted as 6; and it is entirely

dependent on X;, thus 6; = 0;(X;). The position of material point T in the

o deformed state can be thus expressed as

x; (X1, X2,) = 7m(X1) + Xo,its 2(X1), (5)
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where r;(X7) is the position of the intersection of the plane of the cross-
section containing the point 7' and the reference axis of layer i in the deformed
state. Thus, the displacement between the deformed and the undeformed refer-

ence axis can be defined for each layer as

wi(X1) = ri(X1) — ro,i(X1). (6)

3. Governing equations

The first group of governing equations defines how the layers and the inter-
connections are assembled into a multi-layer beam. The kinematic, constitutive
and equilibrium equations are then defined for the layers, as well as for the

interconnections.

8.1. Assembly equations

A segment of the multi-layer beam is shown in Fig. [3]in its undeformed and

deformed state.

Figure 3: Undeformed and deformed state of a segment of a multi-layer beam with intercon-

nection



To define relative displacement between layers ¢ and ¢+ 1 at interconnection
120« it is necessary to define the displacements at the top and the bottom of the

interconnection as

UT,q = Uit1 + (to2 — tiv12)ait1, (7)
UB o =u; + (ti2 — to2)(hi — a;), (8)

Vector z,, which represents a directed stretched thickness of interconnection

«, can be expressed according to Fig. [3| using and as

Zo = Salo2 +UT o — UB o =

=wiy1 — U + aip1(boz — tix12) + (hi —a;)(toz — ti2) + Sato2.  (9)

3.2. Governing equations for layers

125 Governing equations for each layer consist of kinematic, constitutive and

equilibrium equations.

3.2.1. Kinematic equations
The kinematic equations are the exact non-linear equations according to

Reissner’s beam theory [15] and notation introduced by Simo & Vu-Quoc [16]:

€
vi =3 ¢ =Alr,—Ei=A](to1 +u}) — E, (10)
Vi
ki = 0], (11)
130 where €;,7;, k; are the axial, shear and rotational strain (infinitesimal change

of the cross-sectional rotation) at the reference axis of layer ¢, respectively. Since
these quantities are functions of only X5, the differentiation with respect to X;

is introduced and denoted as (e)’.
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8.2.2. Constitutive equations

In this work the layers are assumed do be made of linear elastic material
with E; and G; as Young’s and shear moduli of each layer’s material. The axial
strain of a fibre at the distance X5 ; from the reference axis of the layer ¢ can

be computed as

g = €i(X1, Xo,) = €(X1) — Xo ki (X1), (12)

where €;(X7) is the axial strain of a fibre at the layer’s reference axis. For

the linear elastic material the normal stress follows as

g :Ui(X1,X2,i) :EiEi(XlaXQ,i)a (13)

while the shear stress is assumed to be constant over the cross section
(T; = Gyvy;). From and (13), in contrast, it can be clearly noted that
the distribution of normal stresses over the layer’s height is linear. The stress

resultants then read

N; = / 0:dA, (14)

A;

T; = Gk Ay, (15)

Mi = —/ngididA7 (16)
A

where N;,T;, M; are the axial force, shear force and bending moment with
respect to the reference axis of layer i, respectively. The shear correction coef-
ficient for layer i comes as a consequence of the assumption of constant shear

over the cross section introduced earlier and is denoted as k; [17]. Substituting

and in — we finally obtain
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where NZT = (N; T))T, 7" = (g v)" and

E;A; 0 —E;S;
—FE;S; 0 Ei I

is the constitutive matrix of layer 7.

3.2.3. Equilibrium equations

8.2.3.1 Continuous form. Equilibrium equations for layer ¢ are derived from the
principle of virtual work, where the total virtual work of the layer VI is the
difference between the virtual work of internal forces V™ and the virtual work

of external forces V;*** acting on layer 7. This can be written as

L L
vE v vt = [ G N RM) X = [ (@ B) X
0 0
—;(0)- Fio—0;(0)W,;0—u;,(L)- Fi —0;(L)W, p, (19)

where %, and ®; are the virtual strains, while u; and 6, denote the virtual
displacements and rotations, which are all functions of X;. The distributed
external forces and moments over the beam’s length are denoted as f, and w;,
while the corresponding point loads concentrated on the beam ends are denoted
as F; o, Wio, Fir, Wi . The virtual strains are the linear parts of the strains
in and with respect to the (virtual) displacements and rotations and

can be expressed as

= T d n / a7
i Al 0 1271 7t3(t01 + ’U,Z) u; o
= - d‘l?( a _ = Ll (szl), (20)
R o' 1 0 % ;
. 0 -1
where 0 = {0 0}T, I, is a 2 x 2 identity matrix and t3 = .
1 0

10



s Expression (19) now becomes

L
B N; £ _ Fio| _ Fir
ve= [oarerd N mrd  axato ) g

/ M; w; Wio Wi

8.2.3.2 Discrete form. The resulting expression is highly non-linear in terms of
the basic unknown functions (u; and 6;) and eventually leads to equilibrium
which cannot be found in a closed form. Thus, the shape of the virtual (test)
functions (@; and 6;) is chosen in advance assuming that for a finite number of
o  nodes N on a finite element the virtual displacements and rotations are known

at the nodes (w; ; and 0; ;, j € {1, N}) and interpolated between them as

N _
u;,
ﬁlZZ‘I’j(Xl) _ Z‘I’ Xl pz]a (22)
Jj=1 ‘92 »J
where ¥} is a 3 x 3 matrix of interpolation functions. If we further introduce
. = — _ AT
the nodal global vector of virtual unknown parameters p; ; = <P1,j DPaj .- pn7j>

for all the layers in the finite element, we can write

N
Z (509, 00%, ... 6,%,]Po, = ZP Bey  (23)
175 where d;; is the Kronecker delta defined as
1 ifi=y,

0 otherwise.

At this point, expression can be written as

1 w;
F;, F;p N
- P/;(0) Wz — P/,(L) I/I; } = P9l (25)
0,0 i,L j=1

11
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where giLJ. (the term within the braces of ) is the nodal vector of residual
forces for the layer ¢ which will be later introduced to the global equilibrium
equation of the multi-layer beam with interconnection. It should be noted that
D; and L; now depend on the current configuration (see (20))), in contrast to
the procedure given in [II]. This is where the geometric non-linearity of the

layers’ deformation is accounted for.

3.8. Governing equations for interconnections

Each interconnection allows for delamination in single modes (I and II), as
well as for the mixed-mode delamination. Non-linear constitutive law with the
embedded cohesive zone model (CZM) [10] is assumed for directions correspond-
ing to modes I and II. Mixed-mode delamination is determined by combining the
influence of individual modes. The governing equations for each interconnection

again consist of kinematic, constitutive and equilibrium equations.

3.3.1. Kinematic equations

In order to determine the delamination in individual modes, first we have to
define the directions corresponding to modes I and II. In case of large displace-
ments and rotations defining tangential and normal separation at the intercon-
nection is not unique and may be defined in a number of ways. The line along
which tangential separation between layers (mode II delamination) occurs lays
somewhere between the tangent to the reference axes of layers ¢ and 7 + 1 and

can be defined by the angle

00 =S +0:) + (1 = QW+ 0iy1) =¥+ i + (1 = ()bita, (26)

where ( represents the weight with a value between 0 and 1. In the present
work value ( = 0.5 has been used in all numerical examples. Analysis of the
impact of coefficient ¢ on the results has been performed in [I8] and it has
been shown there that variation of ( between 0 and 1 has a small influence

on the results for the examples analysed there. The relative displacements at

12



interconnection « according to @ can be now decomposed in two directions

corresponding to delamination modes I and II and written in a vector as

d1,o
do = " = A(Z0 — Satez) = Al (UT.e — up ), (27)
d2,a
205 where
cosf"  —sing
A" = . (28)
sin@'  cos@
Note that index 1 corresponds to mode IT and index 2 to mode I delamina-

tion.

3.3.2. Constitutive equations
For an arbitrary interconnection « the constitutive law for the directions
a0 corresponding to delamination modes I and II is shown in Fig. |4l This concept
was proposed by Alfano and Crisfield [I0] who used the so-called interface finite

elements with embedded cohesive zone model (CZM).

Wi 2.0
ora [--= Wo2,0f---
a) : b) ;
7 Gera . Geoo
-dera -doa % dia % dra
E dora daa dna doa
... -(o1a

Figure 4: Constitutive law for the interconnection: a) mode II (direction 1) and b) mode I

(direction 2)

The current state of damage is defined using a parameter which combines

delamination in both modes as

[ ()] e

dot,a do2,q

13
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where do1,o and dpz,o are the relative displacements at the interconnection
a at the start of the softening process in modes II and I (directions 1 and 2),
respectively, 7/ is the pseudo-time variable and (e) is the McCauley bracket [10].
In all numerical examples in the present work n = 2 is used. The maximum

rate of delamination in the pseudo-time history

Ba(r) = max Ba(r') (30)

o<’ <1
ensures that the damage of the interconnection is irreversible. The tractions
at the interconnection wo = (W, wa2)' are obtained from the following

constitutive law:

Sada if 8, <0,
[I - Ga] Sa.d, if 5, >0,
where
Sa = Sl,a O 9 Si7a = ZOi,a, Ga = gl’a O 9
0 82,0 0i,c 0 <Sgn(d2,a)>g2,a
dci o B .

i =min< 1, . s 1=1,2, 32
9, { dci,a - d()i,a 1 + ﬂa } ( )

woi,o is the contact traction at the interconnection o at the start of the
softening process in direction ¢, while d¢, o represents the relative displacement
corresponding to the total damage of the interconnection « in direction i. When
B, < 0we have the linear-elastic behaviour of the interconnection, while 3, > 0
indicates the ongoing delamination and damage process at the interconnection.
The degree of the damage is defined by the parameter g; o € (0,1], where
gi,a = 1 means that total damage of the interconnection has occurred and the

connection between layers is completely lost (w, = 0).

3.3.3. FEquilibrium equations
8.8.3.1 Continuous form. Equilibrium equations for the interconnection can be

derived from the principle of virtual work. It is assumed that no external loads

14



25 are applied directly on the interconnections and the virtual work of internal

forces of the interconnection « reads

L
Ve = ba/Ea cwad X,
0

From it can be obtained

d, = KZL(Z& — Satog) =+ AZLEQ

where

KZI :ggliSAgLv

am T T p; T—
904 :{0 C 0 (1 - C)} o =¥ pC’,oU

Dita
_ p; _
Za = [—12 tii(hi —a;) I ti+1,1ai+1:| B = BaPc o
Dita

Now, becomes

Ea = [igAZL(Za — Satog)cpT + AZLBQ] ﬁC’,a = Y(XpC,a'

a0 3.8.8.2 Discrete form. Using

_ N
_ D; P;;
pC,a -

N
Pg; = E R, jPc ;
Dit1 j=1 |Pit1, j=1

we finally obtain

N L N
Vi = Zf’g,jba /(YaRa’j)Tw“Xm - Zﬁg,jgiﬁ
i=1 r j=1

(35)

(38)

where gg’j is the vector of residual (internal) forces for interconnection .

Again, it should be noted that Y, in ggj is dependent on B, and A}’ which, in

contrast to [I1], now depend on the unknown kinematic fields, thus introducing

25 geometric non-linearity into the residual vector for the interconnection.

15
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4. Solution procedure

From and total virtual work for a multi-layer beam with n layers

and n — 1 interconnections now reads

n

N n
VIOT =3 [V + (1 =6V =Y PG, D [9f; + (1 —di)gf,] . (39)

i=1 j=1 i=1
where the same counter ¢ is used for the layers and for the interconnections.
Since the total virtual work of the multi-layer beam must equal zero (V70T = 0)
and Pg ; can be chosen arbitrarily, if follows that the nodal vector of residual

forces for the multi-layer beam is

n

g, = Z (g5, + (1= 6,n)g%,] = @' — q5** = 0, (40)

i=1
with

= [

L L
qM = /DP”)TLT dX; + (1 — 6in) bz/ (ViR ;) widX, |,
L\0o 0

F;
+PL(L){ "R, @
Wio Wi.r

— / pPr 7 bax, 4 PL(0) Fio

acting as the vectors of internal and external forces of the multi-layer beam,
respectively. Expression is highly non-linear in terms of the basic unknown
parameters, thus the solution should be obtained numerically. To obtain the
tangent stiffness matrix, the vector of residual forces has to be linearised. Since
Aqewt 0, only vector of the internal forces has to be linearised (Ag; = Aq”‘t).
For the layers, from we have

16



_O —t3 AU/
AD, = 2 3Au; )
o’ 0
Abits 0
AL] = AR (42)
0" o
=C; = C;L;(D;Ap;),
AMZ' Aﬁi
260 where AD; and AL; come as a consequence of geometric non-linearity of

the layers’ deformation and 05 is 2 X 2 zero matrix. These terms do not exist
in the procedure given in [I1], and will result in the geometric stiffness matrix.

For the interconnections, from (36| we have

AY; = t3 [AAT (25 — sitgr) + A"Az] " + AAT'B; + A"AB;,
AAT = NGt AT,
Az; = B;Apc, (43)
AB; = [02 (h; —a;)A0it; o 03 air1A0;41ti41,2]
Aw; =U;Ad; =U;Y ;Apc,,
where AAT", Az; and AB; in AY; come as a consequence of geometric non-
265 linearity of the interconnection deformation. These terms do not exist in [T1]

and will contribute to the geometric stiffness matrix. Material non-linearity, in

contrast is treated in the same manner as in [I1], i.e.

17



S; if B; <0,
U; = (I-G;)S; ifB;>0and B; <3,

(I — GZ) S, — Jlsvdﬂ];r if Bz > 0 and 51 = ﬂiv
Apc,i = {Apl- Api+1}T7

r= | = et S0 03) g g
0 (sgn(dz,a))2, deji — doji (14 6;)nF

TG () (@)
! dis \ doiy day; \ doz,i

Here it has to be emphasised that the third case (when 38, > 0 and 3; = f3;)

(44)

in U, is, in contrast to [I1], now correctly derived. However, this error in lineari-
a0 sation did not cause any significant convergence problem in numerical examples
presented in [I1].

n; i

If we introduce = L;r , the layers’ part of the linearised vector

4.3 Mi
of residual forces becomes

n

L
Agh = Z/{PITJQL +(DiP;j)T S+ LiTCz'Lz'Dz} } ApdXy,  (45)
0

i=1
215 where
02 0 02 i3n<
Qi = i 4q ) S’i = T ' P (46)
which obviously depend on the current stress state and thus vanishes in the

geometrically linear case. Since

Au; N N
Ap, = = Z ‘I’k(Xl)Apz',k = Z Pi,kAPG,k (47)
Ab; k=1 k=1

18



we can finally obtain

N
k=1
where
n L
Kf = /{PLQZ«PM +(DiP;;)'SiP;\ + (DiPiJ»)TLiTCiLi(DiPi,k)} dX,
=17
(49)
280 is the nodal tangent stiffness block-matrix for all layers related to nodes j

and k in which the first two terms make its geometric part, and the last term
makes its material part. The interconnections’ part of the linearised vector of

residual forces reads

n—1 L
Ag§ = b, / R} (i +Y]U;Y;)Apg,dX, (50)
=1 0

where

Qi = @ tY,; + (A B) (pw] t3)" + Zi;,

0, 0 0, 0
z,= |0 (o a)Ala)Ter O | G
0, 0 0, 0
OT O OT ai+1(A§”ti+L2)Tw7;
285 which vanish in the geometrically linear case owing to the presence of current

interconnection tractions w;. Considering that

N
Apo; =Y RikApg ., (52)
k=1
we finally obtain
N
Ag§ =3 KiApg ., (53)
k=1

19
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where

n—1 L
KS§ =Y /(R{jQiRi,k +R] YUY R, ;)dX, (54)
=1 0

is the nodal tangent stiffness block-matrix for all interconnections related to
nodes j and k. The first term represents its geometric part, while the second
term represents its material part. Since Ag; = AgF + Ag§, it follows that the
total nodal tangent stiffness block-matrix for a multi-layer beam composed of n

layers and n — 1 interconnections related to nodes 7 and k can be computed as

K;r=K! +KS,. (55)

On the element level, the vector of residual forces, the tangent stiffness
matrix and the vector of increments of unknown parameters are assembled as
n [I1], while their global counterparts g, K and Ap are assembled using the
standard finite-element procedure [19]. The following equations are then repeat-
edly solved and the unknown parameters, stress resultants and interconnection
tractions, and the internal force vectors updated until satisfying accuracy is

achieved:

Ap=-K'g, (56)

i.e. using the Newton-Raphson method. For integration in , and
we use Gauss quadrature with N — 1 points for the layers and Simpson’s
rule with 3 points for the interconnections (for additional information about
numerical integration for the interconnections see [10]).

Solution algorithm has been implemented within the computer package Wol-
fram Mathematica. For the geometrically linear problems presented in [I1] the
solution path is obtained using the modified arc-length procedure [I0], which,
unlike the standard arc-length procedure, was able to overcome the sharp snap-
backs which eventually occur in the load displacement diagram. However, the

procedure sometimes returned to previously obtained equilibrium states (”back-
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tracking”) which was overcome by not taking into account solutions that close
a very sharp angle with the previously obtained equilibrium path, and reducing
the arc-length. If after a certain number of arc-length reductions the conver-
gence to a satisfactory solution still was not obtained, the arc-length would
be then repeatedly increased. In general, we assumed that the procedure has
converged to a solution when the norm of the residual vector is smaller than a
pre-defined tolerance, i.e. |g| < tol. In all numerical examples presented in the
present work tol = 1074,

For the geometrically non-linear problems, obtaining the equilibrium path
using the same method as for the geometrically linear problems has often proven
to be more difficult and sometimes impossible. This has served as the motivation
to propose a new, more robust method, which is based on the principle that the
total damage of the system in delamination problems can only increase (in the
case of ongoing delamination) or at least remain unchanged (when delamination
process has not started, is interrupted or it is over) with each new load step.

To measure the total delamination of the system a ”total damage” parameter

n—1 N. N

gror = Z Z ZQZL(GLS) (57)

a=1lel=1s=1

is introduced, where for an element el and a Simpson’s integration point s,
g (el, s) takes the mean value between the mode I and mode IT damage as
_ gralel,s) + g2.a(el, s)

9o (€l s) = 5 : (58)

According to (32), gin(el,s), i = 1,2, can take values between 0 and 1,
where 0 means no damage, while 1 represents the total damage. Thus, when
total damage is reached in both directions (total mixed-mode delamination) in
an element n and Simpson’s integration point s, we have g7 (el, s) = 1.

In this new, damage-based arc-length procedure, at the start of an analysis
gror = 0 and the solution algorithm uses the standard arc-length procedure
until the value of gror is changed at the beginning of a load step. Then, since

the damage process has obviously started, a new method of choosing the correct
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root X of the arc-length quadratic equation is used (see [20} 2] for more detail
about this issue with standard and modified arc-length procedure). This new
method first checks if al least one root of the quadratic arc-length equation
gives gror which is greater than the gror from the previous load step. If this
is not the case, which means that there is no increase in the total damage of the
system, the standard arc-length procedure is used. If there is only one d A which
gives gror greater than the one from the previous load step, this d\ is taken
to be the correct root as the one which gives the increase of the total damage
of the system. In case when both roots of the arc-length quadratic equation
give solutions which result in an increase in the total damage of the system,
the correct root is taken to be the one which gives smaller norm of the residual
vector (similar as in the modified arc-length method).

Independent of the method used (standard or the new damage-based arc-
length procedure) the arc-length size can be assigned as constant, with occa-
sional reductions when the convergence cannot be achieved, or adaptive, defined

by the following equation:

d
Nit

c(i) = mc@ - 1), (59)

where c(i) is the arc-length size in the current load step i, N is the desired
number of iterations (which is defined at the start of an analysis), N;;(i—1) is the
number of iterations needed to obtain convergence in the previous load step i —1
and ¢(i—1) is the arc-length size from the previous load step. If the convergence
is not obtained after a pre-defined maximum number of iterations N/'**, the
load step is repeated with a reduced arc length ¢” (i) = p1c"~*(4), where 7 is the
ordinal number of the load-step repetition, c°(i) := c(i) and p; < 1 is an arc-
length reduction factor. If after a pre-defined maximum number of arc-length
reductions N;29% there is still no convergence, the arc-length is set to a new,
larger value ¢;(i) = pocj_1(i), where j is the ordinal number of the load-step
repetition with an arc-length increase and po > 1 is an arc-length augmentation

coefficient, and the procedure with arc-length reductions is repeated again for a
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% pre-defined maximum number of arc-length increases Ng,¢. In the numerical

examples presented in the present paper p; = 0.5 and ps = 1.25 are used.

5. Numerical examples

5.1. Single mized-mode delamination

In this example, a so-called ”end-notch flexure” (ENF) specimen is simply

s supported and loaded with two forces Fy} = 0.4535F; and F» causing the mixed-
mode delamination at the interconnection as shown in Fig. This numerical
test was proposed by Mi et al. [3] and also analysed in our previous work [11],

where the geometrically linear model was used.

Fs F2
NOTCH INTERCONNECTION

€
f} ‘ L =50 mm ‘ L =50 mm ‘

Figure 5: End-notch flexure specimen for mixed-mode delamination

375 Geometrical properties of the specimen are shown in Fig. with width
of the beam b; = 1 mm (¢ = 1,2, the beam is modelled as two-layered) and
the notch length ap = 30 mm. Since the material properties for the bulk ma-
terial in [3] were given for the orthotropic material (two Young’s moduli, one
shear modulus and two Poisson’s coefficients), in [I1], as well as in the present

s work, only Young’s modulus in the longitudinal direction and the shear modu-
lus in the corresponding transverse direction are used and given as F; = 135300
N/m? and G; = 5200 N/mm?, i = 1,2, respectively. The material properties
for the interconnection are wg; = 57 N/mm?, do; = 1077 mm, d.; = 0.14 mm
and S; = 5.7-10% N/mm?, j = 1,2. In this example, the damage-based arc-

ss  length procedure presented in Section 4 is used with adaptive arc-length and
c(0) = 1073, N = 15, N/pa® = 25 N™ma = 10, N = 10. The reference

red aug
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axes of both layers are positioned at the plane of the interconnection (a1 = hy

and az = 0) and 80 equal linear two-layer beam finite elements are used.

Since in our previous work [1I] we noted that the displacements at the end
of the equilibrium path reported in [3] considerably exceeded the limit of small
displacements and rotations (displacements up to 40% of the total length of the
beam), we have found quite interesting to investigate if the use of geometrically
exact formulation has any significant influence on the results. In fact, the differ-
ences are very pronounced, as can be noticed in Fig. [6] where the displacements
of the reference axis of the upper layer at the left-hand end obtained by both the
geometrically linear and the geometrically non-linear formulation are plotted.
It should be noticed that, in contrast to the geometrically linear formulation, in
the geometrically exact formulation the horizontal displacement of the free end
of the upper layer also exists and even for the range of loading values in [3] [11]

takes considerable values (cca 20% of the value of the vertical displacement for

Fy =20 N).
40 7
'l
I'
35 : = =Llinear v(0)
1 .
:'I —Non-linear v(0)
30 1 ==-Non-linear u(0)
III
/
’
25 s
’
,I
z 2 -
-:- 20 "’ - -
v " :" - -~ -
15 1N 4 -7
AWy e
I = -
]
10
d
i
5
0
0 5 10 15 20 25 30 35 40

u(0), v(0) [mm]

Figure 6: Results for the mixed-mode delamination test on the ENF specimen obtained using

both geometrically linear and non-linear multi-layer beam models
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Fig. [f] shows only a part of the diagram which we obtain using the geomet-
rically exact model for which F; = 0.4535F, < 40N. If we continue to increase
the forces Fy and F5 further, the system behaves as shown in Fig. [} It can
be observed that the force Fj reaches the peak at about 136 N, but the ver-
tical displacement never reaches 40 mm shown in Fig. [0] as obtained for the
geometrically linear case. In contrast to the geometrically linear analysis, in
geometrically non-linear analysis the distance between forces F and F5 reduces
as they increase. The force F5 causes bending of the beam, while the force F is
responsible for the mixed-mode delamination at the interconnection. It is very
important to note that in the geometrically linear case the bending moment in
the upper layer at the mid-span is equal to F; L, whereas in the geometrically
non-linear case it gets progressively smaller than F; L as the loading increases.
For this reason, in the latter case the vertical displacement of the left-hand end
of the upper layer necessarily becomes bounded, and so does the mode 1 crack
propagation, too. After the crack reaches the midspan, a significant increase in
the force F} is needed to obtain further delamination progress and the left-hand
side end of the upper layer is actually decreasing as the midspan deflection of
the whole beam increases. In Fig. [7] can be also noted that the right-hand side
support slides and approaches the left-hand side support as the beam deforms,
reducing the span of the beam. It can be concluded that this example, which is
often reported in the literature, has to be treated as geometrically non-linear,
especially when the vertical displacement at the free end of the upper layer

exceeds cca 10% of the total beam length (see Fig. @

5.2. Double mized-mode delamination

This example, first proposed by Robinson et al. [22] and later investigated
by Alfano & Crisfiled [10] 23], was also reported in our previous work [I1], where
we obtained an excellent agreement of the results using significantly less degrees
of freedom. The original HTA913 specimen is originally made of 24 layers of
equal thickness, but since the connections between all layers are assumed to

be rigid wherever they exist, the structure is modelled as a three-layer beam
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Figure 7: Behaviour of the ENF specimen under large displacements and rotations

with two interconnections in the planes where the initial cracks are positioned

s and expected to propagate. Fig. [8| shows the geometry of the specimen, where

hi =

1.325 mm, he = 0.265 mm, hy =

= 1.59 mm and width b; = 20 mm,

i = 1,2,3 (note different length and height scales in Fig. . The reference

axes of all layers coincide with their centroidal axes, i.e. a; = 0.5h;, 1 = 1,2, 3.

The support at the bottom of the left-hand side keeps the bottom layer fixed

440

(allowing only rotation), while the upper layer can slide in only the vertical

direction under the load F. As it was reported in [I1], as the force F' increases,

first the upper crack propagates and, when the horizontal position of its tip

reaches the bottom crack, both cracks continue to propagate simultaneously.

It was also noticed that, before it starts to propagate, compressive contact

s tractions occur at the bottom crack.

The orthotropic material properties for HTA913 given in [22] are adapted
for the beam model as E; = 115.0 GPa, G; = 4.5 GPa, (i = 1,2, 3), whereas for

the interconnection, according to [23] three sets of material properties are used
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Figure 8: Double mixed-mode delamination specimen (all dimensions are in mm)

(see Table [I).

Table 1: Material properties of the interconnection for the double mixed-mode delamination

example
Case  Geia Geta doja/deja  Wol,a  Woza  doja  deja S1a S2.a
[N/mm] [N/mm] [MPa] [MPa] [mm] [mm] [N/mm3] [N/mm?|
A 0.8 0.33 5.107° 8.0 3.3 1.1075 0.2 8:10° 3.3-10°
B 0.8 0.33 1.25:1073 40.0 16.5 5107° 0.04 810° 3.3-10°
C 0.8 0.33 51073 80.0 33.0  1.107*  0.02 8-10° 3.3-10°
450 The meshing is this example is performed as in [I1], where two different

meshes of quadratic three-layer beam finite elements are used: mesh 1 for ma-

terial case A and mesh 2 for material cases B and C (see Table [2).

Table 2: Finite-element meshes for the double mixed-mode delamination example with differ-

ent material properties for the interconnection

Zone 1 Zone 2 Zone3 Zone4d Zoned Total

Length [mm)] 40 20 20 50 20 150
Initial crack a=2 none a=1 none none
Mesh 1 / No. of FE 2 20 20 50 ) 97
Mesh 2 / No. of FE 4 40 40 100 5 189

In the numerical simulations for both the geometrically linear and non-
linear analysis a constant arc-length ¢ = 5 is used with occasional reductions

w5 (1 = 0.5), while the maximum number of iteration N/***, the maximum num-
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ber of arc-length reductions N?5* and the maximum number of arc-length
augmentations N %% are set to Nj'* = 50, N2G* = 15 and Ng¢* = 10. To

reach the value of the vertical displacement of the left-hand end of the upper
layer v3(0) = 35 mm (see Figs. we need 193, 326 and 510 load steps for the
geometrically linear analysis, and 318, 518 and 1426 load steps for the geometri-
cally non-linear analysis, respectively for the cases A, B and C. Using the above
arc-length, the algorithm jumps over certain parts of the load-displacement di-
agram (including spurious oscillations) without losing convergence, but many
times the arc-length has had to be reduced (one or more times) in order to
obtain convergence. Every reduction of the arc-length basically increases the
number of the load steps needed to complete the analysis and there are more
reductions in the geometrically non-linear analysis. From Figs. |911] we can
note that spurious oscillations for cases B and C are larger than for the case A,
although the FE meshes used for cases B and C are twice denser than the one
used for the case A. This means that the material model of the interconnection
has more influence on the spurious oscillations than the finite-element length
itself (see Tabs. [I|and . Obviously, larger oscillations demand more load steps
because the total length of the equilibrium path is longer (especially for the case
C). However, in comparison with the geometrically linear analysis, the spurious

oscillations for each case are smaller.

The results of the multi-layer beam model for the geometrically linear anal-
ysis for this example have been already compared with the results from the
literature (see [II] for details) where it was concluded that the the presented
model gives comparable accuracy using significantly less degrees of freedom. In
this work we further analyse how the introduction of geometrical non-linearity
affects the results in this example where the displacements and rotations are not
small and the problem itself is rather complex (irregular positions of the initial
cracks, non-symmetric layering). For all three sets of the material parameters
for the interconnection, the difference between the geometrically linear and non-

linear analysis is more pronounced for the parts of the diagram where the bottom
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Figure 9: Applied force F' against the vertical displacement of the left-hand side of the upper

layer v3(0) for the case A of the material parameters
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Figure 10: Applied force F' against the vertical displacement of the left-hand side of the upper

layer v3(0) for the case B of the material parameters

initial crack has propagated (the part with v3(0) in the region from cca. 7 to
35 mm). In addition, only for the case A the equilibrium path after v3(0) ~ 19
mm in the geometrically non-linear analysis is quite different in comparison not

only to that in the geometrically linear analysis, but to the experiment as well.
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Figure 11: Applied force F' against the vertical displacement of the left-hand side of the upper

layer v3(0) for the case C of the material parameters

The exact kinematic equations and the new definition of the directions for
the delamination modes I and II —, in combination with the material
parameters of the interconnection, for the case A result in a behaviour where
the bottom initial crack for v3(0) between cca. 7 and 19 mm opens and then
closes again, but does not continue to propagate to the right-hand side for larger
values of v3(0) (only the upper crack continues to propagate). Using a denser
mesh (Mesh 2 from Table for the case A gives exactly the same behaviour (not
shown). Obviously, the material properties of the interconnection given for the
case A do not model the real behaviour obtained by the experiment accurately.
In contrast to the geometrically linear analysis, the overall results of which have
turned out to be largely insensitive to the variation of the material properties
of the interconnection described by the cases A, B and C, in the geometrically
non-linear analysis this can be asserted only for the variation of the material
parameters lying int the range defined by the cases B and C. We can conclude
that in this example the case B is the most suitable both in geometrically linear
and non-linear analysis because of its rather good agreement with the experi-

mental results and acceptable size of the spurious oscillations (although Mesh
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2 is used). In addition, it is useful to note that for the range of values of v3(0)
between cca. 7 and 35 mm the actual response of the specimen lies between the

predictions of the linear and the non-linear analysis for both case B and case C.

5.8. Buckling of a double-cantilever beam

Allix and Corigliano [24] proposed an example where the layers of a double-
cantilever beam (DCB) were loaded by two compressional axial forces which
caused buckling of the layers and crack propagation along the interconnection
(see Fig. . The width of the specimen was b = b; = 1 mm and the material
properties for the layers read E; = 135000 N/mm? and G; = 5700 N/mm?,
1 =1,2. Two perturbational forces Fy = 0.001 N were applied on each layer to
induce the buckling in the desired direction. Since the geometrical and material
properties of the layers, as well as the applied loading, were symmetric with
respect to the plane of interconnection, pure mode I delamination occurred as
the initial cracks began to propagate. For the interconnection, the following
material parameters were given: S; = 10 N/mm?, wp; = 50 N/mm? and a
set of fracture energies G.1 = {0.2,0.4,0.8,1.6} N/mm with the corresponding
separations at the complete damage d.; = {0.008,0.016,0.032,0.064} mm. No

data regarding the FE mesh used in the analysis were given in [24].

7 INTERCONNECTION NOTCH Fo T

____________ _ B
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o I 1
) 20 mm |

Figure 12: Specimen for buckling in a DCB

The example is here run using the proposed algorithm, where first the forces
Fp are applied to obtain the initial deformed configuration and then the damage-
based modified arc-length procedure is applied (as presented in Section 4), where

only the load F is variable, while Fy is kept constant. After the first load step,
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where arc-length is ¢(1) = 0.001, the arc-length is changed in each load step ac-
cording to with Nﬁ =15, N;jj** =25, N72g* =10, Ngye® =10, pg = 0.75,
p2 = 1.5 and a constraint c(i) < 2, ¢ > 1. 200 linear two-layer beam finite ele-
ments are used in the analysis, where the reference axes of each layer coincide

with their centroidal axes (a; = 0.5h;, i = 1,2) in order to avoid eccentricity of

the axial loads.

The present model, where the exact geometrical non-linearity is accounted
for, is compared to the model presented by Allix and Corigliano [24], where
geometrical non-linearity is introduced in a multi-layer beam model only as an
influence of transversal displacements on axial strains (the second-order theory).
In Fig. where the displacement of the free end of the upper layer vo(L) is
plotted against the applied force F', for both cases we can observe the same
behaviour at the beginning of the process, where we have an almost vertical line
(very small change of displacement with increasing the load F) before reach-
ing the buckling force somewhere around 2 N. After the buckling has started
it can be noticed that the displacement rapidly increases with a slowly increas-
ing force F. At a certain point, depending on the material properties of the
interconnection, the buckling deformation of individual layers damages the in-
terconnection, which is presented by the softening branches in Fig. There
is also a graph presenting how the system would behave if the interconnection
were completely rigid (G. = co), where it can be noted that the non-physical
displacement v9(L) > 10 mm, obtained by the model presented in [24], cannot
be obtained using the geometrically exact formulation presented in this work
even for F' > 3 N. The differences between the two models, as expected, are
more pronounced for larger displacements, especially in the case where the in-

terconnection is completely rigid.
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Figure 13: Comparison of the results for the buckling of the DCB specimen

6. Conclusions and future work

In this work we have proposed a geometrically exact multi-layer beam finite
element formulation with interconnection allowing for mixed-mode delamina-
tion. The formulation is given in a general form where the number of layers
and nodes of the beam finite elements is arbitrary, as well as the geometrical
parameters for the layers and the interconnections, while the constitutive laws
are assumed to be linear elastic for the layers and a bi-linear mixed-mode dam-
age law for the interconnection. In order to solve numerical problems that are,
due to the introduction of the exact kinematic equations, more complex and
numerically demanding, we have proposed a new modification of the arc-length
method, where the standard arc-length procedure is used only when there is
no damage at the interconnection, else in each load step the converged solution
has to result in an increase in the total damage of the system. In the numeri-
cal examples, we have shown that using the geometrically linear formulation in

cases when the displacements of the system are moderate to large can lead to
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significant differences in the results. On the other hand, for examples that can
be solved using only geometrically non-linear formulations (e.g. DCB buckling
in Section 5.3), we have shown that the proposed geometrically exact formu-
lation gives significant differences in the results compared to the second-order
beam theory in the post-critical region. Since the presented geometrically exact
formulation is more accurate, gives considerable differences in the results and is
not significantly computationally expensive than the other formulations used in
our comparisons, it can be successfully applied to all types of planar delamina-
tion problems. The geometrically linear formulations, as shown in the examples
presented in the present work, can be used with satisfactory accuracy only in
limited number of cases where displacements and rotations remain small.

The presented model will be further developed by introducing rate-dependence
into the interface’s cohesive law (see [25] and [26]). Other developments may
include the introduction of material non-linearity (such as plasticity or hyper-
elasticity) in the layers and application of some higher-order beam theories which
would allow warping of the layers’ cross-sections and non-linear stress distribu-
tion over layers’ height. It is also possible to introduce layers with deformable
thickness where strains and stresses transverse to layer’s reference axes appear

(see [27] for application in multi-layer beams with rigid interconnection).
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