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Abstract. The process-based biogeochemical model Biome-
BGC was enhanced to improve its ability to simulate car-
bon, nitrogen, and water cycles of various terrestrial ecosys-
tems under contrasting management activities. Biome-BGC
version 4.1.1 was used as a base model. Improvements in-
cluded addition of new modules such as the multilayer soil
module, implementation of processes related to soil mois-
ture and nitrogen balance, soil-moisture-related plant senes-
cence, and phenological development. Vegetation manage-

ment modules with annually varying options were also im-
plemented to simulate management practices of grasslands
(mowing, grazing), croplands (ploughing, fertilizer applica-
tion, planting, harvesting), and forests (thinning). New car-
bon and nitrogen pools have been defined to simulate yield
and soft stem development of herbaceous ecosystems. The
model version containing all developments is referred to as
Biome-BGCMuSo (Biome-BGC with multilayer soil mod-
ule; in this paper, Biome-BGCMuSo v4.0 is documented).
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Case studies on a managed forest, cropland, and grassland
are presented to demonstrate the effect of model develop-
ments on the simulation of plant growth as well as on carbon
and water balance.

1 Introduction

The development of climate models has led to the construc-
tion of Earth system models (ESMs) with varying degrees of
complexity where the terrestrial carbon cycle is included as a
dynamic sub-model (Ciais et al., 2013). In some of the ESMs,
the atmospheric concentration of carbon dioxide (CO2) is no
longer prescribed by the emission scenarios but it is calcu-
lated dynamically as a function of anthropogenic CO2 emis-
sion and the parallel ocean and land surface carbon uptake.
Focusing specifically on land surface, the carbon balance of
terrestrial vegetation can be quantified by state-of-the-art bio-
geochemical models and are integral parts of the ESMs.

At present, there is no consensus on the future trajectory of
the terrestrial carbon sink (Fig. 6.24 in Ciais et al., 2013; see
also Friedlingstein et al., 2014). Some ESMs predict satura-
tion of the land carbon sink in the near future while others
show that the uptake will stay on track with the increasing
CO2 emission. This means a considerable uncertainty is re-
lated to the climate–carbon cycle feedback (Friedlingstein et
al., 2006; Friedlingstein and Prentice, 2010). The wide range
of model data related to the land carbon sink means that the
current biogeochemical models have inherent uncertainties
which must be addressed.

Biogeochemical models need continuous development to
include empirically discovered processes and mechanisms,
e.g., acclimation processes describing the dynamic responses
of plants to the changing environmental conditions (Smith
and Dukes, 2012), regulation of stomatal conductance under
elevated CO2 concentration (Franks et al., 2013), drought ef-
fect on vegetation functioning (van der Molen et al., 2011),
soil moisture control on ecosystem functioning (Yi et al.,
2010), and other processes. Appropriate description of hu-
man intervention is also essential to adequately quantify lat-
eral carbon fluxes and net biome production (Chapin et al.,
2006). Staying on track with the new measurement-based
findings is a challenging task but necessary to improve our
ability to simulate the terrestrial carbon cycle more accu-
rately.

The process-based biogeochemical model Biome-BGC
is the focus of this study. The model was developed by
the Numerical Terradynamic Simulation Group (NTSG), at
the University of Montana (http://www.ntsg.umt.edu/project/
biome-bgc), and is widely used to simulate carbon (C), ni-
trogen (N), and water fluxes of different terrestrial ecosys-
tems such as deciduous and evergreen forests, grasslands,
and shrublands (Running and Hunt, 1993; Thornton, 1998;

Thornton et al., 2002; Churkina et al., 2009; Hidy et al.,
2012).

Biome-BGC is one of the earliest biogeochemical models
that include an explicit N cycle module. It is now clear that
climate–carbon cycle interactions are affected by N avail-
ability and the CO2 fertilization effect can be limited by
the amount of N in ecosystems (Friedlingstein and Prentice,
2010; Ciais et al., 2013). Therefore, the explicit simulation
of the N cycle is an essential part of these biogeochemical
models (Thornton et al., 2007; Thomas et al., 2013).

Several researchers used and modified Biome-BGC in the
past. Without being exhaustive, here we review some major
applications on forest ecosystems, grasslands, croplands, ur-
ban environment, and we also list studies that focused on the
spatial application of the model on regional and global scales.

Vitousek et al. (1988) studied the interactions in forest
ecosystems such as succession, allometry, and input–output
budgets using Biome-BGC. Nemani and Running (1989)
tested the theoretical atmosphere–soil–leaf area hydrologic
equilibrium of forests using satellite data and model simula-
tion with Biome-BGC. Korol et al. (1996) tested the model
against observed tree growth and simulated the 5-year growth
increments of 177 Douglas fir trees growing in uneven-aged
stands. Kimball et al. (1997) used Biome-BGC to simulate
the hydrological cycle of boreal forest stands. Thornton et
al. (2002) improved the model to simulate harvest, replant-
ing, and forest fire. Churkina et al. (2003) used Biome-
BGC to simulate coniferous forest carbon cycle in Europe.
Pietsch et al. (2003) developed Biome-BGC in order to take
into account the effect of water infiltration from groundwa-
ter and seasonal flooding in forest areas. Bond-Lamberty et
al. (2005) developed Biome-BGC-MV to enable simulation
of forest species succession and competition between vege-
tation types. Vetter et al. (2005) used Biome-BGC to sim-
ulate the effect of human intervention on coniferous forest
carbon balance. Schmid et al. (2006) assessed the accuracy
of Biome-BGC to simulate forest carbon balance in cen-
tral Europe. Tatarinov and Cienciala (2006) further improved
the Biome-BGC facilitating management practices in forest
ecosystems (including thinning, felling, and species change).
Merganičová et al. (2005) and Petritsch et al. (2007) im-
plemented forest management in the model including thin-
ning and harvest. Bond-Lamberty et al. (2007a) implemented
elevated groundwater effect on stomatal conductance and
decomposition in Biome-BGC, and then simulated wildfire
effects across a western Canadian forest landscape (Bond-
Lamberty et al., 2007b). Chiesi et al. (2007) evaluated the
applicability of Biome-BGC in drought-prone Mediterranean
forests. Turner et al. (2007) used Biome-BGC to estimate
the carbon balance of a heterogeneous region in the west-
ern United States. Ueyama et al. (2010) used the model to
simulate larch forest biogeochemistry in east Asia. Maselli
et al. (2012) used the model to estimate olive fruit yield in
Tuscany, Italy. Hlásny et al. (2014) used Biome-BGC to sim-
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ulate the climate change impacts on selected forest plots in
central Europe.

Di Vittorio et al. (2010) developed Agro-BGC to simulate
the functioning of C4 perennial grasses including a new dis-
turbance handler and a novel enzyme-driven C4 photosyn-
thesis module.

Wang et al. (2005) applied Biome-BGC to simulate crop-
land carbon balance in China. Ma et al. (2011) developed
ANTHRO-BGC to simulate the biogeochemical cycles of
winter crops in Europe, including an option for harvest and
considering allocation to yield.

Trusilova and Churkina (2008) applied Biome-BGC to es-
timate the carbon cycle of urban vegetated areas.

Lagergren et al. (2006) used Biome-BGC to estimate the
carbon balance of the total forested area in Sweden. Mu et
al. (2008) used Biome-BGC to estimate the carbon balance
of China. In the paper of Jochheim et al. (2009), forest car-
bon budget estimates were presented for Germany based on a
modified version of Biome-BGC. Barcza et al. (2009, 2011)
used Biome-BGC to estimate the carbon balance of Hungary.
Eastaugh et al. (2011) used Biome-BGC to estimate the im-
pact of climate change on Norway spruce growth in Aus-
tria. Biome-BGC was used within the CARBOEUROPE-IP
project as well as in several studies exploiting the related
European-scale simulation results (e.g., Jung et al., 2007a,
b; Vetter et al., 2008; Schulze et al., 2009; Ťupek et al., 2010;
Churkina et al., 2010).

Hunt et al. (1996) used Biome-BGC in a global-scale
simulation and compared the simulated net primary produc-
tion (NPP) with satellite-based vegetation index. Hunt et
al. (1996) also used an atmospheric transport model cou-
pled with Biome-BGC to simulate surface fluxes to estimate
the distribution of CO2 within the atmosphere. Churkina et
al. (1999) used Biome-BGC in a global-scale multimodel in-
tercomparison to study the effect of water limitation on NPP.
Churkina et al. (2009) used Biome-BGC in a coupled sim-
ulation to estimate the global carbon balance for the present
and up to 2030. Biome-BGC is used in the Multiscale synthe-
sis and Terrestrial Model Intercomparison Project (MsTMIP)
(Huntzinger et al., 2013; Schwalm et al., 2010) as part of the
North American Carbon Program.

In spite of its popularity and proven applicability, the
model development temporarily stopped at version 4.2. One
major drawback of the model was its relatively poor perfor-
mance in the simulation of the effect of management prac-
tices. It is also known that anthropogenic effects have a ma-
jor role in the transformation of the land surface in large spa-
tial scales (Vitousek et al., 1998). Some structural problems
also emerged, like the simplistic soil moisture module (us-
ing one soil layer), lack of new structural developments (see,
e.g., Smith and Dukes, 2012), problems associated with phe-
nology (Hidy et al., 2012), and lack of realistic response of
ecosystems to drought (e.g., senescence).

Our aim was to improve the model by targeting significant
structural development, and to create a unified, state-of-the-

art version of Biome-BGC that can be potentially used in
Earth system models, as well as in situations where manage-
ment and water availability play an important role (e.g., in
semi-arid regions) in biomass production. The success and
widespread application of Biome-BGC can be attributed to
the fact that Biome-BGC strikes a great balance between pro-
cess fidelity and tractability: it is relatively easy to use and
run, even for non-specialists, but still yields interesting in-
sights. The success can also be attributed to the open-source
nature of the model code. Following this tradition, we keep
the developed Biome-BGC open source. In order to support
application of the model, a comprehensive user guide was
also compiled (Hidy et al., 2015).

In the present work, the scientific basis of the develop-
ments is presented in detail, followed by verification studies
in different ecosystems (forest, grassland, and cropland) to
demonstrate the effect of the developments on the simulated
fluxes and pools.

2 Study sites

Model developments were motivated by the need to improve
model simulation for grasslands, croplands, and forests.
Here, we demonstrate the applicability of the developed
model at three sites on three different plant functional types
characterized by contrasting management, climate, and site
conditions.

2.1 Grassland/pasture

The large pasture near Bugacpuszta (46.69◦ N, 19.60◦ E;
111 m a.s.l.) is situated in the Hungarian Great Plain, cover-
ing an area of 1074 ha. The study site (2 ha) has been used as
pasture for the last 150 years according to archive army maps
from the 19th century. The soil surface is characterized by an
undulating microtopography formed by winds within an ele-
vation range of 2 m. The vegetation is highly diverse (species
number over 80) dominated by Festuca pseudovina Hack. ex
Wiesb., Carex stenophylla Wahlbg., Cynodon dactylon (L.)
Pers., and Poa spp.

The average annual precipitation is 562 mm and the annual
mean temperature is 10.4 ◦C. According to the FAO classi-
fication (Driessen et al., 2001) the soil type is chernozem
with a rather high organic carbon content (51.5 g kg−1 for
the 0–10 cm top soil; Balogh et al., 2011). The soil texture
is sandy loamy sand (sand content 78 %, silt content 9 % in
the 0–10 cm soil layer). The pasture belongs to the Kiskun-
ság National Park and has been under extensive grazing by
a Hungarian grey cattle herd in the last 20 years. Stocking
density was 0.23–0.58 animal ha−1 during the 220-day graz-
ing period between 2004 and 2012.

Carbon dioxide (CO2) and latent heat flux (LHF) have
been measured by the eddy-covariance (EC) technique. Con-
tinuous measurements began in 2003 and they are used in
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this study as input and verification data (Nagy et al., 2007,
2011). The EC station has a measurement height of 4 m
and is equipped with a CSAT3 (Campbell Scientific) sonic
anemometer and a LI-7500 open-path infrared gas analyzer
(IRGA; LI-COR Inc., Lincoln, NE, USA). Air temperature,
relative humidity, precipitation, global radiation, and soil
temperature are also monitored. Soil water content is mea-
sured by CS616 (Campbell Scientific, Shepshed, Leicester-
shire, UK) probes. Two probes were inserted horizontally at
3 and 30 cm depth and one was inserted vertically averaging
the soil water content of the upper 30 cm soil layer. For model
evaluation, measured soil water content at 30 cm depth was
used.

Data processing includes spike detection and removal fol-
lowing Vickers and Mahrt (1997) and linear detrending to
calculate fluctuations from the raw data. To avoid errors
caused by the flow disturbance effect of the sensor heads, the
correction proposed by van der Molen et al. (2004) was ap-
plied. The planar fit method (Wilczak et al., 2001) was used
to correct for sonic anemometer tilt. Crosswind correction
was applied for sensible heat flux calculation after Liu et
al. (2001). The Webb–Pearman–Leuning correction (WPL;
Webb et al., 1980) was used to consider the effect of fluctu-
ations in air density on the fluxes. Frequency response cor-
rections were applied after Moore (1986) to account for the
damping effect of sensor line averaging, lateral separation
between the IRGA and the sonic anemometer, and the lim-
ited time response of the sensors. The gap-filling and flux
partitioning methods are based on the nonlinear function be-
tween photosynthetically active photon flux density (PPFD)
and daytime CO2 fluxes, and temperature and nighttime CO2
fluxes (Reichstein et al., 2005).

2.2 C4 cropland

Three production-scale cropland measurement sites were es-
tablished in 2001 at the University of Nebraska Agricultural
Research and Development Center near Mead, Nebraska,
USA, which are the part of the AmeriFlux (http://ameriflux.
ornl.gov/) and the FLUXNET global network (http://fluxnet.
ornl.gov/). Mead1 (41.17◦ N, 96.48◦W; 361 m a.s.l.; 48.7 ha)
and Mead2 (41.16◦ N, 96.47◦W; 362 m a.s.l.; 52.4 ha) are
both equipped with center pivot irrigation systems. Mead3
(41.18◦ N, 96.44◦W; 362 m a.s.l.; 65.4 ha) relies on rainfall.
Maize is planted each year at Mead1, while Mead2 and
Mead3 are in a maize–soybean rotation.

On the Mead sites, the annual average temperature is
10.1 ◦C and the mean annual precipitation total is 790 mm.
Soil at the site is deep silty clay loam consisting of four
soil series: Yutan (fine–silty, mixed, superactive, mesic Mol-
lic Hapludalfs), Tomek (fine, smectitic, mesic Pachic Argial-
bolls), Filbert (fine, smectitic, mesic Vertic Argialbolls), and
Fillmore (fine, smectitic, mesic Vertic Argialbolls).

The CO2 and energy fluxes are measured by an EC system
using an omnidirectional three-dimensional sonic anemome-

ter (model R3, Gill Instruments Ltd., Lymington, UK),
an open-path infrared CO2 /H2O gas analyzer (model LI-
7500: LI-COR Inc., Lincoln, NE, USA), and a closed-path
CO2 /H2O system (model LI-6262: LI-COR Inc., Lincoln,
NE, USA). The sensors were mounted 3 m above the ground
when the canopy was shorter than 1 m, and later moved to a
height of 6 m until harvest when maize was planted (Suyker
et al., 2004; Verma et al., 2005).

Raw EC data processing included correction of fluxes for
inadequate sensor frequency response (i.e., tube attenuation,
sensor separation; Massman, 1991; Moore, 1986). Fluxes
were adjusted for flow distortion (Nakai et al., 2006) and
the variation in air density due to the transfer of water va-
por (Webb et al., 1980; Suyker et al., 2003).

Air temperature and humidity were measured at 3.0
and 6.0 m height (Humitter50Y, Vaisala, Helsinki, Finland).
PPFD (LI 190SA Quantum Sensor, LI-COR Inc., Lincoln,
NE, USA), net radiation at 5.5 m height (Q*7.1, Radiation
and Energy Balance Systems Inc., Seattle, WA, USA), and
soil heat flux (0.06 m depth; Radiation and Energy Balance
Systems Inc.) were also measured (Verma et al., 2005). Soil
water content measured at 0.1 m depth was used in this study
(ML2 Thetaprobe, Delta T Devices Ltd, Cambridge, UK).

Green leaf area index (LAI) was determined from destruc-
tive sampling. A LI-COR 3100 (LI-COR Inc., Lincoln, NE,
USA) leaf area meter was used to measure sampled leaves.
Each sampling was from six 1 m row samples from six parts
of the field. Aboveground biomass was determined using
destructive plant sampling. Plants were cut off at ground
level, brace roots were removed, and plants were placed in
fine mesh bags. Plants were dried to constant weight. Sub-
sequently, the mass of green leaves, stems, reproductive or-
gans, and senesced tissue was determined on a per-plant ba-
sis. Measured plant populations were used to convert from
per-plant basis to a unit-ground-area basis.

The Mead1 site was under no-till management prior to the
harvest of 2005. Currently, there is a fall conservation tillage
for which approximately one-third of the crop residue is left
on the surface. From 2010 to 2013, for a biomass removal
study, management at Mead2 was identical to Mead1 (con-
tinuous maize, fall conservation tillage, etc.). Management
settings of the simulations were based on site records. In this
study, the Mead1 site is used for model evaluation.

2.3 Deciduous broad-leaved forest

The Jastrebarsko site (45.62◦ N, 15.69◦ E; 115 m a.s.l.) is a
forest study site situated in a lowland oak forest that is part
of the state-owned Pokupsko basin forest complex, located
approximately 35 km southwest of Zagreb (Croatia). The for-
est compartment where the EC tower for CO2 flux measure-
ment is located was a 37-year-old mixed stand dominated by
Quercus robur L. (58 %) accompanied by other tree species,
namely Alnus glutinosa (L.) Gaertn. (19 %), Carpinus betu-
lus L. (14 %), Fraxinus angustifolia Vahl. (8 %), and others
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(1 %). Corylus avellana L. and Crataegus monogyna Jacq.
are common in the understory. Oak forests in this area are
managed in 140-year rotations. Stands are thinned once ev-
ery 10 years ending with regeneration cuts during the last
10 years of the rotation (two or three), aimed at facilitating
natural regeneration of the stand and continuous cover of the
soil.

Annual mean temperature was 10.6 ◦C and average an-
nual precipitation was 962 mm during the period of 1981–
2010 (data from the National Meteorological and Hydro-
logical Service for the Jastrebarsko meteorological station).
The average annual depth to the groundwater ranges from 60
to 200 cm (Mayer, 1996). Groundwater level in a 4 m deep
piezometer was measured weekly during the vegetation sea-
son from 2008 onwards. The forest is partly flooded with
stagnating water during winter and early spring due to the
heavy soil present at the site. Soil is generally Gleysol with
low water conductivity (Mayer, 1996), and according to the
World Reference Base for Soil Resources (WRB, 2006), it is
classified as Luvic Stagnosol. The soil texture is dominantly
clay with 18 % of sand and 28 % of silt fraction in the 0–
30 cm top soil layer (Mayer, 1996).

Carbon dioxide and latent heat flux have been measured by
the EC technique since September 2007 (Marjanović et al.,
2011a, b). The measurement height at the time of installation
was 23 m above ground (3–5 m above the top of the canopy).
Since the forest stand grew, the measurement height was el-
evated to 27 m in April 2011. The EC system was made up
of a sonic anemometer (81 000 V, R.M. Young, USA) and an
open-path IRGA (LI-7500, LI-COR Inc., Lincoln, NE) with
a sampling rate of 20 Hz. Meteorological measurements in-
cluded soil temperature, incoming shortwave radiation, in-
coming and outgoing PPFD, net radiation, air temperature
and humidity, soil heat flux, and total rainfall. Soil water con-
tent was measured at 0–30 cm depth using two time-domain
reflectometers (Marjanović et al., 2011a).

Raw data processing of EC data was made using EdiRe
Data Software (University of Edinburgh, United Kingdom)
according to the methodology based on the EuroFlux proto-
col (Aubinet et al., 2000) with a further adjustment such as
the WPL correction (Webb et al., 1980). Quality control was
performed after Foken and Vichura (1996). Net ecosystem
exchange (NEE) was obtained after taking into account the
storage term which was calculated using a profile system de-
signed to make sequential CO2 concentration measurements
(IRGA, SBA-4, PP Systems) from six heights in a 6 min cy-
cle. Quality assessment and quality control was made accord-
ing to Foken and Vichura (1996). Gap-filling of missing data
and NEE flux partitioning to gross primary production (GPP)
and total ecosystem respiration (TER) was made using online
EC data gap-filling and flux partitioning tools (http://www.
bgc-jena.mpg.de/~MDIwork/eddyproc/) using the method of
Reichstein et al. (2005).

Jastrebarsko forest stand characteristics data include diam-
eter at breast height (dbh) and volume distribution by tree

species, weekly tree stem and annual height increment, tree
mortality, phenology data, annual litterfall, litterfall C and
N content, fine root biomass, net annual root-derived car-
bon input, soil texture, and carbon content (Marjanović et
al., 2011b; Ostrogović, 2013; Alberti et al., 2014). Data were
used either as input in modeling (e.g., groundwater level),
for assessing some of the model parameters (e.g., phenol-
ogy data) or model evaluation (e.g., EC fluxes, tree increment
measurements).

3 Description of base model: Biome-BGC 4.1.1 MPI

Our model developments started before Biome-BGC 4.2 was
published. The starting point was Biome-BGC v4.1.1 with
modifications described in Trusilova et al. (2009). We re-
fer to this model as Biome-BGC v4.1.1 MPI version (MPI
refers to the Max Planck Institute in Jena, Germany) or orig-
inal Biome-BGC. Biome-BGC v4.1.1 MPI version was de-
veloped from the Biome-BGC family of models (Thornton,
2000). Biome-BGC is the extension and generalization of the
Forest-BGC model to describe different vegetation types in-
cluding C3 and C4 grasslands (Running and Coughlan, 1988;
Running and Gower, 1991; Running and Hunt, 1993; Thorn-
ton, 2000; White et al., 2000; Trusilova et al., 2009).

Biome-BGC uses a daily time step. The model is driven by
daily values of minimum and maximum temperatures, pre-
cipitation, daytime mean global radiation, and daylight aver-
age vapor pressure deficit (VPD). In addition, Biome-BGC
uses site-specific data (e.g., soil texture, site elevation, lat-
itude), and ecophysiological data (e.g., maximum stomatal
conductance, specific leaf area, C : N mass ratios in different
plant compartments, allocation of related parameters) to sim-
ulate the biogeochemical processes of the given biome. The
main simulated processes are photosynthesis, evapotranspi-
ration, allocation, litterfall, and C, N, and water dynamics in
the litter and soil (Thornton, 2000).

The three most important blocks of the model are the phe-
nological, the carbon flux, and the soil flux block. The phe-
nological block calculates foliage development and therefore
affects the accumulation of C and N in leaf, stem (if present),
root and consequently the amount of litter. In the carbon
flux block, gross primary production of the biome is calcu-
lated using Farquhar’s photosynthesis routine (Farquhar et
al., 1980) and the enzyme kinetics model based on Woodrow
and Berry (1988). Autotrophic respiration is separated into
maintenance and growth respirations. In addition to temper-
ature, maintenance respiration is calculated as the function
of the N content of living plant pools, while growth respira-
tion is a fixed proportion of the daily GPP. The soil block
describes the decomposition of dead plant material (litter)
and soil organic matter, N mineralization, and N balance in
general (Running and Gower, 1991). The soil block uses the
so-called converging cascade model (Thornton and Rosen-
bloom, 2005).
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In Biome-BGC, the main parts of the simulated ecosystem
are defined as plant, soil and litter. As Biome-BGC explicitly
simulates the water, carbon and N balance of the soil–plant
system, the most important pools include leaf (C, N, and wa-
ter), fine root (C, N), soil (C, N, and water), and litter (C,
N). C and N pools have additional sub-pools (i.e., so-called
actual pools, storage pools, and transfer pools). The actual
sub-pools are defined to store the amount of C and N that is
available for growth on a given day. The storage sub-pools
contain the amount of C and N that will appear during the
next year’s growing season (in this sense they are the virtu-
alization of seeds or buds). The transfer sub-pools inherit the
entire content of the storage pools at the end of a given year.

The model simulation has two phases. The first is the
spinup simulation (or, in other words, the self-initialization
or equilibrium run), which starts with a very low initial level
of soil C and N and runs until a steady state is reached under
the given climate in order to estimate the initial values of the
state variables (Thornton, 2000; Thornton and Rosenbloom,
2005). In the second phase, the normal simulation uses the
results of the spinup simulation as initial values for the C and
N pools. This simulation is performed for a given predeter-
mined time period.

4 Methodological results: model adjustments

Some improvements focusing primarily on the development
of the model to simulate carbon and water balance of man-
aged herbaceous ecosystems have already been published
(Hidy et al., 2012). Previous model developments included
structural improvements on soil hydrology and plant phenol-
ogy. Additionally, management modules were implemented
in order to provide more realistic fluxes for managed grass-
lands. We refer to this model version as the modified Biome-
BGC (this is the predecessor of the current model).

Several developments have been made since the publica-
tion of the Hidy et al. (2012) study. The developments were
motivated by multiple factors. Poor agreement of the mod-
ified Biome-BGC with available eddy covariance measure-
ments made in Hungary over two grassland sites (see Hidy
et al., 2012) clearly revealed the need for more sophisticated
representation of soil hydrology, especially at the drought-
prone, sandy Bugac site. Implementation and benchmarking
of the multilayer soil module resulted in several additional
developments related, e.g., to the N balance, soil tempera-
ture, root profile, soil water deficit effect on plant function-
ing, and decomposition of soil organic matter. Lack of man-
agement descriptors within the original Biome-BGC moti-
vated the development of a broad array of possible manage-
ment techniques covering typical grassland, cropland, and
forest management practices. Modeling exercises within in-
ternational projects revealed additional problems that needed
a solution related, e.g., to stomatal conductance (Sándor et
al., 2016). Recently published findings (e.g., simulation of

temperature acclimation of respiration; Smith and Dukes,
2012) also motivated our work on model development. Ad-
dressing the known issues with the Biome-BGC model re-
quired diverse directions, but this was necessary due to the
complex nature of the biogeochemical cycles of the soil–
plant system. Our overarching aim was to provide a state-
of-the-art biogeochemical model that is in the same league
as currently available models, such as LPJmL, ORCHIDEE,
CLM, JULES, CASA, and others.

The model that we present in this study is referred to
as Biome-BGCMuSo (abbreviated as BBGCMuSo, where
MuSo refers to a multilayer soil module). Currently, BBGC-
MuSo has several versions but hereafter only the latest ver-
sion (4.0) is discussed.

In this paper, we provide detailed documentation of all
changes made in the model logic compared to the origi-
nal model (Biome-BGC v4.1.1). Here, we briefly mention
the previously published developments and we provide de-
tailed descriptions concerning the new features. In order to
illustrate the effect and the importance of the developments,
model evaluations are presented for three contrasting sites
equipped with EC measurement systems in Sect. 5.

Due to the modifications of the model structure and the
implementation of the new management modules, it was nec-
essary to modify the structure of the input and output files of
the model. Technical details are discussed in the user guide
of BBGCMuSo v4.0 (Hidy et al., 2015; http://nimbus.elte.
hu/bbgc/files/Manual_BBGC_MuSo_v4.0.pdf).

We summarized the model adjustments in Table 1. Within
the table, the implemented processes are grouped for clarity.
Below, we document the adjustments in detail.

4.1 Multilayer soil

The predecessor of Biome-BGC (FOREST-BGC) was de-
veloped to simulate the carbon and water budgets of forests
where soil moisture limitation is probably less important due
to the deeper rooting zone. Therefore, its soil sub-model was
simple and included only a one-layer budget model. Due to
the recognized importance of soil hydrology on the carbon
and water balance, state-of-the-art biogeochemical models
include a multilayer soil module (e.g., Schwalm et al., 2015).

In order to improve the simulation quality of water and car-
bon fluxes with Biome-BGC, a seven-layer soil sub-model
was implemented. Higher number of soil layers might be
useful to better represent the soil profile in terms of soil tex-
ture and bulk density. This should be beneficial for sites with
complex hydrology (see, e.g., the Jastrebarsko case study in
Sect. 5.3). Additional layers also improve the representation
of soil water content profile as the upper, thinner soil lay-
ers typically dry out more than the deeper layers, which af-
fects soil and plant processes. As rooting depth can be quite
variable, additional layers might support the proper repre-
sentation of soil water stress on plant functioning. The seven
layers provide an optimal compromise between simulation
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Table 1. Summary of model adjustments. Group refers to major processes represented by collection of modules in Biome-BGCMuSo, while
sub-group refers to specific features.

Group Sub-group Description

Multilayer soil Thermodynamics Two methods to calculate soil temperature layer by layer: logarithmic and the
Ritchie (1998) method

Hydrology Calculation of soil water content and soil properties layer by layer
New processes: percolation, diffusion, runoff, and pond water formation

Root distribution Calculation of root mass proportion layer by layer based on empirical function
after Jarvis (1989)

Nitrogen budget Instead of uniform distribution, calculation of soil mineral nitrogen content
layer by layer

Soil moisture stress index Soil moisture stress index based on normalized soil water content calculated
layer by layer

Senescence Senescence calculation based on soil moisture stress index and the number of
days since stress is present

Decomposition and
respiration

Maintenance root respiration flux is calculated layer by layer
Limitation of soil moisture stress index

Management Management modules Mowing, grazing, harvest, ploughing, fertilization, planting, thinning, and irri-
gation
Seven different events for each management activity can be defined per year,
even in annually varying fashion

Management-related
plant mortality

Rate of the belowground decrease to the mortality rate of the aboveground plant
material can be set optionally

Other plant-
related processes

Phenology Alternative model-based phenology
Calculating start and end of vegetation period using heat sum index for growing
season (extension of index in Jolly et al., 2005)

Genetically programmed
leaf senescence

Genetically programmed leaf senescence due to the age of the plant tissue

New plant pools Fruit and soft stem
C4 photosynthesis Enzyme-driven C4 photosynthesis routine based on the work of Di Vittorio et

al. (2010)
Acclimation Photosynthesis and respiration acclimation of plants, temperature-dependent

Q10 (Smith and Dukes, 2012)
LAI-dependent albedo LAI-dependent albedo estimation based on the method of Ritchie (1998)
Stomatal conductance
regulation

CO2 concentration is taken into account in stomatal conductance estimation
based on the Franks et al. (2013)

Model run Dynamic mortality Ecophysiological parameter for whole-plant mortality fraction can be defined
year by year

Transient run Optional third model phase to enable smooth transition from the spinup phase
to the normal phase

Possibility of land-use-
change simulation

Avoiding frequent model crash in the case of different ecophysiological param-
eters set in spinup and normal simulations

Methane and
nitrous oxide
soil efflux

Unmanaged soils Empirical estimation based on Hashimoto et al. (2011)

Grazing and fertilization Empirical estimation based on IPCC (2006) Tier 1 method

accuracy and computational cost. In accordance with the
soil layers, we also defined new fluxes within the model.
Note that in the Hidy et al. (2012) publication the devel-
oped Biome-BGC had only four soil layers, so the seven-
layer module is an improvement.

The first layer is located at a depth of 0–10 cm, the sec-
ond is at 10–30 cm, the third is at 30–60 cm, the fourth is
at 60–100 cm, the fifth is at 100–200 cm, and the sixth is at
200–300 cm. The bottom (seventh, hydrologically and ther-
mally inactive) layer is located at a depth of 300–1000 cm.
The depth of a given soil layer is represented by the center
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of the given layer. Below 5 m, the soil temperature can be as-
sumed equal to the annual average air temperature of the site
(Florides and Kalogirou, 2016). Furthermore, in the bottom
layer we assume that soil water content (SWC) is equal to the
field capacity (constant value) and soil mineral content has a
small, constant value (1 kg N ha−1 within the 7 m deep soil
column). The percolated water (and soluble N) to the bottom
hydrologically inactive layer is a net loss, while the water
(and soluble N) diffused upward from the bottom layer is a
net gain for the simulated soil system.

Soil texture and soil bulk density can be defined by the
user, layer by layer. If the maximum rooting zone (defined
by the user) is greater than 3 m, the roots reach the con-
stant boundary soil layer and water uptake can occur from
that layer, as well. In previous BBGCMuSo model versions,
the soil texture was constant with depth, and the maximum
possible rooting depth was 5 m.

4.1.1 Soil thermodynamics

Since some of the soil processes depend on the actual soil
temperature (e.g., decomposition of soil organic matter), it is
necessary to calculate soil temperature for each active layer.
Given the importance of soil temperature (e.g., Sándor et
al., 2016), the soil module was also reconsidered in BBGC-
MuSo. The daily soil surface temperature is determined after
Zheng et al. (1993). The basic equations are detailed in Hidy
et al. (2012). An important modification in BBGCMuSo is
that the average temperature of the top soil layer (with a
thickness of 10 cm) is not equal to the above-mentioned daily
surface temperature. Instead, temperature of the active layers
is estimated based on an empirical equation with daily time
steps.

Two optional empirical estimation methods are imple-
mented in BBGCMuSo. The first is a simple method, assum-
ing a logarithmic temperature gradient between the surface
and the constant temperature boundary layer. This is an im-
provement compared to the modified Biome-BGC where a
linear gradient was assumed. The second method is based on
the soil temperature estimation method of the DSSAT model
family (Ritchie, 1998) and the 4M model (Sándor and Fodor,
2012).

4.1.2 Soil hydrology

The C and the hydrological cycles of the ecosystems are
strongly coupled due to interactions between soil moisture
and stomatal conductance, soil organic matter decomposi-
tion, N mineralization, and other processes. Accurate esti-
mation of the soil water balance is thus essential.

Among soil hydrological processes, the original Biome-
BGC only takes into account plant uptake, canopy intercep-
tion, snowmelt, outflow (drainage), and bare soil evaporation.
We have added the simulation of runoff, diffusion, perco-
lation, and pond water formation and enhanced the simula-

tion of the transpiration processes in order to improve the
soil water balance simulation. Optional handling of season-
ally changing groundwater depth (i.e., possible flooding due
to elevated water table) is also implemented. In the Hidy et
al. (2012) study, only runoff, diffusion, and percolation were
implemented (the simulation of these processes has been fur-
ther developed since then). Pond water formation and simu-
lation of groundwater movement are new features in BBGC-
MuSo 4.0.

Estimation of characteristic soil water content values

There are four significant characteristic points of the soil wa-
ter retention curve: saturation, field capacity, permanent wilt-
ing point, and hygroscopic water. Beside volumetric SWC,
soil moisture status can also be described by soil water po-
tential (PSI; MPa). The Clapp–Hornberger parameter (B; di-
mensionless) and the bulk density (BD; g cm−3), are also
important in soil hydrological calculations (Clapp and Horn-
berger, 1978). Soil texture information (fraction of sand and
silt within the soil; clay fraction is calculated by the model
internally as a residual) for each soil layer are input data
for BBGCMuSo. Based on soil texture, other soil properties
(characteristic points of SWC,B, BD) can be estimated inter-
nally by the model using pedotransfer functions (Fodor and
Rajkai, 2011). The default values are listed in Table 2, which
can be adjusted by the user within their plausible ranges.

As in the original Biome-BGC, the PSI at saturation is the
function of soil texture in BBGCMuSo:

PSIsat =−{exp[(1.54− 0.0095 ·SAND+ 0.0063 ·SILT)

· ln(10)] · 9.8 · 10−5
}
, (1)

where SAND and SILT are the sand and silt percent fractions
of the soil, respectively. In BBGCMuSo, PSI for unsaturated
soils is calculated from SWC using the saturation value of
SWC (SWCsat) and the B parameter:

PSI= exp
(

SWCsat

SWC
· ln(B)

)
·PSIsat. (2)

Pond water and hygroscopic water

In the case of intensive rainfall events, when not all of the
precipitation can infiltrate, pond water is formulated at the
surface. Water from the pond can infiltrate the soil after the
water content of the top soil layer decreases below satura-
tion. Evaporation of the pond water is assumed to be equal to
potential soil evaporation.

SWC (as well as C and N content) is not allowed to be-
come negative. The theoretical lower limit of SWC is the
hygroscopic water, i.e., the water content of air-dried soil.
Therefore, in the case of large calculated evapotranspira-
tion (calculated based on the Penman–Monteith equation as
driven by meteorological data) and dry soil, the soil water
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Table 2. Default values of parameters in BBGCMuSo for different soil types. Soil types are identified based on the user-defined sand, silt,
and clay fraction of the soil layers based on the soil triangle method.

Sand Loamy Sandy Sandy Sandy Loam Silt Silt Silty Clay Silty Clay
sand loam clay clay loam loam clay loam loam clay

B 3.45 10.45 9.22 5.26 4.02 50 7.71 7.63 6.12 5.39 4.11 12.46
SWCsat 0.4 0.52 0.515 0.44 0.49 0.51 0.505 0.5 0.46 0.48 0.42 0.525
SWCfc 0.155 0.445 0.435 0.25 0.38 0.42 0.405 0.39 0.31 0.36 0.19 0.46
SWCwp 0.03 0.275 0.26 0.09 0.19 0.24 0.22 0.205 0.13 0.17 0.05 0.29
BD 1.60 1.4 1.42 1.56 1.5 1.44 1.46 1.48 1.54 1.52 1.58 1.38
RCN 50 70 68 54 56 64 66 62 58 60 52 72

B (dimensionless): Clapp–Hornberger parameter; SWCsat, SWCfc, SWCwp (m3 m−3): SWCs at saturation, at the field capacity and at the wilting point,
respectively; BD (g cm−3): bulk density; RCN (dimensionless): runoff curve number.

pool of the top layer can be depleted (approaching hygro-
scopic water content). In this case, evaporation and transpi-
ration fluxes are limited in BBGCMuSo. Hygroscopic water
content is also the lower limit in decomposition calculations
(see below).

Runoff

Our runoff simulation method is semi-empirical and uses
the precipitation amount and the Soil Conservation Service
(SCS) runoff curve number (Williams, 1991). If the precipi-
tation is greater than a critical amount which depends on the
water content of the topsoil, a fixed part of the precipitation
is lost due to runoff and the rest infiltrates the soil. The runoff
curve number can be set by the user or can be estimated by
the model (Table 2).

Percolation and diffusion

In BBGCMuSo, two calculation methods of vertical soil wa-
ter movement are implemented. The first method is based on
Richards’ equation (Chen and Dudhia, 2001; Balsamo et al.,
2009). A detailed description and equations for this method
can be found in Hidy et al. (2012). The second method is the
so-called “tipping bucket method” (Ritchie, 1998) which is
based on semi-empirical estimation of percolation and diffu-
sion fluxes and has a long tradition in crop modeling.

In the case of the first method, hydraulic conductivity
and hydraulic diffusivity are used in diffusion and percola-
tion calculations. These variables change rapidly and signifi-
cantly upon changes in SWC. As we already mentioned, for
the calculation of the main processes, a daily time step is
used. For the calculation of the soil hydrological processes,
finer temporal resolution was implemented in the case of the
first calculation method (in the case of the tipping bucket
method, a daily time step is used).

In BBGCMuSo, the time step (TS; seconds) of the soil
water module integration is dynamically changed. In contrast
to the modified Biome-BGC (Hidy et al., 2012), the TS is
based on the theoretical maximum of soil water flux instead
of the amount of precipitation.

As a first step, we calculate water flux data for a short, 1 s
TS for all soil layers based on their actual SWC. The most
important problem here is the selection of the optimal TS:
TS values that are too small result in a slow model run, while
TS values that are too large will lead to overestimation of
water fluxes. The TS is estimated based on the magnitude of
the maximal soil moisture content change in 1 s (1SWCmax;
m3 m−3 s−1). Equations (3)–(4) describes the calculation of
TS:

TS= 10EXPON, (3)

where

EXPON= abs[LV+ (DL+ 3)] if DL+LV< 0

EXPON= 0 if DL+LV≥ 0
. (4)

LV is the rounded local value of the maximal soil moisture
content change, and DL is the discretization level, which can
be 0, 1, or 2 (low, medium, or high discretization level which
can be set by the user).

Therefore, if the magnitude of 1SWCmax is
10−3 m3 m−3 s−1 (e.g., SWC increases from 0.400 to
0.401 m3 m−3 in 1 s), then LV is −3, so TS is 100

= 1 s (if
DL= 0). The 1 s TS is necessary if 1SWCmax is above
10−1 m3 m−3 s−1. Using daily TS proved to be adequate
when 1SWCmax was below 10−8 m3 m−3 s−1.

After calculating the first TS (TSstep1= 1 s), water fluxes
are determined by using the precalculated time steps, and the
SWC of the layers are updated accordingly. In the next n
steps the calculations are repeated until reaching a threshold
(86 400, the number of the seconds in a day). This method
helps to avoid the overestimation of the water fluxes while
also decreasing the computation time of the model.

4.1.3 Groundwater

Poorly drained forests (e.g., in boreal regions or in lowland
areas) are special ecosystems where groundwater and flood-
ing play an important role in soil hydrology and plant growth
(Bond-Lamberty et al., 2007a; Pietsch et al., 2003). In or-
der to enable groundwater effects (vertically varying soil wa-
ter saturation), we implemented an option in BBGCMuSo to
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supply external information about the depth of the water ta-
ble. Groundwater depth is controlled by prescribing the depth
of saturated zone (groundwater) within the soil. We note that
the groundwater implementations by Pietsch et al. (2003) and
by Bond-Lamberty et al. (2007a) are different from our ap-
proach as they calculate water table depth internally with the
modified Biome-BGC. During the spinup phase of the sim-
ulation, the model can only use daily average data for one
typical simulation year (i.e., multiannual mean water table
depth). During the normal phase, the model can read daily
groundwater information defined externally.

The handling of the externally supplied, near-surface
groundwater information is done as follows. If the upward-
moving water table reaches the bottom border of a simulated
soil layer, part of the given layer becomes “quasi-saturated”
(99 % of the saturation value), and thus the average soil mois-
ture content of the given layer increases. If the water table
reaches the upper border of the given soil layer, then the
given layer becomes quasi-saturated. The quasi-saturation
state allows for the downward flow of water through a sat-
uration soil layer, particularly through the last layer. This ap-
proach was necessary because of the discrete size of soil lay-
ers and the fact that the input groundwater level data consti-
tute a net groundwater level. Namely, groundwater level is
partly affected by lateral groundwater flows (which are un-
known) and corresponding changes in hydraulic pressure that
can push the water up; it is also partly affected by draining of
the upper soil layers. While soil is draining, it is possible that
the groundwater level remains unchanged, or that its level
decreases slower because the drained water from the upper
layer replaces the water that leaves the system (i.e., drains
to below 10 m, which is the bottom of the last soil layer).
With implementation of quasi-saturation state, we allowed
for the water to flow through saturated layers, in particular
through the bottom one. Otherwise, the water could become
“trapped” because the model routine could not allow down-
ward movement of water from an upper soil layer to a lower
layer that is already saturated (because that layer would have
already been “full”).

Groundwater level affects soil water content and in turn
affects stomatal conductance and soil organic matter decom-
position (see below).

4.1.4 Root distribution

Water becomes available to the plant through water uptake
by the roots. The maximum depth of the rooting zone is a
user-defined parameter in the model. For herbaceous vegeta-
tion, the temporally changing depth of the root is simulated
based on an empirical, sigmoid function (Campbell and Diaz,
1988). In forests, fine root growth is assumed to occur in the
entire root zone and rooting depth does not change with time.
This latter logic is used due to the presence of coarse roots in
forests which are assumed to change depth slowly (in juve-
nile forests, this approach might be problematic).

In order to weight the relative importance of the soil layers
(i.e., to distribute total transpiration or root respiration among
soil layers), it is necessary to calculate the distribution of
roots in the soil layers. The proportion of the total root mass
in the given layer (Rlayer) is calculated based on empirical
exponential root profile approximation after Jarvis (1989):

Rlayer = f ·

(
1zlayer

zr

)
· exp

[
−f ·

(
zlayer

zr

)]
. (5)

In Eq. (5), f is an empirical root distribution parameter (its
proposed value is 3.67 after Jarvis, 1989), 1zlayer and zlayer
are the thickness and the midpoint of the given soil layer,
respectively, and zr is the actual rooting depth.

Rooting depth and root distribution are taken into account
by all ecophysiological processes which are affected by soil
moisture content (transpiration), soil carbon content (main-
tenance respiration), and soil N content (decomposition).

4.1.5 Nitrogen budget

In previous model versions, uniform distribution of mineral
N was assumed within the soil profile. In BBGCMuSo, we
hypothesize that varying amounts of mineralized N are avail-
able within the different soil layers and are available for root
uptake and other losses. The change of soil mineral N con-
tent is calculated layer by layer in each day. In the root zone
(i.e., within soil layers containing roots), the changes of min-
eralized N content are caused by soil processes (decompo-
sition, microbial immobilization, denitrification), plant up-
take, leaching, atmospheric deposition, and biological N fix-
ation. The produced/consumed mineralized N (calculated by
decomposition and daily allocation functions) is distributed
within the layers depending on their soil mineral N content.
Mineralized N from atmospheric N deposition (Ndep) in-
creases the N content of the first (0–10 cm) soil layer. Bio-
logical N fixation is divided between root zone layers as a
function of the root fraction in the given layer. In soil layers
without roots, N content is affected by transport (e.g., leach-
ing) only. Leaching is calculated based on empirical function
using the proportion of soluble N that is subject to mobiliza-
tion (an adjustable ecophysiological parameter in the model),
mineral N content and the water fluxes (percolation and dif-
fusion) of the different soil layers.

There is an additional mechanism for N loss within the
soil. According to the model logic (Thornton and Rosen-
bloom, 2005) if there is excess mineral nitrogen in the soil
following microbial immobilization and plant N uptake, it is
subject to volatilization and denitrification as a constant pro-
portion of the excess mineral nitrogen pool for a given day.
In the original Biome-BGC (v4.1.1), this proportion was de-
fined by a fixed parameter within the model code. In Biome-
BGC v4.2, two parameters were introduced that control bulk
denitrification: one for the wet case and one for the dry case
(the wet case is defined as when SWC is greater than 95 %
of saturation). In BBGCMuSo, we implemented the Biome-
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BGC v4.2 logic, which means that these values can be ad-
justed as part of the ecophysiological model parameteriza-
tion.

4.1.6 Soil moisture stress index

Stomatal closure occurs due to low relative atmospheric
moisture content (high VPD), and insufficient soil moisture
(drought stress; Damour et al., 2010) but also due to anoxic
conditions (e.g., presence of elevated groundwater or high
soil moisture content during and after large precipitation
events; Bond-Lamberty et al., 2007a). The original Biome-
BGC had a relatively simple soil moisture stress function
which was not adjustable and was unable to consider anoxic
conditions.

In order to create a generalized model logic for BBGC-
MuSo, the soil moisture limitation calculation was improved,
and the use of the stress function on stomatal conductance
(and consequently transpiration and senescence) calculations
was extended, taking into account both types of limitations
mentioned above (limit1: drought, limit2: anoxic condition
close to soil saturation). The start and end of the water stress
period are determined by comparing actual and predefined,
characteristic points of SWC and calculating a novel soil
moisture stress index (SMSI; dimensionless). Characteristic
points of soil water status can be defined using relative SWC
(relative SWC to field capacity in the case of limit1 and to
saturation in the case of limit2) or soil water potential (see
Sect. 3.4 of Hidy et al., 2015).

SMSI is the function of normalized soil water content
(NSWC) (in contrast to original model, where SMSI was the
function of soil water potential). NSWC is defined by the fol-
lowing equation:

NSWC=
SWC−SWCwp

SWCsat−SWCwp
, if SWCwp < SWC

NSWC= 0 , if SWCwp ≥ SWC
, (6)

where SWC is the soil water content of the given soil layer
(m3 m−3), SWCwp and SWCsat are the wilting point and the
saturation value of soil water content, respectively. Parame-
ters can either be set by the user or calculated by the model
internally (see Table 2).

The NSWC and the soil water potential as function of
SWC are presented in Fig. 1 for three different soil types:
sand soil (sand: 90 %, silt: 5 %), sandy clay loam (sand: 50 %,
silt: 20 %), and clay soil (sand: 8 %, silt: 45 %).

According to our definition, SMSI is a function of NSWC
and can vary between 0 (maximum stress) and 1 (minimum
stress).

Figure 1. Dependence of normalized soil water content (upper part)
and soil water potential (lower part) on soil water content in the
case of three different soil types. Dimless indicates dimensionless
measurements.

The general form of SMSI is defined by the following
equations:

SMSI=
NSWC

NSWCcrit1
, if NSWC< NSWCcrit1

SMSI= 1, if NSWCcrit1 < NSWC≤ NSWCcrit2

SMSI=
1−NSWC

1−NSWCcrit2
, if NSWCcrit2 < NSWC

, (7)

where NSWCcrit1 and NSWCcrit2 (NSWCcrit1 <NSWCcrit2)

are the characteristic points of the normalized soil water
curve, calculated from the soil water potential values or rela-
tive soil water content defined by ecophysiological param-
eters. Conversion from relative values to NSWC is made
within the model. Characteristic point NSWCcrit1 is used to
control drought-related limitation, while NSWCcrit2 is used
to control excess-water-related limitation (e.g., anoxic-soil-
related stomatal closure).

The shape of the soil stress function in the original model
(based on soil water potential) and in BBGCMuSo (based on
NSWC) are presented in Fig. 2.

www.geosci-model-dev.net/9/4405/2016/ Geosci. Model Dev., 9, 4405–4437, 2016



4416 D. Hidy et al.: Terrestrial ecosystem process model Biome-BGCMuSo v4.0

Figure 2. Dependence of the soil moisture stress index on soil water
content for three different soil types: sand (a), sandy clay soil (b),
and clay (c). Soil stress index based on soil water potential (dotted
lines) is used by the original model, while soil stress index based
on normalized soil water content is used by BBGCMuSo (dashed
lines).

The value of the SMSI is zero in the case of full soil wa-
ter stress (below the wilting point). It starts to increase at
the wilting point (which depends on soil type; Table 1) and
reaches its maximum (1) at the SWC where water stress ends.
This latter characteristic value can be set by the user. In this
example (Fig. 2), field capacity was used as the character-
istic value. The new feature of the BBGCMuSo is that be-
yond the optimal soil moisture content range, the soil stress
can decrease again (i.e., increasing stress) due to saturation.
This second characteristic value (limit2) can also be set by a
model parameter. In the example of Fig. 2, 95 % of the satu-
ration value was used as the second characteristic value.

Though soil water status is calculated layer by layer, the
model requires a single soil moisture stress function to cal-
culate stomatal conductance. To satisfy this need, an average
stress function for the total root zone is necessary, which is

the average of the layer factors weighted by root fraction in
each layer.

Besides stomatal conductance, SMSI is used in the transpi-
ration calculation in the multilayer soil. Instead of the aver-
aged soil water status of the whole soil column (as in the orig-
inal Biome-BGC), in BBGCMuSo, the transpiration flux is
calculated layer by layer. The transpiration flux of the ecosys-
tem is assumed to be equal to the total root water uptake on
a given day (TRPsum). The transpiration calculation is based
on the Penman–Monteith equation using stomatal conduc-
tance (this feature is the same as in the original Biome-BGC
method). The transpiration fluxes are divided between lay-
ers (TRPlayer) according to the soil moisture limitation of
the given layer (SMSIlayer) and the root fraction in the given
layer (Rlayer in Eq. 5):

TRPlayer = TRPsum ·
SMSIlayer ·Rlayer

SMSIsum
, (8)

where SMSIsum is the sum of the SMSIlayer values in the root
zone.

According to the modifications, if the soil moisture limita-
tion is full (SMSI= 0), no transpiration can occur.

4.1.7 Senescence calculation

The original Biome-BGC ignores plant wilting and associ-
ated senescence (where the latter is an irreversible process)
caused by prolonged drought. In order to solve this problem,
a new module was implemented to simulate the ecophysi-
ological effect of drought stress on plant mortality. A senes-
cence simulation has already been implemented in developed
Biome-BGC (Hidy et al., 2012) and it was further improved
in BBGCMuSo following a different approach. In BBGC-
MuSo, if the plant-available SWC decreases below a critical
value, the new module starts to calculate the number of the
days under drought stress. Due to low SWC during a pro-
longed drought period, aboveground and belowground plant
material senescence is occurring (actual, transfer, and stor-
age C and N pools) and the wilted biomass is translocated
into the litter pool.

A so-called “soil stress effect” (SSEtotal) is defined to cal-
culate the amount of plant material that wilts due to cell death
in 1 day due to drought stress. The SSEtotal quantifies the
severity of the drought for a given day. Severity of drought is
a function of the number of days since soil moisture stress is
present (NDWS). Soil water stress is assumed if the averaged
SMSI of the root zone is less than a critical value (which is
an adjustable ecophysiological parameter in the model). It is
assumed that after a longer time period with soil moisture
stress, the senescence is complete and no living non-woody
plant material remains. This longer time period is quantified
by an ecophysiological parameter, which is the “critical num-
ber of stress days after which senescence mortality is com-
plete”.
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The SSEtotal varies between 0 (no stress) and 1 (total
stress). According to the BBGCMuSo logic, the SSEtotal is
the function of SMSI, NDWS, NDWScrit, and SMSIcrit:

SSEtotal = SSESMSI ·SSENDWS

SSESMSI =

(
1−

SMSI
SMSIcrit

)
; if SMSI< SMSIcrit

SSESMSI = 0 ; if SMSI≥ SMSIcrit

SSENDWS =
NDWS

NDWScrit
; if NDWS< NDWScrit

SSENDWS = 1 ; if NDWS≥ NDWScrit

. (9)

The SEEtotal is used to calculate the actual value of non-
woody aboveground and belowground mortality defined by
SMCA and SMCB, respectively. SMCA defines the fraction
of living C and N that dies in 1 day within leaves and herba-
ceous stems. SMCB does the same for fine roots. SMCA and
SMCB are calculated using two additional ecophysiologi-
cal parameters: minimum mortality coefficient (minSMC) of
non-woody aboveground (A) and belowground (B) plant ma-
terial senescence (minSMCA and minSMCB, respectively):

SMCA=minSMCA+ (1−minSMCA) ·SSEtotal

SMCB=minSMCB + (1−minSMCB) ·SSEtotal
. (10)

Parameters minSMCA and minSMCB can vary between 0
and 1. In the case of 0, no senescence occurs. In the case of 1,
all living C and N will die within 1 day after the occurrence
of drought stress. In this sense, SMCA and SMCB can vary
between their minimum value (minSMCA and minSMCB,
respectively, if SSEtotal is zero) and 1 (if SSEtotal is 1). This
latter case occurs when NDWS>NDWScrit and SMSI= 1.

SMCA is used to calculate the amount of non-woody
aboveground plant material (leaves and soft stem) transferred
to the standing dead biomass pool (STDB; kgC m−2) due to
soil moisture stress-related mortality on a given day. Note
that STDB is a temporary pool from which C and N contents
transfer to the litter pool gradually; the concept of STDB is a
novel feature in the model. In the case of belowground mor-
tality, it defines the amount of fine root that goes to the lit-
ter pool directly. The actual senescence ratio is calculated as
SMCA (and SMCB) multiplied with the actual living C and
N pool.

Figure 3 demonstrates the senescence calculation with
an example. The figure shows the connections between the
change of SWC, normalized soil water content, SMSI, differ-
ent types of soil stress effects (SSESMSI, SSENDWS, SSEtotal),
and senescence mortality coefficient as function of number of
days since water stress is present. The figure shows a theoret-
ical situation in which SWC decreases from field capacity to
hygroscopic water within 30 days. The calculation refers to a
sandy soil (SWCsat = 0.44 m3 m−3, SWCfc = 0.25 m3 m−3,
SWCwp = 0.09 m3 m−3; SWCfc refers to SWC at field ca-
pacity). In this example, we assumed that relSWCcrit1 is 1.0
(field capacity) and relSWCcrit2 = 0.9 (10 % below satura-

Figure 3. Demonstration of the senescence calculation with an ex-
ample. (a) Soil water content (SWC; black dots), normalized soil
water content (NSWC; white dots) and soil moisture stress index
(SMSI; black triangles) during 30 days of a hypothetical drought
event. (b) Soil stress effect based on soil moisture stress index
(SSESMSI; black dots), soil stress effect based on number of days
since water stress (SSENDWS) and total soil stress effect (SSEtotal).
(c) Aboveground senescence mortality coefficient (SMCA).

tion), the critical number of stress days after which senes-
cence mortality is complete (NDWScrit) is 30 and the critical
soil moisture stress index (SMSIcrit) is 0.3.

4.1.8 Decomposition and respiration processes

Within Biome-BGC, decomposition processes of litter and
soil organic matter are influenced by soil temperature, soil
water status, soil and litter C and N content, while root main-
tenance respiration is affected by soil temperature and root
C and N content. In BBGCMuSo, the soil moisture and tem-
perature limitation effects are calculated layer by layer based
on the SWC and soil temperature of the given soil layer (in-
stead of the averaged soil water status or soil temperature of
the whole soil column as in the original model). The C and
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N contents are also calculated layer by layer from the total C
and N content of the soil column weighted by the proportion
of the total root mass in the given layer.

The maintenance root respiration flux is calculated based
on the following equation:

MR(root)=
nr∑

layer=1

(
Nroot ·Rlayer ·mrpern ·Q

T (soil)layer−20
10

10

)
, (11)

where nr is the number of the soil layers which contain root,
Nroot is the total N content of the soil, Rlayer is the propor-
tion of the total root mass in the given layer, mrpern is an
adjustable ecophysiological parameter (maintenance respira-
tion per kg of tissue N), Q10 is the fractional change in res-
piration with a 10 ◦C temperature change, and T (soil)layer is
the soil temperature of the given layer.

There are eight types of non-N limited fluxes between lit-
ter and soil compartments. These fluxes are the function of
soil and litter C or N content, soil moisture, and soil temper-
ature stress functions. The most important innovation is that
total decomposition fluxes are calculated as the sum of par-
tial fluxes regarding to the given layer similarly to respiration
flux. The soil temperature function is the same as in the orig-
inal Biome-BGC. The soil moisture stress function is a lin-
ear function of SWC in contrast to a logarithmic function of
soil water potential in the original Biome-BGC. A major de-
velopment here is that, besides drought effect, anoxic stress
is also taken into account because anoxic conditions caused
by saturation can affect decomposition of soil organic matter
(and thus N mineralization; Bond-Lamberty et al., 2007a).
The shape of the modified stress index (SMSIdecomp) is sim-
ilar to the one presented in Bond-Lamberty et al. (2007a).

BBGCMuSo uses the following stress index (with values
between 0 and 1) to control decomposition in response to
changing SWC in a given layer:

SMSIdecomp =
SWC−SWChyg

SWCopt−SWChyg
, if SWC≤ SWCopt

SMSIdecomp =
SWCsat−SWC

SWCsat−SWCopt
, if SWCopt < SWC

, (12)

where SWC, SWChyg, and SWCsat is the actual soil water
content, hygroscopic water, and the saturation values of the
given soil layer, respectively. SWCopt is calculated from the
relative SWC for soil moisture limitation, which is a user-
supplied ecophysiological input parameter. The limitation
function of decomposition in the original Biome-BGC (based
on PSI) and in BBGCMuSo (based on SWC) are presented
in Fig. 4.

In the case of the original model, soil stress index starts to
increase at −10 MPa (this value is fixed in the model) and
reaches its maximum at saturation. In the case of BBGC-
MuSo, soil stress index starts to increase at hygroscopic wa-
ter and reaches its maximum at optimal SWC (which is equal

Figure 4. Soil moisture stress index used by decomposition for
three different soil types: sand (a), sandy clay soil (b), and clay (c).
Soil stress index based on soil water potential (dotted lines) is used
by the original model, while soil stress index based on soil water
content is used by BBGCMuSo (dashed grey lines).

to the NSWCcrit2 from Eq. 7). The new feature of BBGC-
MuSo is that after the optimal soil moisture content, soil
stress index can decrease due to saturation soil stress (anoxic
soil).

4.2 Management modules

The original Biome-BGC was developed to simulate natural
ecosystems with very limited options to disturbance or hu-
man intervention (fire effect is an exception). Lack of man-
agement options limited the applicability of Biome-BGC in
croplands and grasslands, but also in managed forests.

One major feature of BBGCMuSo is the implementation
of several management options. For grasslands, grazing and
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mowing modules were already published as part of the de-
veloped Biome-BGC (Hidy et al., 2012).

Since the release of the developed Biome-BGC, we im-
proved the model’s ability to simulate management. In
BBGCMuSo, the user can define seven different events for
each management activity, and additionally annually vary-
ing management activities can be defined. Further technical
information about using annually varying management ac-
tivities is detailed in Sect. 3.2. of the user guide (Hidy et al.,
2015). Additionally, new management modules were imple-
mented and the existing modules were further developed and
extended. The detailed description of mowing and grazing
can be found in Hidy et al. (2012).

4.2.1 Harvest

In arable crops, the effect of harvest is similar to the effect of
mowing in grasslands, but the fate of the cut-down fraction of
aboveground biomass is different. We assume that after har-
vest, snags (stubble) remain on the field as part of the accu-
mulated biomass, and part of the plant residue may be left on
the field (in the form of litter typically to improve soil qual-
ity). Yield is always transported away from the field, while
stem and leaves may be transported away (and utilized, e.g.,
as animal bedding) or may be left at the site. The ratio of
harvested aboveground biomass that is taken away from the
field has to be defined as an input.

If residue is left at the site after harvest, the cut-down
plant material first goes into a temporary pool that gradually
enters the litter pool. The turnover rate of mown/harvested
biomass to litter can be set as an ecophysiological parameter.
Although harvest is not possible outside the growing season,
this temporary pool can contain plant material also in the dor-
mant period (depending on the amount of the cut-down ma-
terial and the turnover rate of the pool). The plant material
turning into litter compartment is divided between the dif-
ferent types of litter pools according to the parameterization
(based on unstable, cellulose, and lignin fractions). The wa-
ter stored in the canopy of the cut-down fraction is assumed
to be evaporated.

4.2.2 Ploughing

As a management practice, ploughing may be carried out in
preparation for sowing or following harvest. Three types of
ploughing can be defined in BBGCMuSo: shallow, medium,
and deep (first; first and second; first, second, and third soil
layers are affected, respectively). Ploughing affects the pre-
defined soil texture, as it homogenizes the soil (in terms of
texture, temperature, and moisture content) for the depth of
the ploughing. We assume that due to the plough the snag or
stubble turns into a temporary ploughing pool on the same
day. A fixed proportion of the temporary ploughing pool (an
ecophysiological parameter) enters the litter pool on a given
day after ploughing. The plant material turning into the lit-

ter compartment is divided between the different types of lit-
ter pools (labile, unshielded cellulose, shielded cellulose, and
lignin).

A new feature of Biome-BGCMuSo is that aboveground
and belowground (buried) litter is handled separately in or-
der to support future applications of the model in cropland-
related simulations (presence of crop residues at the surface
affects runoff and soil evaporation). As a consequence of lit-
terfall during the growing season and the result of harvest,
litter accumulates at the surface. In the case of ploughing, the
content of aboveground litter turns into the belowground lit-
ter pool. In this way, aboveground/belowground litter amount
can be quantified.

4.2.3 Fertilization

The most important effect of fertilization in BBGCMuSo is
the increase of mineralized soil nitrogen. We define an actual
pool which contains the amount of fertilizer’s nitrogen con-
tent put out onto the ground on a given fertilizing day (actual
pool of fertilizer; APF). A fixed proportion of the fertilizer
enters the top soil layer on a given day after fertilizing. It
is not the entire fraction that enters the soil because a given
proportion is leached (this is determined by the efficiency of
utilization that can be set as an input parameter). Nitrate con-
tent of the fertilizer (that has to be set by the user) can be
taken up by the plant directly; therefore, we assume that it
goes into the soil mineral N pool. Ammonium content of the
fertilizer (that also has to be set by the user) has to be nitrified
before being taken up by plants; therefore, it turns into the lit-
ter nitrogen pool. C content of fertilizer turns into the litter C
pool. As a result, APF decreases day by day after fertilizing
until it becomes empty, which means that the effect of the
fertilization ends (in terms of N input to the ecosystem).

4.2.4 Planting

In BBGCMuSo, transfer pools are defined to contain plant
material as a germ (or bud or nonstructural carbohydrate) in
the dormant season from which C and N get to the normal
pools (leaf, stem, and root) in the beginning of the subsequent
growing season. In order to simulate the effect of sowing, we
assume that the plant material which is in the planted seed
goes into the transfer pools, thus increasing its content. Al-
location of leaf, stem, and root from seed is calculated based
on allocation parameters in the ecophysiological input data.
We assume that a given part of the seed is destroyed before
sprouting (this can be adjusted by the user).

4.2.5 Thinning

Forest thinning is a new management option in BBGCMuSo.
We assume that based on a thinning rate (the proportion of
the removed tree volume), the decrease of leaf, stem, and root
biomass pools can be determined. After thinning, the cut-
down fraction of the aboveground biomass can be taken away
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or can be left at the site. The rate of transported stem and/or
leaf biomass can be set by the user. The transported plant
material is excluded from further calculations. The plant ma-
terial translocated into coarse woody debris (CWD) or litter
compartments are divided between the different types of lit-
ter pools according to parameterization (coarse root and stem
biomass go into the CWD pool; if harvested stem biomass is
taken away from the site, only coarse root biomass goes to
CWD). Note that storage and transfer pools of woody har-
vested material are translocated into the litter pool.

The handling of the cut-down, non-removed pools dif-
fers for stem, root, and leaf biomass. Stem biomass (live
and deadwood; see Thornton, 2000 for definition of dead-
wood in the case of Biome-BGC) is immediately translocated
into CWD without any delay. However, for stump and leaf
biomass implementation, an intermediate turnover process
was necessary to avoid C and N balance errors caused by sud-
den changes between specific pools. The parameter “turnover
rate of cut-down, non-removed, non-woody biomass to litter”
(ecophysiological input parameter) controls the fate of (pre-
viously living) leaves on cut-down trees, and it also controls
the turnover rate of dead coarse root (stump) into CWD.

4.2.6 Irrigation

In the case of the novel irrigation implementation, we assume
that the sprinkled water reaches the plant and the soil simi-
larly to precipitation. Depending on the amount of the water
reaching the soil (canopy water interception is also consid-
ered) and the soil type, the water can flow away by surface
runoff process while the rest infiltrates the top soil layer. Ir-
rigation amount and timing can be set by the user.

4.2.7 Management-related plant mortality

In the case of mowing, grazing, harvest, and thinning, the
main effect of the management activity is the decrease of
the aboveground plant material. It can be hypothesized that
due to the disturbance-related mortality of the aboveground
plant material, the belowground living plant material also de-
creases but at a lower (and hardly measurable) rate. There-
fore, in BBGCMuSo we included an option to simulate the
decrease of the belowground plant material due to manage-
ment that affects aboveground biomass. The rate of the be-
lowground decrease to the mortality rate of the aboveground
plant material can be set by the user. As an example, if this
parameter is set to 0.1, the mortality rate of the belowground
plant material is 10 % of the mortality of the aboveground
material on a given management day. Aboveground material
refers to actual pool of leaf, stem, and fruit biomass while
belowground material refers to actual pool of root biomass
and all the storage-transfer pools.

4.3 Other plant-related model processes

The original Biome-BGC had a number of static features
that limited its applicability in some simulations. In Biome-
BGC, we added new features that can support model applica-
tions in a wider context, e.g., in climate-change-related stud-
ies and modeling exercises comparing free air CO2 enrich-
ment (FACE) experiment data with simulations (Franks et
al., 2013).

4.3.1 Phenology

To determine the start and end of the growing season, the
phenological state simulated by the model can be used
(White et al., 1999). We have enhanced the phenology mod-
ule of the original Biome-BGC, keeping the original logic
and providing the new method as an alternative. We devel-
oped the so-called heat sum growing season index (HSGSI;
Hidy et al., 2012), which is the extension of the GSI index
proposed by Jolly et al. (2005).

In the original, as well as in the modified Biome-BGC
model versions, snow cover did not affect the start of the veg-
etation period and photosynthesis. We implemented a new,
dual snow cover limitation method in BBGCMuSo. First, the
growing season can only start if the snowpack is less than a
critical amount (given as millimeters of water content stored
in the snowpack). Second, the same critical value can also
limit photosynthesis during the growing season (no C uptake
is possible above the critical snow cover; we simply assume
that in the case of low vegetation, no radiation reaches the
surface if snow depth is above a predefined threshold). The
snow cover estimation is based on precipitation, mean tem-
perature and incoming shortwave radiation (original model
logic is used here). The critical amount of snow can be de-
fined by the user.

4.3.2 Genetically programmed leaf senescence

Besides drought-stress-related leaf senescence, an optional
secondary leaf senescence algorithm was implemented in
BBGCMuSo. For certain crops (e.g., maize and wheat), leaf
senescence is the genetically programmed final stage of leaf
development, as it is related to the age of the plant tissue
in leaves. In crop models, this process is traditionally deter-
mined based on the growing degree-day (GDD) sum. GDD
sum is a measure of heat accumulation to predict plant de-
velopment stages such as flowering as well as the beginning
and end of grain filling. GDD is calculated using the cumu-
lative difference between mean daily temperature and base
temperature (the latter is an ecophysiological input parameter
in BBGCMuSo). In the case of planting (i.e., in crop-related
simulations), GDD is calculated from the day of planting.
In other cases, GDD is calculated from the beginning of the
year. After reaching the predefined GDD threshold, leaf mor-
tality rates are calculated based on a mortality coefficient of
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genetically programmed leaf senescence (ecophysiological
input parameter).

4.3.3 New plant pools: fruit and soft stem simulation

In order to enable C and N budget simulation of croplands
and explicit yield estimation with BBGCMuSo, fruit simula-
tion was implemented (which is grain in the case of crop-
lands). Start of the fruit allocation is estimated based on
GDD. After reaching a predefined GDD value (supplied by
the user as an input parameter), fruit starts to grow (allocation
is modified). Besides critical GDD, there are three additional
ecophysiological parameters that have to be defined by the
user that are related to allocation, C : N ratio of fruit, and la-
bile and cellulose proportion of litter.

In order to support C and N budget simulation of non-
woody biomass in BBGCMuSo, a soft stem simulation was
implemented (soft stem is non-photosynthesizing, above-
ground, non-woody biomass). Soft stem allocation is parallel
to fine root and leaf allocation (and fruit allocation, if appli-
cable). Four additional ecophysiological parameters are de-
fined due to soft stem simulation. The primary purpose of our
soft stem implementation is to decrease the overestimation
of LAI in herbaceous vegetation calculations. In the orig-
inal model structure, in the case of herbaceous vegetation,
all aboveground plant material is allocated to leaves, which
causes unrealistically high LAI in many cases. Soft stem allo-
cation (a significant pool in, e.g., grasses and crops) enables
more realistic leaf C and LAI values.

4.3.4 New C4 photosynthesis routine

In the original and modified Biome-BGC models, C4 photo-
synthesis was expressed as a sub-version of C3 photosynthe-
sis. It was implemented in a way that only one parameter dif-
fered (photons absorbed by transmembrane protein complex
per electron transported; mol mol−1) for C3 and C4 plants
(Collatz et al., 1991).

Based on the work of Di Vittorio et al. (2010), we imple-
mented a new, enzyme-driven C4 photosynthesis routine into
the photosynthesis module. A new ecophysiological param-
eter (fraction of leaf N in PEP carboxylase) was defined in
BBGCMuSo to support the C4 routine. The ecophysiologi-
cal parameter ”fraction of leaf N in RuBisCO” still affects
the process of C4 photosynthesis (see Di Vittorio et al., 2010
for details).

4.3.5 Dynamic response and temperature acclimation
of respiration

Due to the changing environmental conditions, photosyn-
thesis and respiration acclimation and dynamic response of
plants could affect the carbon exchange rates, but this mech-
anism is missing from many biogeochemical models (Smith
and Dukes, 2012).

In order to implement acclimation and short-term tempera-
ture dependence of maintenance respiration in BBGCMuSo,
the respiration module was modified in two steps. The main-
tenance respiration in Biome-BGC is based on a constant
Q10 factor. In our approach, first the constant Q10 value was
modified based on Tjoelker et al. (2001) who proposed an
equation for the short-term temperature dependence of the
Q10 factor (dynamic response), and showed how this rela-
tionship could improve the accuracy of the modeled respira-
tion. We use the following equation:

Q10 = 3.22− 0.046 · Tair, (13)

where Tair is the daily average air temperature (◦C).
This modification results in a temperature optimum at

which respiration peaks. The main influence of using a
temperature-dependent Q10 value can be detected at high
temperature values. In the case of a constant Q10, overesti-
mation of respiration can occur at higher temperatures (Lom-
bardozzi et al., 2015).

The model of Tjoelker et al. (2001) is a more realistic
method to calculate respiration but it does not take into ac-
count acclimation to the longer-term changes in thermal con-
ditions.

Long-term responses of respiration rates to the tempera-
ture (i.e., acclimation) were implemented in the second step
based on Atkin et al. (2008) who developed a method using
the relationship between leaf respiration, leaf mass-to-area
ratio, and leaf nitrogen content in 19 species of plants grown
at four different temperatures. The proposed equation is the
following:

RA = RT · 10A·(T10 days−Tref), (14)

where RT is the non-acclimated rate of respiration, Tref is the
reference temperature, T10 days is the average daily tempera-
ture in the preceding 10 days, and A is a constant, which was
set to 0.0079 based on Atkin et al. (2008). The acclimated
and non-acclimated day and night leaf maintenance respira-
tion functions are presented in Fig. 5.

Photosynthesis acclimation is in a test phase. It is sim-
ulated in a very simple way by modifying the relationship
between Vcmax (maximum rate of carboxylation) and Jmax
(maximum electron transport rate) that was temperature in-
dependent in the original code. Temperature dependency is
calculated based on average temperature for the previous
30 days (Knorr and Kattge, 2005). This simple photosyn-
thesis method is not a complete representation of the accli-
mation of the photosynthetic machinery (Smith and Dukes,
2012) but a first step towards a more complete implementa-
tion. This feature can be enabled or disabled by the user.

4.3.6 LAI-dependent albedo

In order to improve the shortwave radiative flux estimation
of BBGCMuSo, an LAI-dependent albedo estimation was
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Figure 5. Acclimated and non-acclimated (noacclim) daytime maintenance respiration of leaf as a function of air temperature. Acclimated
respiration values were calculated based on different average daily temperatures during the previous 30 days (T30 days: 10, 13, 16, 19, 22, 25,
28, 31, 34, and 37 ◦C). In the case without acclimation, the respiration is independent of average daily temperature; therefore, only one line
is presented (this refers to the original model logic).

implemented based on the method of Ritchie (1998). Actual
albedo is calculated by the following equation:

αact = αcrit− (αcrit−αBS) · exp(−0.75 ·LAIact), (15)

where αcrit is an empirical estimate of the albedo maximum
(0.23), αBS is the albedo of the bare soil that has to be sup-
plied by the user, and LAIact is the actual value of leaf area
index as estimated by the model.

4.3.7 Stomatal conductance regulation

Although there are many alternative formulations for stom-
atal conductance calculation within biogeochemical models
(e.g., Damour et al., 2010), there is no standard method in the
scientific community. Many state-of-the-art ESMs use a vari-
ant of the Ball–Woodrow–Berry model (Ball et al., 1987), the
Leuning (1995) method, and the Jarvis (1976) method. There
is no proof that one method is significantly better than the
others (Damour et al., 2010).

Traditionally, Biome-BGC uses the empirical, multiplica-
tive Jarvis method for stomatal conductance calculations
(Jarvis, 1976). In this method, stomatal conductance is cal-
culated as the product of the maximum stomatal conductance
(model parameter) and limiting stress functions based on
minimum temperature, VPD, and soil water status (Trusilova
et al., 2009).

In BBGCMuSo, we kept this logic as its applicability was
demonstrated in many studies (see Introduction). In contrast
to the original model, the stress function of soil water sta-
tus is currently based on relative soil water content and the
introduced SMSI (instead of soil water potential) (Hidy et
al., 2012). Beyond this, we modified the original method of
calculation to take into account the changes in ambient CO2

concentration. It was demonstrated that the stomatal response
of Biome-BGC to increasing atmospheric CO2 concentra-
tion is not consistent with observations (Sándor et al., 2015;
note that the latter study used BBGCMuSo 2.2 for which the
modification was not yet implemented). Therefore, we im-
plemented an additional multiplicative factor in the calcula-
tions in BBGCMuSo 4.0.

In Biome-BGC, stomatal conductance is the function
of maximum stomatal conductance (that is an input eco-
physiological parameter) and a set of limitation factors.
These multiplicative limitation factors summarize the ef-
fects of SWC, minimum soil temperature, VPD, and pho-
tosynthetic photon flux density. As we mentioned above
(Sect. 3.2.1), we modified the limitation function of SWC
on stomatal conductance. Besides this modification, a new
CO2 concentration-dependent adjustment factor was imple-
mented in order to improve stomatal calculation based on
Franks et al. (2013). They demonstrated a significantly sim-
ilar dependence of stomatal conductance on ambient CO2
concentration from hourly to geological timescales. Though
the Franks et al. (2013) paper presents results for stomatal
conductance in general (as opposed to maximum stomatal
conductance), we use the assumption that the same func-
tion describes changes in maximum stomatal conductance as
well. This assumption is acceptable since stomatal conduc-
tance has an upper limit which is present in conditions with-
out environmental stress and with maximum illumination.

In our approach, data from Franks et al. (2013; Table S1
in their Supplement) were used to fit a power function to de-
scribe the quantitative relationship between relative change
of stomatal conductance (gw(rel); in fact, this is stomatal con-
ductance to water vapor but this is proportional to stomatal
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conductance to CO2) to changes of ambient CO2 mixing ra-
tio (Fig. 7b in Franks et al., 2013). The changes are expressed
relative to standard conditions:

gw(rel) = 39.43 · [CO2]−0.64, (16)

where [CO2] is atmospheric CO2 mixing ratio in ppm. In
BBGCMuSo v4.0, maximum stomatal conductance is first
recalculated according to the actual CO2 concentration (the
latter is supplied by the user for each simulation year). As
maximum stomatal conductance is no longer constant (which
was the case in the original Biome-BGC and also in BBGC-
MuSo up to version 3.0), it is assumed that the maximum
stomatal conductance defined by the user represents end of
the 20th century conditions (at ∼ 360 ppm mixing ratio rep-
resenting ∼ year 1995 conditions; gsmax_EPC).

To calculate actual maximum stomatal conductance, first
gw(rel) is calculated at 360 ppm according to Eq. (13)
(gw(rel)[360 ppm] = 39.43× 360−0.64

= 0.9116; note that this
value is not exactly 1 because of the scatter of data used to fit
the power function). Next, gw(rel) is calculated for the given
[CO2] value according to Eq. (16). The final maximum stom-
atal conductance (gsmax) is calculated as

gsmax = gw(rel)
/

0.9116 · gsmax_EPC. (17)

The final maximum stomatal conductance is used for sub-
sequent calculations for evapotranspiration and photosynthe-
sis. This modification is essential for climate-change-related
simulations.

4.4 Modification in the model run

4.4.1 Dynamic mortality

Annual whole-plant mortality fraction (WPM) is part of
the ecophysiological parameterization of Biome-BGC (user-
supplied value) which is assumed to be constant throughout
the simulation. From the point of view of forest growth, con-
stant mortality can be considered a rough assumption. Eco-
logical knowledge suggests that WPM varies dynamically
within the life cycle of forest stands due to competition for re-
sources or due to competition within tree species (plus many
other causes; Hlásny et al., 2014).

In order to enable more realistic forest stand development
simulation, we implemented an option for supplying annu-
ally varying WPM to BBGCMuSo (this option can also be
used with other biome types with known, annually varying
disturbance levels). During the normal phase of the simula-
tion, the model can either use constant mortality or it can use
annually varying WPM defined by the user. Technical details
about the application of this option can be found in Sect. 3.6
of the BBGCMuSo v4.0 user guide (Hidy et al., 2015).

4.4.2 Optional transient run

Model spinup in Biome-BGC typically represents steady-
state conditions before the industrial revolution (without

changing atmospheric CO2 concentration and N deposition).
Therefore, the usual strategy for spinup is to use constant
(preindustrial) CO2 and Ndep values during the spinup fol-
lowed by annually varying values for the entire normal simu-
lation (representative of present-day conditions or 20th cen-
tury conditions). This strategy might be used due to unknown
site history or a lack of driving data. However, this logic can
lead to undesired transient behavior of the model results as
the user may introduce a sharp change by the inconsistent
CO2 and/or Ndep data between the spinup and normal phase
(note that both CO2 and Ndep are important drivers of plant
growth).

In order to avoid this phenomena (and more importantly, to
take into account site history), some model users performed
one or more transient simulations to enable smooth transi-
tion from one simulation phase to the other (mainly, from the
spinup phase to the normal phase; Thornton et al., 2002; Vet-
ter et al., 2005; Hlásny et al., 2014). However, this procedure
means that the users have to perform a third model run (and
sometimes even more) using the output of the spinup phase,
and create the input that the normal phase can use.

In BBGCMuSo, we implemented a novel approach to
eliminate the effect of sharp changes in the environmental
conditions between the spinup and normal phase. According
to the modifications, now it is possible to make an automatic
transient simulation after the spinup phase.

To initiate the transient run, the user can adjust the settings
of the spinup run. If needed, a regular spinup will first be per-
formed with constant CO2 and N deposition values followed
by a second run to be performed using the same meteorolog-
ical time series defined for the spinup. In this way, the length
of the transient run is always equal to the length of the mete-
orology data used for the spinup phase. During the transient
run, annually varying CO2 concentration data can be used
(but they should be constructed to provide a transition from
preindustrial to industrial CO2 concentrations). Utilization of
annually varying N-deposition data is optional but it is pre-
ferred. The input data of transient run are the output of the
spinup phase, and the output data of the transition run are the
input of the normal phase. Technical details about the tran-
sient run can be found in Sect. 2.2 of the user guide (Hidy et
al., 2015).

As management might play an important role in site his-
tory (and consequently in biogeochemical cycles), the new
transient simulation in BBGCMuSo can include manage-
ment in an annually varying fashion (management is de-
scribed below).

4.4.3 Land-use-change simulations

Another new feature was added to BBGCMuSo that is also
related with the proper simulation of site history. As the
spinup phase is usually associated with preindustrial condi-
tions, the normal phase might represent a plant functional
type that is different from the one present in the spinup phase.
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For example, present-day croplands can occupy land that was
originally forest or grassland, so in this case spinup will sim-
ulate forest in equilibrium, and then the normal phase will
simulate croplands. Another example is the simulation of af-
forestation that might require spinup for grasslands, and nor-
mal phase for woody vegetation. We may refer to these sce-
narios as land use change (LUC) related simulations.

One problem that was associated with LUC in earlier
model versions was the frequent crash of the model with
the error “negative nitrogen pool” during the beginning of
the normal phase. This error was typical if the spinup and
normal ecophysiological parameterization differed in terms
of plant C : N ratios and could occur for some of the plant
actual, transfer, and storage pools (e.g., leaf, fine root, soft
stem, fruit, live root, dead root, live stem, or dead stem).
Equilibrium pools of soil C and N, which are the most im-
portant elements for the initial conditions of the normal run,
did not suffer from this error.

In order to avoid the negative nitrogen pool error, we have
implemented the following automatic procedure in BBGC-
MuSo. According to the changes, after the spinup phase has
ended, only the equilibrium plant C pools are passed to the
normal phase. The plant nitrogen pools are calculated by the
model code, so that the resulting C : N ratios are harmonized
with the C : N ratio of the different plant compartments pre-
sented in the ecophysiological parameterization of the nor-
mal phase. This modification means that spinup plant nitro-
gen pools are not passed to the normal phase, but in fact this
is not needed because LUC means change in the existing
plant functional type, so new plant C : N ratios will inevitably
be realized. Implementation of this routine has enabled that
LUC and site history can be simulated properly.

4.5 Empirical estimation of other greenhouse gases

Quantification of the full greenhouse gas (GHG) balance of
ecosystems was not possible with the original Biome-BGC.
Non-CO2 greenhouse gases (GHGs) are important elements
of the biogeochemistry of the soil–plant system. Nitrous ox-
ide (N2O) and methane (CH4) are strong GHGs that can
eventually compensate the CO2 sink capacity of ecosystems
resulting in GHG-neutral or GHG-source activity (Schulze
et al., 2009). We established the first steps towards improved
modeling possibilities with Biome-BGC that includes soil ef-
flux estimation of non-CO2 GHGs.

4.5.1 Estimation of nitrous oxide and methane flux of
unmanaged soil

Due to their importance, an empirical estimation of N2O and
CH4 emission from soils was implemented in BBGCMuSo
based on the method of Hashimoto el al. (2011). Gas fluxes
are described in terms of three functions: soil physiochemical
properties (C : N ratio for N2O; bulk density of top soil layer

for CH4), water-filled pore space (WFPS) of top soil layer,
and soil temperature of top soil layer.

The Hashimoto et al. (2011) method was developed for un-
managed ecosystems. We adapted it to managed ecosystems
by including emission estimates from livestock and manure
management using Tier 1 methods of IPCC (2006).

4.5.2 Estimation of nitrous oxide and methane flux
from grazing and fertilizing

The IPCC (2006) Tier 1 method was implemented in BBGC-
MuSo to give a first estimation to CH4 and N2O emissions
due to grazing and fertilizing.

Due to their large population and high CH4 emission rate,
cattle are an important source of CH4. Methane emissions
of cattle originate from manure management (including both
dung and urine) and enteric emissions. Methane emission
from enteric fermentation is estimated using the number of
the animals and the region-specific methane emission factor
from enteric fermentation (IPCC, 2006; Ch. 10, Table 10.11).
Another mode of methane production is the emission during
the storage of manure. Methane emission from manure man-
agement is estimated using the number of animals and the
region-specific methane emission factor from manure man-
agement (IPCC, 2006; Ch. 10, Table 10.14).

In summary, the flux of the methane (FCH4 ;
mg CH4 m−2 day−1) is the sum of soil flux, flux from
fermentation, and from manure management:

(
FCH4

)
total =

(
FCH4

)
soil+

(
FCH4

)
fermentation

+
(
FCH4

)
manure. (18)

The emissions of N2O that result from anthropogenic N in-
puts or N mineralization occur through both direct pathways
(directly from the soils to/from which the N is added/released
– grazing and fertilization), and through indirect pathways
(volatilization, biomass burning, and leaching). Volatiliza-
tion fluxes were already implemented into BBGCMuSo. Di-
rect emissions of N2O from managed soils consist of the
emission from animal excretion and from fertilization. The
former is estimated by multiplying the total amount of N ex-
cretion by an emission factor for that type of manure man-
agement system (IPCC, 2006; Ch. 10, Table 10.21). The lat-
ter is estimated using emission factors developed for N2O
emissions from synthetic fertilizer and organic N application
(IPCC, 2006; Ch. 11, Table 10.21).

In summary, the flux of the nitrous oxide (FN2O;
mg N2O m−2 day−1) is the sum of soil flux, flux from fer-
mentation, and from manure management:

(
FN2O

)
total =

(
FN2O

)
soil+

(
FN2O

)
grazing

+
(
FN2O

)
fertilizing (19)

Geosci. Model Dev., 9, 4405–4437, 2016 www.geosci-model-dev.net/9/4405/2016/



D. Hidy et al.: Terrestrial ecosystem process model Biome-BGCMuSo v4.0 4425

5 Simulation results: model evaluations

In order to examine and evaluate the functioning of BBGC-
MuSo, case studies are presented in this section regarding
different vegetation types: C3 grassland (Bugac, Hungary),
C4 maize (Mead, Nebraska, USA), and C3 oak forest (Jastre-
barsko, Croatia).

The model behavior is evaluated by visual comparison of
measured and simulated data and by quantitative measures
such as root mean squared error (RMSE), normalized root
mean squared error (NRMSE; weighted by the difference of
maximum and minimum of the measured data), bias (average
difference between simulated and measured variables, where
positive bias means systematic overestimation and negative
bias means overall underestimation), coefficient of determi-
nation (R2) of the regression between measured and mod-
eled data, and the Nash–Sutcliffe modeling efficiency (NSE).
The range of NSE is between 1.0 (perfect fit) and −∞. An
efficiency of lower than 0 means that the mean of the ob-
served time series would have been a better predictor than
the model. NSE and R2 are dimensionless. The dimension of
RMSE and bias is the dimension of the variable to which it
refers. The dimension of NRMSE is %.

In this study, model parameters were taken from the lit-
erature, and also from previous parameterization of Biome-
BGC. For the newly introduced parameters, we use values
that provided reasonable results during model development.
The number of parameters in the original model (Biome-
BGC v4.1.1 MPI) and BBGCMuSo (Biome-BGCMuSo
v4.0) is not the same (MuSo has more ecophysiological pa-
rameters than the original model, while a few parameters of
the original model are no longer used in BBGCMuSo) but
the same values were set in the case of common parameters.

The simulation results of the original Biome-BGC and
BBGCMuSo are compared to the measurements. Different
model features such as the senescence mechanism, manage-
ment, and groundwater effects are illustrated in the Supple-
ment (Sects. S2–S9).

BBGCMuSo has more than 600 different output variables.
In this study, we focus on the variables relevant for the eval-
uation of model performance: GPP, TER, net ecosystem ex-
change (NEE), LHF, LAI, C content of aboveground biomass
(abgC), and SWC in the 10–30 cm soil layer.

5.1 C3 grassland/pasture

Measured data at Bugac are available from 2003 to 2015.
In order to present model behavior, only three consecutive
years were selected (2009–2011) that represented different
meteorological conditions. In 2009, the annual sum of pre-
cipitations was 14 % lower, and mean annual temperature
was 10 % higher than the long-term mean. In 2010, precipita-
tion was 65 % higher and temperature was near average (2 %
lower). In 2011, precipitation was 22 % lower than average
and temperature was close to the long-term mean.

Figure 6. Measured (black dots) and simulated variables (a) GPP,
(b) TER, (c) SWC, (d) LAI, (e) LHF using the original Biome-
BGC (dark grey lines) and BBGCMuSo (light grey lines) models
for grassland at the Bugac site between 2009 and 2011. Measured
LAI was not available at Bugac.

For the Bugac simulation, several novel features were used
from BBGCMuSo v4.0. The HSGSI-based phenology, tran-
sient simulation, drought-related plant senescence, standing
dead biomass pool, grazing settings (see Hidy et al., 2015
for grazing-related input data), non-zero soft stem allocation,
management-related decrease of storage and the actual pool,
and acclimation were all used in the simulation.

Both during spinup and normal phase of the simulation,
we assumed that the vegetation type is grassland; therefore,
the C3 grass parameterization was used (see the Supplement
Table S1 for parameterization).

Figure 6 shows that the original Biome-BGC overesti-
mates GPP, TER, LAI, and LHF. Due to the implementation
of grazing and plant senescence processes, the overestima-
tion of GPP, TER, and LHF were decreased at the Bugac site
where drought is a common phenomenon. The average ob-
served maximum LAI is about 4–5 m2 m−2 at Bugac. There-
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fore, due to model improvements, simulated LAI is more re-
alistic using BBGCMuSo. This was possible due to the im-
plementation of the new soft stem pool that now can contain
part of the aboveground C (in the original model, all above-
ground C formed leaf biomass for grasses).

It is notable that BBGCMuSo estimates an onset of veg-
etation growth that is too early, though measured LAI is
not available for the studied years. Given the climate of
the Bugac site, intensive spring growth is expected to start
around the beginning of March (Nagy et al., 2007, 2011)
which is not reproduced by the BBGCMuSo simulations pre-
sented in Fig. 6d (for the original Biome-BGC prescribed,
fixed start dates are used due to well-recognized problems
with the original grass phenology routine; see Hidy et al.,
2012). BBGCMuSo uses the HSGSI method (see Sect. 4.3.1)
to estimate onset and offset of the growing season. In the
presented simulation, HSGSI parameter settings (most im-
portantly the heat sum limit) were not adjusted, which re-
sulted in an onset that was too early due to warmer periods in
the beginning of 2009 and 2010. Optimization of the HSGSI
driving parameters might resolve this issue.

Model evaluation results of the Bugac site using the orig-
inal Biome-BGC and the BBGCMuSo. The statistical indi-
cators show that with the exception of SWC, the simulation
quality typically improved with BBGCMuSo. BBGCMuSo-
simulated LHF has higher bias (in absolute sense) than the
original model, but the other error metrics perform better. It
is notable that NSE became positive for GPP, TER, and LHF
while it was negative for all three variables with the original
Biome-BGC.

The SWC estimation by the original model was closer to
the observations than the result with BBGCMuSo. However,
as the original Biome-BGC has a simple, one-layer bucket
module for soil hydrology, SWC estimation by the original
model and topsoil SWC simulation by Biome-BGCMuSo are
not comparable. SWC provided by the original model has no
vertical profile, which means that it is not expected that the
simulation will match observation. Nevertheless, although
the errors are higher in the case of BBGCMuSo (RMSE,
NRMSE, NSE, BIAS), the correlation is higher. This is rel-
evant because in the BBGCMuSo simulation, the relative
change of soil water content significantly impacts the senes-
cence and decomposition fluxes (see Sect. 3.2). Therefore, if
the relative change of the soil water content is realistic, the
soil moisture limited processes can still be realistic in spite
of the obvious bias in the measurements.

The Supplement Sect. S2 contains additional simulation
results for Bugac demonstrating the effect of the long-lasting
drought on plant state, the senescence effect on plant pro-
cesses and carbon balance, and the effect of grazing.

5.2 C4 cropland

Measured data and simulated results are presented for the
2003–2006 period for the Mead1 site (Fig. 7).

Figure 7. Measured (black dots) and simulated variables (a) GPP,
(b) TER, (c) SWC, (d) LAI, (e) abgC using original Biome-BGC
(dark grey lines) and BBGCMuSo (light grey lines) models for
maize simulation at the Mead1 site between 2003 and 2006.

For Mead, the applied novel features with BBGCMuSo
included C4 enzyme-driven photosynthesis, transient sim-
ulation, planting, harvest, irrigation, drought-related plant
senescence, genetically programmed leaf senescence, stand-
ing dead biomass pool, fruit pool (in this case, maize yield),
non-zero soft stem allocation, and acclimation. Note that
the allocation-related “current growth proportion” parameter
that controls the content of the storage pool (non-structured
carbohydrate reserve for next year’s new growth) was zeroed
here in order to avoid natural plant growth in the spring. In
other words, in the case of planting, the storage pool has to
be turned off as maize growth is only possible after sowing.

During the spinup phase, we assumed that the vegetation
type was grassland before cropland establishment. Therefore,
C3 grass parameterization was used. In the normal phase,
maize parameterization was used. Note that change in eco-
physiological parameterization was possible due to the de-
velopments (see Sect. 2). The Supplement Table S1 contains
the complete parameterization for the maize simulation.
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As noted (Sect. 3.5.2), there is a high chance for model
error if the spinup and normal ecophysiological parameteri-
zation differ in terms of plant C : N ratios (due to the inter-
nal model logic). To avoid this error, in the case of origi-
nal Biome-BGC, the C : N ratios of maize were used in the
spinup phase. Mead1 is under management including irriga-
tion, fertilization, harvest, and ploughing. The original model
assumes that the vegetation is undisturbed, so no manage-
ment practices could be set. For BBGCMuSo, management
was set according to information taken from the site PI.

Figure 7 shows that the original model underestimated
GPP in the vegetation period (in contrast to BBGCMuSo)
because it cannot take into account the effect of irrigation
and fertilization, which support the growth of agricultural
crops. The original model overestimated GPP following har-
vest because plant material was not removed from the site.
Using BBGCMuSo, the overestimation of TER and LAI de-
creased compared to the original model due to the simulated
harvest. For BBGCMuSo, this overestimation decreased also
due to the novel fruit and soft stem simulations (in the orig-
inal model, aboveground plant material apportions biomass
to leaves only).

The measurement results from the Mead1 site show that
abgC and LAI are decoupled after the initial growth, as LAI
decreases, but abgC still increases after the beginning of July.
This means that LAI saturates earlier than biomass growth,
but this pattern is not reflected by the models’ results, be-
cause abgC and LAI follow similar trends. This unrealistic
behavior is likely the consequence of the static allocation pa-
rameterization.

The results of the quantitative model evaluation are pre-
sented in Table 4 for Mead using the original Biome-BGC
and the BBGCMuSo. According to the error metrics, the sim-
ulation quality improved due to the model developments for
GPP, TER, LAI and abgC, and also for SWC. For BBGC-
MuSo, the squares of correlation are higher and the errors
(both RMSE and bias) are smaller than in the case of the
original model using the original parameters. Values of NSE
are close to 1.0 using BBGCMuSo, indicating a good match
of the modeled values and the observed data. For the origi-
nal model, NSE values are much smaller or negative. NSE is
negative for SWC both for the original and the BBGCMuSo
version in spite of the lower bias of the latter. Again, due to
the very simplistic SWC module of the original model, its
SWC results are not directly comparable with observations.

The Supplement Sect. S3 presents additional simulation
results for the Mead1 site, demonstrating the effect of new
model developments like irrigation fertilization, and the ge-
netically programmed leaf senescence.

5.3 Deciduous broad-leaved forest

For the Jastrebarsko forest site, measurement data were avail-
able for the period from 2008 to 2014. But, as the measure-
ment height was changed in spring 2011 (flux tower was up-

graded due to tree growth), to assure the homogeneity of the
measurement data we used data from 2008–2010 only.

For simulation at Jastrebarsko, several novel features were
used from BBGCMuSo v4.0. For example, transient simula-
tion, alternative tipping bucket soil water balance calculation,
groundwater effect on stomatal conductance and decomposi-
tion, drought-related plant senescence, thinning, fruit allo-
cation, bulk denitrification, soil moisture limitation calcula-
tion, soil stress index, soil texture change through the soil
profile, and respiration acclimation were all used in the sim-
ulation. We also used the possibility to adjust the parameter
for maintenance respiration, which is fixed within the source
code in the original Biome-BGC model. We used the value of
0.4 kg C kg N−1 day−1 based on newly available data (Can-
nell and Thornley, 2000).

During both the spinup and normal phases, we assume that
the vegetation type was pedunculate oak forest; therefore,
oak parameterization was used (see the Supplement Table S1
for parameterization).

Figure 8 shows that the original Biome-BGC overes-
timates GPP, TER, NPP, and LAI. The probable reason
for this is high N-fixation parameter value, estimated to
0.0036 g N m−2 yr−1, resulting from the presence of N-fixer
species Alnus glutinosa (see the Supplement for details) and,
at the same time, the lack of denitrification process in the
original Biome-BGC version. Due to the implementation of
dry and wet bulk denitrification processes, effects of ground-
water, and soil moisture stress in the BBGCMuSo version,
the overestimation of GPP, TER, and NPP was no longer
present and simulation results significantly improved. The
Jastrebarsko forest site is a lowland oak forest with com-
plex soil hydrology which cannot easily be simulated using a
simple soil bucket approach, as it is a case in original Biome-
BGC model. Soil at the Jastrebarsko site is Stagnic Luvisol,
with an impermeable clay horizon at 2–3 m depth and poor
vertical water conductivity, resulting with parts of the for-
est being partly waterlogged or even flooded with stagnating
water during winter and early spring. Flooding leads to in-
creased denitrification (Groffman and Tiedje, 1989; Kulka-
rni et al., 2014) and, in combination with hypoxic condi-
tions in the root zone, reflects negatively on GPP and TER
(Fig. 8a,b).

Soil water content simulation in BBGCMuSo version
shows improvement for the leaf-off season (November–
April) when, unlike the original version, soil water satura-
tion in BBGCMuSo simulation becomes evident (Fig. 8c).
BBGCMuSo still overestimates soil moisture status in the
summer. According to the original Biome-BGC, the forest
never experiences soil saturation, which is contrary to the ac-
tual situation in winter and early spring. The original Biome-
BGC provides only SWC data for one layer of the entire
rooting zone (0–100 cm in this case), and therefore it can-
not be directly compared with the actual measurements or
output from BBGCMuSo which correspond to the 0–30 cm
soil layer. Also, it should be emphasized that the parameters
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Table 3. Quantitative evaluation of the original and adjusted models at the grassland site in Bugac using different error metrics. ORIG means
the original Biome-BGC, while MuSo refers to the BBGCMuSo. See text for the definitions of the error metrics.

R2 RMSE NRMSE NSE Bias

ORIG MuSo ORIG MuSo ORIG MuSo ORIG MuSo ORIG MuSo

GPP 0.50 0.66 5.82 1.52 51.2 13.4 −4.78 0.61 2.81 0.11
TER 0.65 0.64 3.21 0.98 38.1 11.6 −3.59 0.57 2.47 0.33
LHF 0.24 0.62 1.89 0.83 33.2 14.5 −1.51 0.52 0.01 −0.33
SWC 0.60∗ 0.64 0.04∗ 0.09 34.6∗ 87.7 −0.46∗ −8.3 −0.01∗ 0.09

∗ SWC simulated by the original Biome-BGC represents constant value within the entire root zone.

Table 4. Quantitative model evaluation regarding maize simulation at the Mead1 site using different error metrics. ORIG means the original
Biome-BGC, while MuSo refers to the BBGCMuSo. See text for the definitions of the error metrics.

R2 RMSE NRMSE NSE Bias

ORIG MuSo ORIG MuSo ORIG MuSo ORIG MuSo ORIG MuSo

GPP 0.61 0.87 5.83 3.44 19.0 11.1 0.58 0.86 −0.41 −0.91
TER 0.59 0.86 4.65 1.75 35.4 13.3 −0.58 0.78 3.8 −0.83
SWC 0.12* 0.01 0.13* 0.09 41.2* 30.1 −4.53* −1.94 0.12* 0.07
LAI 0.26 0.59 5.81 1.61 97.6 27.1 −7.03 0.91 4.22 −0.01
abgC 0.36 0.82 296.5 159.6 27.4 14.8 0.17 0.76 −129.1 7.9

∗ SWC simulated by the original Biome-BGC represents constant value within the entire root zone.

of soil bulk density, SWC of saturation, field capacity, and
wilting point for soil layers were not available. BBGCMuSo
calculated those parameters based only on the provided pa-
rameters for soil texture.

Simulated LAI value also decreased to more realistic val-
ues in BBGCMuSo due to model improvements (Fig. 8d).
Based on litterfall data (0.408 kg m−2; Marjanović et al.,
2011b) and average specific leaf area of 15 m2 kg−1 for oak
(Morecroft and Roberts, 1999), the average maximum LAI
at Jastrebarsko is estimated to be 6.1 m2 m−2, just slightly
above what is estimated by BBGCMuSo. BBGCMuSo NPP
estimates are also in good agreement with those from field
observation (Marjanović et al., 2011a), unlike those of the
original version which overestimate NPP (Fig. 8e).

The results of the quantitative model evaluation are pre-
sented in Table 5 for the Jastrebarsko site using the origi-
nal Biome-BGC and the BBGCMuSo. The quality of simu-
lation usually improved with BBGCMuSo due to the model
developments (R2 for SWC is an exception, but see the notes
above about the SWC simulation of the original Biome-
BGC). Key variables’ errors and biases are smaller in com-
parison to the original model using the original parameter
set.

The Supplement Sect. S4 contains additional simulation
results for the Jastrebarsko site demonstrating the effect of
new model developments.

6 Discussion and conclusions

Biogeochemical models inevitably need continuous develop-
ment to improve their ability to simulate ecosystem C bal-
ance. In spite of the considerable development in our under-
standing of the C balance of terrestrial ecosystems (Baldoc-
chi et al., 2001; Friend et al., 2006; Williams et al., 2009),
current biogeochemical models still have inherent uncertain-
ties. The major sources of uncertainties are internal variabil-
ity, initial and boundary conditions (e.g., equilibrium soil or-
ganic matter pool estimation), parameterization, and model
formulation (process representation) (Schwalm et al., 2015;
Sándor et al., 2016).

In this study, our objective was to address model-structure-
related uncertainties in the widely used Biome-BGC model.

The interactions between water availability and ecosys-
tem C balance are widely documented in the literature. In
a recent study, Ahlström et al. (2015) showed that semi-arid
ecosystems have strong contribution to the trend and inter-
annual variability of the terrestrial C sink. This finding em-
phasizes the need to accurately simulate soil-water-related
processes and plant senescence due to prolonged drought. In
earlier model versions, drought could not cause plant death
(i.e., LAI decrease) which resulted in a quick recovery of the
vegetation after a prolonged drought. In our implementation,
long-lasting drought can cause irreversible plant senescence
which is more realistic than the original implementation.

The role of management as the primary driver of biomass
production efficiency in terrestrial ecosystems was shown
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Table 5. Quantitative model evaluation of simulation for deciduous broad-leaved forest for the Jastrebarsko forest site using different error
metrics. ORIG means the original Biome-BGC, while MuSo refers to the BBGCMuSo. See text for the definitions of the error metrics.

R2 RMSE NRMSE NSE Bias

ORIG MuSo ORIG MuSo ORIG MuSo ORIG MuSo ORIG MuSo

GPP 0.84 0.84 3.67 1.77 27.3 13.1 −0.13 0.74 2.27 0.33
TER 0.81 0.83 2.5 1.31 27.4 14.4 −0.51 0.59 2.13 0.82
SWC 0.83* 0.67 0.11* 0.08 27.1* 21.2 0.06* 0.42 −0.08* 0.02
NPP 0.99 0.99 240.9 70.3 30.5 8.9 −0.03 0.91 220.3 −52.3

∗ SWC simulated by the original Biome-BGC represents constant value within the entire root zone.

Figure 8. Measured (black dots) and simulated variables using orig-
inal Biome-BGC (dark grey lines) and BBGCMuSo (light grey
lines) regarding deciduous broad-leaved forest at the Jastrebarsko
site between 2008 and 2010. (a) GPP, (b) TER, (c) SWC (note:
original Biome-BGC provides simulation results only for one layer,
namely “the rooting depth”, which is 0–100 cm in this case),
(d) LAI, (e) cumulative NPP. Note that measured LAI is not avail-
able.

by Campioli et al. (2015). The study clearly demonstrates
that management cannot be neglected if proper representa-
tion of the ecosystem C balance is needed. The manage-
ment modules built into BBGCMuSo cover, on a global ba-
sis, the majority of human interventions in managed ecosys-
tems. As management practices require prescribed input data
for BBGCMuSo, accuracy of the simulations will clearly de-
pend on the quality of management description which calls
for proper data to drive the model.

Representation of acclimation of plant respiration and
photosynthesis was shown to be one major uncertainty in
global biogeochemical models (Lombardozzi et al., 2015).
We introduced acclimation of autotrophic respiration in
BBGCMuSo, which is a major step towards more realistic
climate-change-related simulations. Representation of pho-
tosynthesis acclimation (Medlyn et al., 2002) is needed in
future modifications as another major development.

Due the implementation of many novel model features, the
model logic became more complex. Thus, process interac-
tions became even more complicated, which means that ex-
tensive testing is needed to find problems and limitations.

The earlier version of BBGCMuSo (v2.2) was already
used in a major model intercomparison project (FACCE
MACSUR – Modelling European Agriculture with Climate
Change for Food Security, a FACCE JPI knowledge hub;
Ma et al., 2014; Sándor et al., 2016). Within MACSUR,
nine grassland models were used and their performance was
tested against EC and biomass measurements. BBGCMuSo
v2.2 results were comparable with other models like LPJmL,
CARAIB, STICS, EPIC, PaSim, and others. In spite of the
successful application of the predecessor of BBGCMuSo
v4.0, SWC simulations were still problematic (Sándor et al.,
2016). Developments are clearly needed in terms of soil wa-
ter balance and ecosystem-scale hydrology in general.

Other developments are still needed to improve simula-
tions with dynamic C and N allocation within the plant com-
partments (Friedlingstein et al., 1999; Olin et al., 2015).
Complete representation of ammonium and nitrate pools
with associated nitrification and denitrification is also needed
to avoid ill-defined, N balance-related parameters (Thomas
et al., 2013). Even further model development will require
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the addition of other nutrient limitations (phosphorus, potas-
sium).

Static allocation of C and N into the plant compartments
is still present in BBGCMuSo, with a novel modification that
uses GDD to initiate fruit allocation. Unrealistic coupling
of aboveground biomass and LAI for the Mead simulation
demonstrated the need to implement more flexible dynamic
allocation. We plan to extend BBGCMuSo using the logic
of the traditional crop models like DSSAT (Ritchie, 1998)
where GDD-dependent allocation is implemented, and re-
translocation of leaf C to fruit C is also realized during grain
filling.

The Bugac case study demonstrated that the phenology
module needs optimization to capture the observed onset of
vegetation growth. This requires deeper evaluation of the HS-
GSI routine in multiple plant functional types. Extension of
the HSGSI module might be also needed in the future.

In the present paper, three case studies were presented to
demonstrate the effect of model structural improvements on
the simulation quality. Clearly, extensive testing is required
at multiple EC sites to evaluate the performance of the model
and to make adjustments if needed.

Parameter uncertainty also needs further investigations.
Model parameterization based on observed plant traits is pos-
sible today thanks to new data sets (e.g., White et al., 2000;
Kattge et al., 2011; van Bodegom et al., 2012). However,
in some cases, imperfect model structure may cause distor-
tion owing to compensation of errors (Martre et al., 2015).
Additionally, plant traits (e.g., specific leaf area, leaf C : N
ratio, photosynthesis-related parameters) vary considerably
in space, so even though plant trait data sets are available,
they might not capture the site-level parameters. These is-
sues raise the need for proper infrastructure for parameter
estimation (or, in other words, calibration or model inver-
sion). The need for model calibration is also emphasized as
we introduced a couple of empirical parameters in BBGC-
MuSo (e.g., those related to plant senescence, water stress
thresholds, denitrification drivers, disturbance-related mor-
tality parameters) that need optimization using measurement
data from multiple sites. In other words, though BBGCMuSo
parameterization is mostly based on observable plant traits,
model calibration can not be avoided in the majority of the
cases (Hidy et al., 2012).

To address this problem we created a computer-based
open infrastructure based on the workflow concept that can
help a wide array of users in the application of the new
model. The infrastructure is similar to PEcAn (Dietze et al.,
2014) which is a collection of modules in a workflow that
uses the Ecosystem Demography (ED v2.2) model. We fol-
lowed the concept of model–data fusion (MDF; Williams
et al., 2009) when developing the so-called “Biome-BGC
Projects Database and Management System” (BBGCDB;
http://ecos.okologia.mta.hu/bbgcdb/) and the BioVeL Portal
(http://portal.biovel.eu) as a virtual research environment and
collaborative tool. BBGCDB and the BioVeL portal help sen-

sitivity analysis and parameter optimization of BBGCMuSo
by a computer cluster-based Monte Carlo experiment and
GLUE methodology (Beven and Binley, 1992). Further in-
tegration is planned using alternative Bayesian calibration
algorithms (Hartig et al., 2012) that will provide extended
calibration options to the parameters of BBGCMuSo.

We would like to support BBGCMuSo application for the
wider scientific community as much as possible. For users of
the original Biome-BGC, the question is of course the fol-
lowing: should I move to BBGCMuSo? Does it need a long
learning process to move to the improved model? We would
like to stress that users of the original Biome-BGC will have
a smooth transition to BBGCMuSo, as we mainly preserved
the structure of the input files. The majority of changes are
related to the seven-layer soil module and to the implementa-
tion of management modules. The ecophysiological parame-
ter file is similar to the original but it was extended consider-
ably. This may raise issues but as it is emphasized in our user
guide (Hidy et al., 2015), we extended the ecophysiological
parameter file with many parameters that will not need ad-
justment in the majority of the cases. We simply moved some
“burned-in” parameters into the ecophysiological parameter
in order to allow easy adjustment if needed in the future.

7 Code availability

The source code, the Windows model executable, sample
simulation input files, and documentation are available at
the BBGCMuSo website (http://nimbus.elte.hu/bbgc). The
source code is also available at GitHub (https://github.com/
bpbond/Biome-BGC/tree/Biome-BGCMuSo_v4.0).

The Supplement related to this article is available online
at doi:10.5194/gmd-9-4405-2016-supplement.

Author contributions. D. Hidy developed Biome-BGCMuSo with
modifying Biome-BGC 4.1.1 MPI version. The study was con-
ceived and designed by D. Hidy and Z. Barcza, with assistance from
H. Marjanović, G. Churkina, N. Fodor, F. Horváth, and S. Running.
It was directed by Z. Barcza and D. Hidy. H. Marjanović, M. Z.
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