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1 Division for Forest Management and Forestry Economics, Croatian Forest Research Institute,
Trnjanska Cesta 35, Zagreb HR-10000, Croatia; hrvojem@sumins.hr

2 School of Earth, Environment and Society, Bowling Green State University, 190 Overman Hall,
Bowling Green, OH 43403, USA; asimic@bgsu.edu

* Correspondence: ivanb@sumins.hr; Tel.: +385-1-63-11-584

Academic Editors: Guangxing Wang, Erkki Tomppo, Dengsheng Lu, Huaiqing Zhang, Qi Chen, Lars T. Waser,
Randolph H. Wynne and Prasad S. Thenkabail
Received: 8 December 2016; Accepted: 12 March 2017; Published: 15 March 2017

Abstract: Digital aerial photogrammetry has recently attracted great attention in forest inventory
studies, particularly in countries where airborne laser scanning (ALS) technology is not available.
Further research, however, is required to prove its practical applicability in deriving three-dimensional
(3D) point clouds and canopy surface and height models (CSMs and CHMs, respectively) over
different forest types. The primary aim of this study is to investigate the applicability of image-based
CHMs at different spatial resolutions (1 m, 2 m, 5 m) for use in stand-level forest inventory, with a
special focus on estimation of stand-level merchantable volume of even-aged pedunculate oak
(Quercus robur L.) forests. CHMs are generated by subtracting digital terrain models (DTMs), derived
from the national digital terrain database, from corresponding digital surface models (DSMs), derived
by the process of image matching of digital aerial images. Two types of stand-level volume regression
models are developed for each CHM resolution. The first model is based solely on stand-level CHM
metrics, whereas in the second model, easily obtainable variables from forest management databases
are included in addition to CHM metrics. The estimation accuracies of the stand volume estimates
based on stand-level metrics (relative root mean square error RMSE% = 12.53%–13.28%) are similar
or slightly higher than those obtained from previous studies in which stand volume estimates were
based on plot-level metrics. The inclusion of stand age as an independent variable in addition to
CHM metrics improves the accuracy of the stand volume estimates. Improvements are notable for
young and middle-aged stands, and negligible for mature and old stands. Results show that CHMs
at the three different resolutions are capable of providing reasonably accurate volume estimates at
the stand level.

Keywords: aerial images; image matching; forest inventory; pedunculate oak (Quercus robur L.)

1. Introduction

As the most widely distributed terrestrial ecosystem on Earth, forests provide many direct and
indirect benefits to human well-being [1,2]. Sustainable management of forests for the realization
of their multiple functions and services requires spatially explicit information about their state and
development [3], which is usually acquired through forest inventories. Although traditional field-based
forest inventory can provide relatively accurate information, the process is time-consuming and labor
intensive, and in some cases, access to certain areas is not possible [4]. Therefore, the potential of
remote sensing application in forest inventory has long been recognized by both researchers and
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practicing foresters [5]. Over the last few decades, a rapid development of different remote sensing
instruments has resulted in the development of various methods and techniques for retrieval of forest
information from remote sensing data [6,7].

Airborne laser scanning (ALS) technology has been a focus of much research in the last twenty
years, thus becoming an integral part of operational forest inventories in a number of developed
countries (e.g., Scandinavian countries, Canada, and USA) [6,8–10]. Highly accurate, three-dimensional
(3D) point clouds and canopy height models (CHMs) from ALS enable the derivation of various forest
metrics (e.g., height metrics, canopy cover or density metrics, etc.) and characterization of vertical
forest structure [11]. In combination with field reference data and established prediction models,
ALS metrics could serve for the estimation of various tree and forest inventory attributes (e.g., height,
basal area, volume, biomass, etc.) [10–16]. Generally, there are two main approaches to derive forest
information from ALS data: the area-based approach (ABA) and the individual-tree-based approach
(ITBA). The ABA uses point cloud or CHM metrics of the sampled area (e.g., plot) as input to statistical
models for forest attributes estimation [10–16]. On the other hand, the ITBA uses ALS metrics of
the individual trees that are previously delineated using segmentation methods for derivation of
tree height and crown dimensions, which are then used for calculation of other single-tree attributes
(e.g., diameter at breast height, tree volume, biomass, etc.) [13,17]. Unlike the ABA, the ITBA is not
used operationally yet, primarily due to difficulties in individual tree detection [7,18].

Another promising remote sensing method for deriving 3D point clouds and CHMs, which
recently gained attention in forestry research, is digital aerial photogrammetry (DAP) [7,10,19].
Although aerial images have long been widely used in forest inventory (e.g., for visual interpretation
of tree and stand attributes or delineation of forest stands) [20], the recent advancements and
improvements in image quality (e.g., radiometric and geometric resolutions), image matching
algorithms, computing power and hardware sizing and capacity have promoted their comeback
in forest inventory research [3,10]. Compared to ALS, photogrammetric aerial surveys have lower
costs [21] and, in many European countries including Croatia, aerial images are usually updated on a
regular basis for topographic purposes [22]. By image matching of aerial stereo images, digital surface
models (DSMs) of similar quality and accuracy to ALS-based DSMs can be derived [21,23]. To obtain a
normalized point cloud (height above ground) or a CHM, ground elevation data (i.e., digital terrain
model (DTM)) of a high spatial resolution is required. Unlike the ALS technology, which can penetrate
through the forest canopy and derive an accurate DTM of high spatial resolution, DAP is unable to
determine ground elevation information under the dense forest canopy. When a DTM is available,
primarily from the ALS technology or stereo-photogrammetry, cartography, and/or field surveys, the
normalized point clouds or CHMs are generated by subtracting DTMs from corresponding DSMs
or point clouds. The normalized image-based point clouds and CHMs can then serve as a basis for
deriving various forest attributes in the same manner as ALS data by using ABA or ITBA approaches.

A number of recent studies emphasized the great potential of dense point clouds and DSMs
derived by image matching of digital aerial stereo images in combination with accurate DTMs for
the CHMs and forest attributes estimation [3,19,22,24–27]. Moreover, comparison studies which
evaluated different remote sensing data considered this image-based approach as a cost-effective
alternative to ALS in forest inventory applications [10–12,28–34]. Most of the studies where the
accuracy of forest attributes estimation is critical were evaluated mainly at the plot level. To date,
only several studies published in peer-reviewed literature [3,10,24,30,34] evaluated forest attributes
at the stand level (Table 1). Mainly, the stand level attributes were calculated by averaging plot level
attributes in other studies. There were several studies where the satellite retrievals at stand level were
used in assessment of forest attributes (e.g., [35,36]); however, to the best of the authors’ knowledge,
no previous studies dealing with image matching of digital aerial images used the metrics of an
entire stand for the estimation of forest attributes at the stand level. In addition, further research over
different forest types is needed to prove the applicability of DAP in forest attributes estimation. While
several studies [10,24,30,34] were conducted in boreal forests of Northern Europe with more uniform
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and consistent properties, only one study was conducted [3] in mixed, broadleaf-dominated forests of
Central Europe (Germany).

The goal of the present study is to investigate the applicability of image-based CHM for
forest attributes estimation and forest inventory at the stand level, with a special focus on the
estimation of stand-level merchantable volume of even-aged pedunculate oak (Quercus robur L.)
forests. The stand-level approach enables the use of information from existing forest management
plans for model selection and parameterization, thus overcoming the need for field measurements
and additional costs. The method that we present in this study can be universally applied, provided
that aerial surveys and forest inventory surveys were conducted simultaneously, which usually is
the case (e.g., if forest inventory interval is 10 years, it usually means that approximately 10% of the
area of managed forests is measured each year). The impact of different spatial resolutions of CHM
(1 m, 2 m, and 5 m) on the stand-level volume estimates is evaluated based on the ground reference
data. For that purpose, the stand-level volume estimation models based on CHM metrics of the entire
stand are generated. In addition, the inclusions of several variables obtained from forest management
plans (stand age, soil type, site index, and phytocenological type) in the volume estimation models
are examined. Stand volume is one of the most important inventory attributes and is crucial for
understanding the dynamics and productive capacity of forest stands, as well as to manage their use
within the limits of sustainability [37,38]. Pedunculate oak is a key tree species of European forests [39],
and yet, it has not been the subject of previous similar studies. Overall, this study attempts to provide
fast, simple and low-cost photogrammetric approach for stand-level volume estimation based on
existing data (aerial images, DTM data, field data).

2. Materials and Methods

2.1. Study Area

The research was conducted in the state-owned managed forests of Spačva basin located in eastern
Croatia (Figure 1). Covering the total area of approximately of 40,000 ha, Spačva basin is one of the
largest coherent complexes of lowland pedunculate oak forests in Europe [40]. Even-aged pedunculate
oak forests of different age classes ranging from 0 to 160 years are the main forest type, which together
occupy 96% of the forest area of Spačva basin [41]. The oak stands of the area are less often pure
and mainly mixed with other tree species (Fraxinus angustifolia Vahl., Alnus glutinosa (L.) Geartn.,
Carpinus betulus L.) The stands are of high quality with site index I or II and they are actively managed
for sustained timber in 140-year rotations, ending with two or three regeneration fellings during the
last 10 years of the rotation. The regeneration fellings are implemented when old stands produce
seeds from which future young stands are raised. After successful natural regeneration and stand
establishment, silvicultural treatments are carried out throughout the rotation.

The study area is characterized by flat terrain, with ground elevations ranging from 77 to 91 m a.s.l.
The hydromorphic soils (pseudogley, hypogley, humogley, and semigley) prevail, while automorphic
soils (luvisol) occur only on micro-elevations. According to Köppen classification, the climate of the
area is temperate and warm rainy with a mean annual temperature of 10.2 ◦C and a precipitation of
709 mm·y−1 [42].

2.2. Field Reference Data

Out of 13 management units in the Spačva basin, 6 management units with a total of 548 even-aged
pedunculate oak stands covering the area of 11,261.85 ha were selected for this research (Figure 1).
In order to enable comparison between field data and estimates from CHMs, the idea was to select
those stands, i.e., management units, in which the regular forest inventories (field measurements) were
conducted within one year of the image acquisition (2010–2012).
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Table 1. Description and results of previous studies dealing with estimation of volume at the stand level using normalized point clouds or canopy height models
(CHMs) derived from digital aerial images and airborne laser scanning (ALS) based digital terrain model (DTM).

Reference Bohlin et al. 2012 [24] Rahlf et al. 2014 [10] Gobakken et al. 2015 [30] Stepper et al. 2015 [3] Puliti et al. 2016 [34]

Study location Southern Sweden Southern Norway South-eastern Norway South-central Germany South-eastern Norway

Dominant tree species Picea abies, Pinus sylvestris, Betula spp. P. abies, P. sylvestris,
Betula spp.

P. abies, P. sylvestris,
Betula spp.

Fagus sylvatica, Quercus petraea,
P. sylvestris P. abies, P. sylvestris, Betula spp.

Camera type DMC UltracamX UltracamXp UltracamXp UltracamXp

GSD (m) 0.48 0.48 0.12 0.20 0.17 0.20 0.17

Overlap (%) 60/30 80/30 80/60 60/20 80/30 75/30 80/30 60/30

Matching software Match-T DSM Match-T DSM Match-T DSM NGATE (SocetSet) Match-T DSM Remote Sensing Software
Package Graz

Agisoft
PhotoScan

Agisoft
PhotoScan

Regression type Multiple
linear

Multiple
linear

Multiple
linear Linear mixed effects Multiple linear Multiple

linear
Random
forests

Multiple
linear

Multiple
linear

Type of independent variables H, CC, T H, CC, T H, CC H, CC H, CC H, V, CC, SP H, V, CC, SP H H

Validation method Cross Cross Cross Cross Independent Cross Cross Independent Independent

MD (m3·ha−1) 3.6 1.7 −1.8 - - 2.9 −8.2 −0.9 1.5

MD% (%) 1.4 0.7 −0.7 - - 0.9 −2.6 −0.4 0.6

RMSE (m3·ha−1) 32.8 32.6 36.2 33.8 - 46.7 43.9 31.2 35.9

RMSE% (%) 13.1 13.0 14.5 18.1 13.1–17.4 14.8 13.9 13.4 15.4

GSD: Ground Sampling Distance; RMSE: root mean square error; RMSE%: relative root mean square error; MD: mean difference; MD%: relative mean difference; H: height metrics; CC:
canopy cover (density) metrics; T: texture metrics; SP: spectral metrics derived from orthoimages.
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Figure 1. (a) Distribution map of pedunculate oak (Quercus robur L.) in Europe [43]; (b) location of the 
Spačva basin in Croatia; and (c) spatial distribution of 548 selected even-aged pedunculate oak 
stands within the Spačva basin.  

The field data used in this study were collected according to the Regulation on Forest 
Management (Official Gazette 111/06, 141/08) during the period 2010–2012 as part of the regular 
forest inventories conducted by national forestry company (Croatian Forests Ltd.). All stands above 
20 years of age were systematically sampled with circular plots and minimum sampling intensity of 
5%. The circular sample plots had an area of 500 m2 (radius = 12.62 m), thus, at least, two plots were 
established per ha. Old stands, which were prescribed for the regeneration felling in the following 
ten years, were measured with 100% intensity (i.e., all trees in the stand). Diameter at breast height 
(dbh) on the trees in the sampled plots, and in the old stands, was measured for all trees with dbh ≥ 
10 cm. At least 5 to 10 tree heights per a dbh class (5 cm gradation) were measured for each species in 
each group of stands. The stands’ grouping was based on site index and stand age. The site index, 
which presents potential productivity of forest stands, was determined for each stand using 
Croatian growth-yield tables [44], which included stand age and mean tree height as entries. Based 
on tree height and dbh measurements, the species-specific height curves (i.e., height–dbh models) 
were constructed by fitting Michailloff’s function [45]. The merchantable tree volume (up to a 
diameter of 7 cm overbark) of each sampled tree was calculated from field-measured dbh and tree 
height estimated from species-specific height curves using the Schumacher–Hall equation [46] and 
parameters from Croatian two-entry (dbh and height) volume tables [47–50]. The mean dbh and 
mean height for each forest stand were calculated by averaging data of all sampled trees in the 
stand, whereas stand density, basal area, and stand volume were calculated by summing the tree 
data and dividing them by the total area of all plots within the stand. To reduce possible 
uncertainties due to the time span between the field measurements and the aerial surveys, which 
was for some parts of the study area up to one year, it was decided to exclude the stands younger 
than 30 years from further analyses. Namely, very young stands have a significant share of trees 

Figure 1. (a) Distribution map of pedunculate oak (Quercus robur L.) in Europe [43]; (b) location of the
Spačva basin in Croatia; and (c) spatial distribution of 548 selected even-aged pedunculate oak stands
within the Spačva basin.

The field data used in this study were collected according to the Regulation on Forest Management
(Official Gazette 111/06, 141/08) during the period 2010–2012 as part of the regular forest inventories
conducted by national forestry company (Croatian Forests Ltd.). All stands above 20 years of age
were systematically sampled with circular plots and minimum sampling intensity of 5%. The circular
sample plots had an area of 500 m2 (radius = 12.62 m), thus, at least, two plots were established per
ha. Old stands, which were prescribed for the regeneration felling in the following ten years, were
measured with 100% intensity (i.e., all trees in the stand). Diameter at breast height (dbh) on the trees
in the sampled plots, and in the old stands, was measured for all trees with dbh ≥ 10 cm. At least 5 to
10 tree heights per a dbh class (5 cm gradation) were measured for each species in each group of stands.
The stands’ grouping was based on site index and stand age. The site index, which presents potential
productivity of forest stands, was determined for each stand using Croatian growth-yield tables [44],
which included stand age and mean tree height as entries. Based on tree height and dbh measurements,
the species-specific height curves (i.e., height–dbh models) were constructed by fitting Michailloff’s
function [45]. The merchantable tree volume (up to a diameter of 7 cm overbark) of each sampled
tree was calculated from field-measured dbh and tree height estimated from species-specific height
curves using the Schumacher–Hall equation [46] and parameters from Croatian two-entry (dbh and
height) volume tables [47–50]. The mean dbh and mean height for each forest stand were calculated by
averaging data of all sampled trees in the stand, whereas stand density, basal area, and stand volume
were calculated by summing the tree data and dividing them by the total area of all plots within the
stand. To reduce possible uncertainties due to the time span between the field measurements and the
aerial surveys, which was for some parts of the study area up to one year, it was decided to exclude
the stands younger than 30 years from further analyses. Namely, very young stands have a significant
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share of trees with dbh thinner than the taxation limit (dbh ≥ 10 cm), and one-year ingrowth in those
stands can considerably contribute to the stand volume [51].

A summary of the calculated stand-level forest attributes is presented in Table 2. Stand-level
merchantable volume was used in the models development and validation as a ground-truth reference
data. For those stands which were inventoried in 2010, the stand volume in 2011 was calculated by
adding an annual increment to volume from 2010. The stand volume in 2011 of stands inventoried in
2012 was calculated by subtracting annual increment from volume measured in 2012. Fellings did not
occur within selected stands for the period from 2010 to 2012, and therefore were not included in the
stand volume calculation.

Table 2. Descriptive statistics of the stand-level forest attributes for 548 selected even-aged pedunculate
oak stands of Spačva basin.

Forest Attribute Minimum Maximum Mean SD

Age (years) 30.0 146.0 102.8 25.7
Mean dbh (cm) 14.1 58.9 32.7 6.5

Mean height (m) 14.3 33.6 25.3 3.0
Stand density (trees·ha−1) 68.0 1195.0 372.0 185.7

Basal area (m2·ha−1) 12.2 45.0 27.6 4.6
Volume (m3·ha−1) 98.1 713.2 419.2 101.4

2.3. Photogrammetric Data

Photogrammetric data, aerial images, and digital terrain data were provided by the Croatian State
Geodetic Administration (CSGA) and were used to develop DSM and DTM, respectively.

The color infrared (CIR) 8-bit digital aerial images were acquired using the Intergraph Z/I Imaging
Digital Mapping Camera (DMC) system [52] as part of the regular national topographic survey in
August 2011. The study area was represented by 157 images with the ground sampling distance (GSD)
of approximately 30 cm. The images were collected in 11 flight lines with forward overlaps of 60%
and side overlaps of 30%. The images were block-triangulated, using the bundle adjustment method,
and post-processed, including radiometric and geometric corrections, as well as pan-sharpening. This
was done by the contractor (Geodetski zavod Ltd. Osijek, Croatia) according to the rules of the CSGA
(Product Specification 301D130). The horizontal (x, y) and vertical (z) accuracies of the processed
images were validated with ground control points (root mean square error (RMSE) < 0.25 m and
<0.30 m, respectively).

The digital terrain data (breaklines, formlines, spot heights and mass points), used to generate
DTM, were collected according to the rules of the CSGA (Product Specifications 301D150). The main
method for national digital terrain data collection is aerial stereo photogrammetry (aerial images of
GSD ≤ 30 cm), supported with vectorization of existing maps and field data collection (especially
for unreliable areas, which are not visible from aerial images). Data density is dependent of terrain
type, slope and surface roughness. The average distance between points in breaklines and formlines
is recommended to be 25 m, while the average distance between mass points is recommended to
be 70–90 m. For flat areas, or areas covered by vegetation, the distance can be larger but not more
than 120 m. For the flat terrain, which correspond to the terrain type of the research area, (Spačva
basin), the required number of points in breaklines and formlines is 400–800 points·km2, while the
required number of mass points and spot heights is 100–150 points·km2. The required absolute
accuracy of digital terrain data (including both horizontal and vertical accuracy) validated with ground
control points is < ±1 m of the standard deviation for the well-defined details and < ±2 m for not
well-defined details.
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2.4. Photogrammetric Processing (CHM Generation)

The photogrammetric data processing, which included the generation of DSMs, DTMs, and
CHMs, was performed using the PHOTOMOD 5.24 digital photogrammetric system (Racurs Co.,
Moscow, Russia).

DSMs were generated using the Dense DTM algorithm of PHOTOMOD DTM module. Dense
DTM is an area-based image matching algorithm that calculates the coordinates of conjugate points
between overlapping images for each pixel of the selected area using the cross-correlation approach.
The spatial resolution (pixel size) of the resulting DSM thus corresponds to the image pixel size
(0.30 m × 0.30 m). A detailed description of the procedure of the DSM generation using Dense DTM,
as well as parameters settings, can be found in Balenović et al. [53]. Matching errors, i.e., spikes (points
above or below the surface) were removed from DSM using the DSM filters. The resulting gaps (null
cells) were then filled by a Smooth interpolation method. Finally, the initial raster DSM of 0.30 m
resolution (DSM0.3) was then resampled to DSMs of 1 m, 2 m, and 5 m resolutions (hereinafter referred
to as DSM1, DSM2, and DSM5). The resampling was conducted by: (a) converting the initial DSM
from raster to point format; (b) reducing the number of points by using the “thin-out” coefficient of
3, 6 and 16; (c) creating the triangular irregular networks (TINs) from corresponding reduced points;
and (d) generating raster DSMs of 1 m, 2 m, and 5 m resolutions from corresponding TINs. In the
recently published study by Balenović and Marjanović [54], the vertical accuracy of DMSs of different
spatial resolutions (DSM1, DSM2, and DSM5) generated from the same aerial images, was evaluated by
comparing manually stereo measured elevations of 294 tree tops with the elevations of planimetrically
corresponding DSM’s points. The RMSE values for the DSM1, DSM2, and DSM5 generated for the part
of the Spačva basin (1869.33 ha) that was also included in the present study were 0.76 m, 0.84 m, and
1.31 m, respectively.

For the DTMs generation, national digital terrain data were used. First, a TIN was created from
the digital terrain data, which was then converted through the linear interpolation into a raster DTMs
of 1 m, 2 m, and 5 m resolutions.

A raster CHMs of 1 m, 2 m, and 5 m resolutions (hereinafter referred to as CHM1, CHM2,
and CHM5) of the research area was generated by subtracting ground from surface elevation data,
i.e., by subtracting DTMs from corresponding DSMs. All pixels with heights above 45 m in CHMs
were considered as outliers and were filtered (removed). The maximum threshold of 45 m was defined
based on the maximum tree heights in the study area. The resulting gaps were then filled using a
Smooth interpolation method. Prior to the metrics extraction (explained below), and in accordance
with other similar studies [3,34], a minimum threshold of 5 m was applied to remove ground and
understorey vegetation (e.g., shrubs, small trees with dbh < 10 cm). The minimum threshold of 5 m
was defined based on the minimum height of trees with dbh ≥ 10 cm. In other words, all trees with
dbh ≥ 10 cm at the study area have heights above 5 m.

2.5. CHM Metrics

In other studies [3,10,24,30], the height and density metrics extracted from CHMs have proven
to be good predictors of various forest attributes. To extract the stand-level metrics from CHMs, the
boundaries of the selected forest stands were overlaid on CHMs. For each forest stand, both height
metrics and density metrics were extracted and calculated from each CHM. In total, 24 CHM metrics
were extracted and considered in the statistical modeling (i.e., for development of stand-level volume
models) as potential independent variables. The CHM metrics with corresponding description and
explanation of the calculation are summarized in Table 3.
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Table 3. Metrics extracted from CHMs, calculated for each stand and used as potential independent
variables in statistical analysis (development of stand-level volume model).

CHM Metrics Description and Explanation

Height metrics

hmean (m) Arithmetic mean of pixels height

hSD (m) Standard deviation of pixels height

hmode (m) Mode height

hmax (m) Maximum height

hmin (m) Minimum height

p5, p10, p20, p25, p30, p40, p50, p60,
p70, p75, p80, p90, p95, p99 (m)

Height percentiles (5th, 10th, 20th,
25th, 30th, 40th, 50th, 60th, 70th, 75th,

80th, 90th, 95th, 99th)

Density (cover)
metrics

CC10, CC20, CC30, CC40

Ratio between area of canopy above
certain height threshold (10 m, 20 m,

30 m, 40 m) and stand area

k3D
Ratio between 3D canopy surface

model area and ground area

2.6. Variables from Forest Management Plans

In addition to extracted CHM metrics, several existing and easily obtainable stand variables
from Forest management plans (FMP variables) were considered in statistical modeling as potential
independent variables (Table 4).

Table 4. Existing stand variables from Forest management plans (FMP variables) used as potential
independent variables in statistical analysis (development of stand-level volume models).

Variable Description and Explanation

SA Stand age (from 30 to 146)

ST Soil type (pseudogley, hypogley, humogley, semigley, luvisol)

SI Site index (I, II)

PT Phytocenological type (Genisto elatae-Quercetum roburis caricetosum remotae, Genisto
elatae-Quercetum roburis aceretosum tatarici, Carpino betuli-Quercetum roburis "typicum")

2.7. Development of the Stand-Level Volume Models and Validation

A multivariate linear regression approach, as explained in Bohlin et al. [24], Straub et al. [22] and
Montealegre et al. [16], was applied to develop the stand-level volume models. In total, 548 forest
stands were used in the statistical analyses, out of which 274 were selected for the models’ development
and the other 274 stands for the models’ validation. To reduce bias in stands’ selection, they were
categorized according to age from youngest to oldest, and then ranked. Every odd-numbered stand
was selected in the modeling while every even-numbered stand was selected in the validation. This
way, both datasets contained stands of similar ages. All the statistical analyses were performed using
the program STATISTICA 11 [55].

Prior to the modeling, the potential independent variables were selected based on Pearson
correlation coefficient (r). Among a number of potential predictors (CHM metrics and FMP variables),
only variables that were highly correlated with field estimated stand volume (r ≥ ±0.5) were included
in the backward stepwise regression. This type of regression is commonly used for linear modeling
of forest attributes based on either image-based [22,24] or ALS-based [16,56] metrics. To justify the
use of linear regression models, four principal statistical assumptions [57] were tested: (i) linearity
and additivity of the relationship between dependent and independent variables (scatterplots of
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predicted vs. observed values and predicted values vs. residuals); (ii) homoscedasticity (scatterplots
of predicted values vs. residuals and residuals vs. independent variables); (iii) normality of the
error distribution (Shapiro–Wilk test [58]); and (iv) independence (auto-correlation) of the errors
(Durbin–Watson test [59]). To meet the above-mentioned conditions and achieve a linear relationship,
the dependent variable (stand volume) was logarithmically transformed, which is in agreement with
other similar studies [24,34]. By applying backward stepwise regressions and Akaike information
criterion value [60], two the-best-fit models were developed and selected for each CHM (CHM1, CHM2,
CHM5) using the modeling dataset. The first model was developed solely from CHM metrics, whereas
the second model was developed from both CHM metrics and FMP variables. The multivariate
log-linear models had the following form:

ln(Vm) = β0 + β1X1 + β2X2 + . . . + βnXn (1)

where Vm is the predicted stand volume (m3·ha−1); β0 is intercept; β1, β2, . . . , βn are regression
coefficients; and X1, X2, X3, . . . , Xn are independent variables (CHM metrics, and FMP variables).

In order to account for the bias in log-normal linear regression, bias correction ratio (CR,
Equation (2)) proposed by Snowdon [61] was calculated for each model. Several methods for correcting
bias introduced by logarithmic transformation described in literature [61–64] were considered.
Snowdon’s CR was selected as the most suitable for application in this research. CR was calculated as
the ratio of the mean of the observed stand volumes (V) and the mean of the predicted stand volumes
(Vm, Equation (2)). Bias corrected volume (V′), was calculated using Equation (3).

CR =
V

Vm
(2)

V′ = Vm × CR (3)

The models were validated using the independent validation dataset. The stand-level volume
estimates were compared with the corresponding field data (stand volume from field inventories).
The goodness-of-fit of the stand-level volume models was evaluated by the adjusted coefficient of
determination (R2

adj) calculated using raw (log-transformed) data and graphical analyses (observed
vs. predicted values, residuals vs. independent variables). To evaluate the accuracy of the models’
estimates, the root mean square error (RMSE) (Equation (4)) and relative root mean square error
(RMSE%) (Equation (5)), as well as the mean difference (MD) (Equation (6)) and relative mean difference
(MD%) (Equation (7)) were calculated:

RMSE =

√
∑n

i=1
(
V′i −Vi

)2

n
(4)

RMSE% =
RMSE

V
× 100 (5)

MD =
∑n

i=1
(
V′i −Vi

)
n

(6)

MD% =
MD
V
× 100 (7)

where V′i is the predicted volume of stand i, Vi is the observed (field estimated) volume of stand i, n is
the number of stands, and V is the mean of the observed values.

The accuracy measures were calculated for the entire modeling and validation datasets as well as
for each stand development stage. According to the Regulation on Forest Management (Official Gazette
111/06, 141/08), stands of the research area were classified as young (30–70-year-old), middle-aged
(71–93-year-old), mature (94–120-year-old), and old stands (≥121-year-old).
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Additionally, the performance of the regression models with double-log transformation, i.e., with
logarithmically transformed dependent and independent variables, was also evaluated.

3. Results

Examples of the generated CHMs for a sample area of 1.74 ha are given in Figure 2a–c. As expected,
CHM1 provides the highest discrimination of details. While all three CHMs enable visualization of
larger gaps in the canopy, the smaller gaps cannot be determined by CHM5 (Figure 2a–c). This is also
evident in Figure 2d which shows a comparison of CHMs’ profiles through exemplary forest stand
(marked with black lines in Figure 2a–c). CHM2 provides a very similar profile with some minor
differences from CHM1 at the peak values. On the other hand, CHM5 notably differ from CHM1 and
CHM2. Namely, the areas of forest surface with greater heights are underestimated, while the areas of
lower heights are considerably overestimated by CHM5.
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Table 5 shows the Pearson correlation coefficients (r) between stand volume from measurements
from field inventories and potential predictors (i.e., stand-level metrics extracted from each CHM and
variables obtained from FMPs), whereas the correlation coefficients between the potential predictors
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(independent variables) are presented in Table A1. Among 24 considered CHM metrics, for all CHMs,
the same 18 metrics (hmean, hmode, hmax, p10, p20, . . . , p99, CC20, CC30) fulfill required criteria (p < 0.05,
r ≥ ±0.5) for entering the further modeling. Out of four FMP variables, a strong correlation with stand
volume is identified only for stand age (SA). All selected variables result in very similar, almost identical
r values for all CHMs. Accordingly, for each CHM, 19 identical potential independent variables
(18 CHM metrics and one FMP variable) are selected and included in the backward stepwise regression.

Table 5. Pearson correlation coefficients (r) between the potential predictors (CHM metrics and FMP
variables) and stand volume from field measurements calculated on the modeling dataset.

Variable
Stand Volume (m3·ha−1)

CHM1 CHM2 CHM5

CHM metrics

hmean (m) 0.83 * 0.83 * 0.83 *
hSD (m) 0.42 * 0.42 * 0.39 *

hmode (m) 0.83 * 0.83 * 0.84 *
hmax (m) 0.66 * 0.67 * 0.70 *
hmin (m) 0.13 * 0.13 * 0.13 *
p5 (m) 0.43 * 0.43 * 0.47 *
p10 (m) 0.59 * 0.59 * 0.62 *
p20 (m) 0.73 * 0.73 * 0.74 *
p25 (m) 0.76 * 0.76 * 0.77 *
p30 (m) 0.78 * 0.79 * 0.79 *
p40 (m) 0.82 * 0.82 * 0.82 *
p50 (m) 0.84 * 0.84 * 0.83 *
p60 (m) 0.84 * 0.84 * 0.84 *
p70 (m) 0.84 * 0.84 * 0.84 *
p75 (m) 0.84 * 0.84 * 0.84 *
p80 (m) 0.84 * 0.84 * 0.84 *
p90 (m) 0.83 * 0.83 * 0.83 *
p95 (m) 0.83 * 0.83 * 0.83 *
p99 (m) 0.80 * 0.81 * 0.81 *
CC10 0.17 * 0.17 * 0.18 *
CC20 0.79 * 0.79 * 0.79 *
CC30 0.54 * 0.54 * 0.51 *
CC40 0.07 ns 0.07 ns 0.04 ns

k3D 0.40 * 0.40 * 0.36 *

FMP variables

SA (years) 0.77 * 0.77 * 0.77 *
ST −0.19 * −0.19 * −0.19 *
SI 0.09 ns 0.09 ns 0.09 ns

PT 0.17 * 0.17 * 0.17 *

* Correlations are significant at p < 0.05; ns: not significant correlations (p ≥ 0.05).

For each CHM, two best fit stand-level volume models were developed and selected based on
the backward stepwise regression and Akaike information criterion (Table A2). Development of the
first model was based only on previously selected CHM metrics (hmean, hmode, hmax, p10, p20, . . . , p99,
CC20, CC30), whereas in the development of the second model SA was also included. All models and
their parameters exhibit highly significant results (p < 0.001). A similar set of independent variables
was included in all models. Namely, in all models one or two height percentiles were included, along
with hmax and CC30.

Table 6 shows results of stepwise regression and validation for six selected stand-level volume
models. The R2

adj for the modeling dataset for the first (1-A, 2-A, 5-A; hereinafter referred to as A
models) and second (1-B, 2-B, 5-B; hereinafter referred to as B models) group of models is 0.83 and
0.84, respectively, indicating a good model fit (Table 6). For the validation dataset, both groups of
models exhibit just slightly lower R2

adj values than for modeling dataset. R2
adj for modeling and

validation dataset differ by <0.01 (model 2-B) or by only 0.01 (models 1-A, 1-B, 5-B) and 0.02 (models
2-A, 5-A). In addition, the accuracy measures (RMSE, RMSE%, MD, MD%) calculated for the validation
dataset show just slightly less accurate volume estimates than for the modeling dataset. The differences
between the RMSE% values calculated for the modeling and validation datasets range from 0.39% to
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0.90%, whereas the differences between the MD% values for the two datasets range from −0.78% to
−0.98%. A good agreement between the results obtained for the modeling and validation datasets
indicates that the regression models provide reliable predictions.

Table 6. Results of stepwise regression (modeling dataset) and validation results (validation dataset)
for six selected stand-level volume models described in Table A2.

Model Variables Included

Modeling Dataset Validation Dataset

R2
adj

RMSE
(m3·ha−1)

RMSE%
(%)

MD
(m3·ha−1)

MD%
(%)

R2
adj

RMSE
(m3·ha−1)

RMSE%
(%)

MD
(m3·ha−1)

MD%
(%)

1-A hmax, p80, CC30 0.83 52.01 12.48 0.00 0.00 0.82 55.40 13.14 −3.75 −0.89
1-B hmax, p80, CC30, SA 0.84 50.84 12.20 0.00 0.00 0.83 53.08 12.59 −4.10 −0.97
2-A hmax, p50, p95, CC30 0.83 51.59 12.38 0.00 0.00 0.81 56.00 13.28 −3.29 −0.78
2-B hmax, p70, CC30, SA 0.84 50.10 12.02 0.00 0.00 0.84 52.83 12.53 −3.86 −0.92
5-A hmax, p30, p90, CC30 0.83 51.60 12.38 0.00 0.00 0.81 55.92 13.26 −3.96 −0.94
5-B hmax, p25, p90, CC30, SA 0.84 50.26 12.06 0.00 0.00 0.83 53.31 12.64 −4.12 −0.98

R2
adj: adjusted coefficient of determination; RMSE: root mean square error; RMSE%: relative root mean square error;

MD: mean difference; MD%: relative mean difference.

According to the validation results (Table 6), the best performing model is model 2-B (R2
adj = 0.84,

RMSE% = 12.53%) with metrics extracted from CHM2 (hmax, p70, CC30) and SA as independent
variables. The worst performing model is model 2-A (R2

adj = 0.81, RMSE% = 13.28%) with metrics
extracted from CHM2 (hmax, p50, p95, CC20) as only independent variables. The same trend is also
confirmed in the scatterplots (Figure 3), where it can be seen that model 2-B produces the smallest,
and model 2-A the largest deviations from the fitted line. Furthermore, the MD and MD% values are
negative for all models and range from −0.78% to −0.98% indicating that the stand volume is on
average slightly underestimated. According to Figure 3, the negative MD and MD% values result from
several larger residuals in the stands with the observed volume >500 m3·ha−1. To further characterize
models’ performance and relationships between dependent and independent variables, scatterplots of
residuals vs. independent variables are given in Appendix B (Figure A1).

Observed by models’ type, it can be noted that models developed solely from CHM metrics
(A models) produce slightly less precise volume estimates than the models developed from both
CHM metrics and SA (B models) (Table 6). This can be observed for all CHMs. Compared to models
1-A, 2-A, and 5-A, the R2

adj values for models 1-B, 2-B, and 5-B are increased by 0.1, 0.3, and 0.2,
respectively, whereas the RMSE% values are decreased by 0.55%, 0.75%, and 0.62%, respectively.
However, compared to models 1-A, 2-A, and 5-A, the MD% values for models 1-B, 2-B, and 5-B are
increased by −0.08, −0.14, and −0.04, respectively.

The obtained results are similar for all three CHM resolutions (1 m—CHM1, 2 m—CHM2, and
5 m—CHM5) (Table 6). For instance, the differences between the RMSE% for the best performing
model 2-B derived using metrics extracted from CHM2, and models derived using metrics extracted
from CHM1 (model 1-B) and CHM5 (model 5-B) are 0.06% and 0.11%, respectively.

Figure 4 shows validation results by stand development stages. Overall, the highest RMSEs% are
calculated for young stands (16.69%–20.65%), followed by mature (12.86%–13.45%) and middle-aged
stands (10.82%–12.73%), whereas the lowest RMSE%, i.e., the highest accuracy, are calculated for
old stands (10.30%–11.42%). Except for the young stands, for which somewhat greater differences
between RMSE% of A and B models can be noticed (3.35%–3.96%), the differences between A and B
models for all other development stages are considerably smaller (middle-aged: 0.87%–1.45%, mature:
0.26%–0.50%, old: 0.55%–0.84%). Similar to the complete dataset analyses, the differences between the
CHM datasets of different resolutions (1 m, 2 m, and 5 m) for each development stage are negligible.

Unlike the RMSE% values, the MD% values vary noticeably for different development stages,
as well as for different models’ types within each development stage. For the young stands, the values
are overestimated for both models, ranging from 3.83% to 5.08% and from 0.84% to 1.93% for the A
and B models, respectively. For the middle-aged stands, the MD% values are also overestimated for the
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A models ranging between 4.02% to 4.86%, while the MD% values for the B models are very close to 0,
ranging from −0.56% to 0.27%. For these two development stages (young, middle-aged) it is evident
that the inclusion of SA into the B models considerably decreases the models’ bias (underestimations).
On the other hand, for the mature stands, both model types result in underestimated MD% values
with a similar range. The MD% values for the A and B models range from −1.66% to −2.06% and from
−1.57% to−1.99%, respectively. Furthermore, for the old stands, A models produce the underestimated
values (−1.10% to −2.87%), whereas the inclusion of SA into the B models results in decreased MD%

values, ranging from −0.64% to 1.07%.
In general, the regression models with the double-log transformation used to model stand-level

volume do not yield any better results than the log-linear regression models. Detailed results of the
double-log analysis can be found in Appendix C (Tables A3 and A4, Figures A2 and A3).
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(validation dataset) described in Table 5. The solid line represents fitted linear model.
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Figure 4. Validation results by stand development stages (young, middle-aged, mature, old): (a) root
mean square error (RMSE); (b) relative root mean square error (RMSE%); (c) mean difference (MD);
and (d) relative mean difference (MD%).

4. Discussion

Despite the proven applicability of ALS technology for operational forest inventory, the high-cost
of ALS surveys is a limiting factor that impedes its widespread use. In many countries, including
Croatia, the national ALS surveys have not been conducted yet. Thus, aerial images, which are regularly
updated in many European countries [22], present an alternative to ALS technology. The digital terrain
data (breaklines, formlines, spot heights and mass points) used to generate DTM in this study present
the national standard and they are the only available DTM data for Croatia. It is well known that
the photogrammetrically-based (stereo-mapping) DTM of forested areas has a lower accuracy than
ALS-based DTM because of the ground being obscured by vegetation [12,21]. However, since the
research area in this study is characterized by flat terrain, it can be assumed that DTM derived from
digital terrain data could be of satisfactory accuracy. Nevertheless, many countries may benefit
from studies like this one where the main concern is to explore the applicability of the existing
photogrammetric data to generate CHM and to estimate stand volume of different forest types.

Previous studies [3,10,24,30,34], regardless of the data used (ALS or aerial images), mostly utilized
plot-level metrics to estimate volume at stand level, while in this study we have estimated the stand
volume based on the stand-level metrics. To the best of the authors’ knowledge, this research is the
first that has focused on stand-level metrics extracted from the image-based CHM, i.e., from CHM
that is completely derived from photogrammetric data. Since it is completely based on existing data
(aerial images, DTM data, field data), this approach is considered as a low-cost alternative. As such,
the study serves as a basis for other studies where ALS technology is limited (i.e., in countries and
regions which do not have access to ALS data, and will probably not have access in the near future
either). Furthermore, to apply this stand-level approach, the acquisition of precise location (which
is not an easy task in dense forests) of the reference field plots is not necessary. This presents an
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additional benefit for inventories of large areas to be completed in a short period of time. It should be
emphasized that the aim of this approach is not to replace field inventories or plot-level remote sensing
inventories which also requires a certain amount of field reference data collected at the same time as
remote sensing data. As already noted, regular field forest inventories are usually conducted at 10-year
intervals, whereas aerial images in Croatia and many other European countries are regularly updated
every 3–5 years. Therefore, provided that aerial survey and regular forest inventory of some specific
area (forest type) were conducted simultaneously (which was the case for the part of the Spačva basin
in 2011), stand-level models could be derived using image-based CHM metrics and existing field
inventory data. This approach, i.e., these models could be then used to estimate stand volume on other
sites of the same forest type or for the same area after next aerial survey. Concretely, for the Spačva
basin, the stand-level approach could be applied using new images from 2016, which will be available
from CSGA soon. This means that fast and reasonably accurate stand volume estimates for Spačva
basin could be obtained five years before regular forest inventory (2021–2022). Such more frequently
updated information on forests could serve as a great support to practical management activities, as
well as for monitoring of forest state and condition.

Regardless of the spatial resolution of the CHM datasets, the metrics extracted from each CHM
exhibit a similar, almost identical correlation with the stand volume derived from field measurements
(Table 5). This leads to the conclusion that the uncertainties involved in the modeling of forest surface,
namely under- and overestimations obtained for CHM5, are consistent throughout the area. As a
result, by applying the backward stepwise regression, the similar set of independent variables are
successfully selected and included in the stand-level volume models for all CHM resolutions (Table A2).
As previously mentioned, the CHM metrics (e.g., height metrics, and canopy cover metrics) selected
and included in the final stand-level modeling are similar to metrics used for predicting plot-level
volume in other studies [3,10,24,30,34]. However, while in the present study the SA has been used
in B models, variables in other studies, such as texture metrics derived from CHM rasters [24] or
spectral metrics derived from orthoimage [3], were used in addition to height and canopy cover metrics
extracted from CHMs.

This study (Table 6, Figure 3) suggests that models with CHM metrics and SA as independent
variables (B models) have slightly better performance overall than models based solely on CHM
metrics (A models). The inclusion of SA, in addition to CHM metrics, decreased RMSE% by 0.55%
(1-B), 0.75% (2-B), and 0.62% (5-B). This step of the research is of particular importance because the
SA is, for even-aged stands, usually known, or easily obtainable variable, from the existing forest
management plans. Therefore, it may be considered as an additional predictor of stand volume in
future studies.

Among all tested models, model 2-B, with metrics extracted from CHM2 and SA as independent
variables, exhibits the best performance (RMSE% = 12.53%). On the other hand, the worst performance
is observed for model 5-A (RMSE% = 13.28%) with metrics extracted from CHM2 as only independent
variables, which is in agreement with other studies [3,10,24,30,34]) where the estimated stand volume
using image-based point clouds or CHMs had RMSE% from 13.0% to 18.1%. Due to a number of
differences between studies (e.g., site characteristics, forest structure, camera and image characteristics,
matching software, etc.), precise comparison of the results is not possible. The agreement between
the results of this and previous studies [3,10,24,30,34] suggests that the stand-level metrics extracted
from the image-based CHMs can be used for the estimation of stand volume with similar or even
slightly better accuracy than plot-level metrics. Moreover, the obtained results are also in agreement
with the recent studies based on ALS data. For example, Rahlf et al. [10], Gobakken et al. [30], and
Puliti et al. [34] estimated volume at stand level using ALS data with RMSE% of 12.4%, 11.6%, and
13.3%, respectively.

Concerning the different resolutions (1 m, 2 m, 5 m) of CHMs used in this research, very similar
results were obtained for all three CHMs (CHM1, CHM2, CHM5) (Table 6, Figure 3). This implies
that stand-level metrics extracted from all observed CHM resolutions (1 m, 2 m, 5 m) can provide
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reasonably accurate stand volume estimates. Similarly, Bohlin et al. [24] did not find improvements
in estimation accuracy of forest stand attributes using point clouds derived from images of lower
GSD (Table 1). Although the increase in resolution may result in better accuracy [30], CHMs of lower
spatial resolution facilitate faster data manipulation and processing, especially for larger areas. Images
of lower spatial resolutions or point clouds of lower densities, together with the lower amount of
extracted metrics, occupy a smaller storage size than CHMs of high spatial resolution or very dense
point clouds. Therefore, the trade-off between spatial resolution and required accuracy for a given
area should be identified.

With respect to the stand development stages, the highest accuracy is obtained for old stands
and the lowest accuracy for young stands (Figure 4). Although one could consider such a trend as
the uncertainty of the proposed approach, it is in accordance with the findings of Gobakken et al. [30].
Namely, young stands of the research area are very dense with homogeneous structure and mostly
without the presence of gaps in crowns. Therefore, the independent variable CC30, which describes
density (cover) of stands, has a less significant role in the performance of A models for young stands,
resulting in the stand volume estimates of lower accuracy. This confirms our findings that the inclusion
of SA as additional predictors in B models considerably improves estimation accuracy in young and
middle-aged stands (Figure 4).

5. Conclusions

This research confirmed the great potential of digital aerial photogrammetry for stand-level
forest inventory when fast, simple and low-cost approach based on existing data is needed. Image
matching of existing digital aerial images from a national topographic survey, as well as interpolation
of existing DTM data, were successfully applied to generate CHMs of different spatial resolutions (1 m,
2 m, and 5 m) for the area of even-aged pedunculate oak forests. For the first time, the stand-level
metrics extracted from image-based CHMs were used to estimate the stand volume. The estimation
accuracies were similar or even slightly better compared to those obtained from previous studies in
which stand volume estimates were based on plot-level metrics. The validation results showed that the
inclusion of stand age as an independent variable in addition to CHM metrics slightly improved the
accuracy of stand volume estimates. Observed by stand development stages, these improvements were
considerable for young and middle-aged stands, and they were negligible for mature and old stands.
As stand age is an easily obtainable variable, it is recommended to use it for volume estimation, at least
for young and middle-aged stands. The comparison between the different CHM’s resolutions (1 m, 2 m,
5 m) used for metrics extraction and volume estimation, showed that all observed CHM resolutions
were capable of providing reasonably accurate volume estimates at the stand level. Additionally,
this research revealed that in the absence of ALS-based DTM data, the existing digital terrain data,
commonly collected by stereo mapping and field survey, could be readily used for DTM and CHM
generation for flat terrains and lowland forests. This research serves as a basis for future studies where
the applicability of the stand-level CHM approach should be tested for estimating other important
forest stand attributes such as mean tree height, mean dbh, stand density, basal area, and biomass,
across different forest types. The prediction potential of other variables obtainable from aerial images
(e.g., color information/spectral metrics) and CHMs (e.g., texture metrics) should be examined.
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Appendix A

Table A1. Pearson correlation coefficients (r) between the independent variables (CHM metrics and FMP variables) calculated on the modeling dataset for the each
CHM resolution (1 m—CHM1, 2 m—CHM2, 5 m—CHM5). Correlations marked with * are significant at p < 0.05.

CHM1 hmean hSD hmode hmax hmin p5 p10 p20 p25 p30 p40 p50 p60 p70 p75 p80 p90 p95 p99 CC10 CC20 CC30 CC40 k3D SA ST SI PT

hmean 1.00 0.36 * 0.95 * 0.82 * 0.15 * 0.63 * 0.80 * 0.93 * 0.96 * 0.97 * 0.99 * 0.99 * 0.99 * 0.98 * 0.97 * 0.97 * 0.95 * 0.94 * 0.92 * 0.29 * 0.92 * 0.70 * 0.14 * 0.37 * 0.80 * −0.26 * 0.14 * 0.19 *
hSD 1.00 0.57 * 0.60 * −0.32 * −0.42 * −0.24 * 0.03 0.12 0.20 * 0.33 * 0.42 * 0.49 * 0.54 * 0.56 * 0.57 * 0.61 * 0.62 * 0.64 * −0.45 * 0.24 * 0.51 * 0.37 * 0.93 * 0.60 * −0.36 * 0.13 * 0.26 *

hmode 1.00 0.85 * 0.05 0.44 * 0.62 * 0.80 * 0.85 * 0.88 * 0.94 * 0.97 * 0.98 * 0.98 * 0.98 * 0.98 * 0.97 * 0.97 * 0.95 * 0.16 * 0.85 * 0.73 * 0.20 * 0.56 * 0.84 * −0.32 * 0.16 * 0.22 *
hmax 1.00 −0.11 0.32 * 0.48 * 0.65 * 0.70 * 0.74 * 0.80 * 0.83 * 0.85 * 0.86 * 0.87 * 0.87 * 0.88 * 0.89 * 0.90 * 0.08 0.69 * 0.73 * 0.32 * 0.64 * 0.78 * −0.35 * 0.14 * 0.23 *
hmin 1.00 0.40 * 0.31 * 0.22 * 0.19 * 0.17 * 0.13 * 0.11 0.09 0.08 0.07 0.07 0.06 0.05 0.03 0.31 * 0.18 * 0.03 −0.11 −0.24 * 0.01 −0.02 −0.10 −0.02

p5 1.00 0.93 * 0.79 * 0.74 * 0.70 * 0.63 * 0.57 * 0.52 * 0.49 * 0.47 * 0.46 * 0.43 * 0.41 * 0.38 * 0.71 * 0.66 * 0.28 * −0.14 * −0.33 * 0.29 * −0.01 0.02 −0.01
p10 1.00 0.94 * 0.91 * 0.88 * 0.81 * 0.75 * 0.71 * 0.67 * 0.65 * 0.64 * 0.61 * 0.59 * 0.56 * 0.63 * 0.79 * 0.42 * −0.07 −0.19 * 0.45 * −0.06 0.06 0.05
p20 1.00 0.99 * 0.98 * 0.95 * 0.91 * 0.87 * 0.84 * 0.83 * 0.81 * 0.78 * 0.76 * 0.74 * 0.49 * 0.89 * 0.56 * 0.03 0.05 0.63 * −0.13 * 0.11 0.10
p25 1.00 0.99 * 0.97 * 0.94 * 0.91 * 0.88 * 0.87 * 0.86 * 0.83 * 0.81 * 0.79 * 0.44 * 0.90 * 0.60 * 0.07 0.13 * 0.68 * −0.16 * 0.12 * 0.12 *
p30 1.00 0.99 * 0.96 * 0.94 * 0.92 * 0.91 * 0.89 * 0.87 * 0.86 * 0.83 * 0.40 * 0.91 * 0.64 * 0.09 0.21 * 0.72 * −0.18 * 0.13 * 0.14 *
p40 1.00 0.99 * 0.98 * 0.97 * 0.96 * 0.95 * 0.93 * 0.92 * 0.90 * 0.31 * 0.92 * 0.69 * 0.13 * 0.33 * 0.78 * −0.23 * 0.14 * 0.17 *
p50 1.00 0.99 * 0.99 * 0.98 * 0.98 * 0.97 * 0.95 * 0.93 * 0.26 * 0.91 * 0.72 * 0.17 * 0.42 * 0.82 * −0.27 * 0.15 * 0.19 *
p60 1.00 0.99 * 0.99 * 0.99 * 0.98 * 0.97 * 0.96 * 0.22 * 0.90 * 0.73 * 0.19 * 0.49 * 0.84 * −0.30 * 0.15 * 0.21 *
p70 1.00 0.99 * 0.99 * 0.99 * 0.99 * 0.97 * 0.18 * 0.88 * 0.74 * 0.20 * 0.54 * 0.85 * −0.32 * 0.15 * 0.22 *
p75 1.00 0.99 * 0.99 * 0.99 * 0.98 * 0.16 * 0.88 * 0.74 * 0.21 * 0.56 * 0.85 * −0.33 * 0.15 * 0.23 *
p80 1.00 0.99 * 0.99 * 0.98 * 0.15 * 0.87 * 0.75 * 0.22 * 0.58 * 0.86 * −0.34 * 0.15 * 0.24 *
p90 1.00 0.99 * 0.99 * 0.12 * 0.86 * 0.75 * 0.23 * 0.61 * 0.86 * −0.35 * 0.15 * 0.24 *
p95 1.00 0.99 * 0.10 0.84 * 0.76 * 0.23 * 0.63 * 0.86 * −0.37 * 0.15 * 0.25 *
p99 1.00 0.08 0.82 * 0.76 * 0.26 * 0.65 * 0.86 * −0.39 * 0.14 * 0.25 *

CC10 1.00 0.34 * 0.05 −0.09 −0.39 * 0.04 0.06 0.02 −0.08
CC20 1.00 0.40 * 0.04 0.25 * 0.76 * −0.08 0.19 * 0.13 *
CC30 1.00 0.28 * 0.52 * 0.55 * −0.49 * −0.03 0.21 *
CC40 1.00 0.40 * 0.18 * −0.18 * −0.04 0.19 *
k3D 1.00 0.61 * −0.41 * 0.10 * 0.29 *
SA 1.00 −0.23 * 0.37 * 0.21 *
ST 1.00 0.04 −0.30 *
SI 1.00 −0.16 *
PT 1.00
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Table A1. Cont.

CHM2 hmean hSD hmode hmax hmin p5 p10 p20 p25 p30 p40 p50 p60 p70 p75 p80 p90 p95 p99 CC10 CC20 CC30 CC40 k3D SA ST SI PT

hmean 1.00 0.35 * 0.95 * 0.82 * 0.15 * 0.63 * 0.80 * 0.93 * 0.96 * 0.97 * 0.99 * 0.99 * 0.99 * 0.98 * 0.97 * 0.97 * 0.96 * 0.94 * 0.93 * 0.29 * 0.92 * 0.70 * 0.12 * 0.36 * 0.80 * −0.26 * 0.14 * 0.19 *
hSD 1.00 0.56 * 0.60 * −0.34 * −0.42 * −0.24 * 0.03 0.12 0.19 * 0.32 * 0.41 * 0.48 * 0.53 * 0.55 * 0.56 * 0.60 * 0.62 * 0.64 * −0.44 * 0.24 * 0.50 * 0.33 * 0.93 * 0.59 * −0.35 * 0.13 * 0.26 *

hmode 1.00 0.86 * 0.06 0.45 * 0.63 * 0.81 * 0.86 * 0.89 * 0.94 * 0.97 * 0.98 * 0.99 * 0.99 * 0.98 * 0.98 * 0.97 * 0.96 * 0.17 * 0.85 * 0.73 * 0.20 * 0.54 * 0.84 * −0.32 * 0.15 * 0.22 *
hmax 1.00 −0.09 0.33 * 0.49 * 0.66 * 0.71 * 0.74 * 0.80 * 0.83 * 0.85 * 0.87 * 0.87 * 0.88 * 0.89 * 0.89 * 0.91 * 0.09 0.69 * 0.73 * 0.30 * 0.63 * 0.79 * −0.35 * 0.15 * 0.24 *
hmin 1.00 0.43 * 0.33 * 0.22 * 0.19 * 0.17 * 0.13 * 0.11 0.09 0.08 0.07 0.07 0.06 0.05 0.04 0.33 * 0.18 * 0.03 −0.10 −0.24 * 0.02 −0.02 −0.10 −0.02

p5 1.00 0.94 * 0.79 * 0.74 * 0.70 * 0.63 * 0.57 * 0.53 * 0.50 * 0.48 * 0.47 * 0.44 * 0.42 * 0.39 * 0.71 * 0.66 * 0.28 * −0.12 −0.33 * 0.30 * −0.01 0.04 −0.02
p10 1.00 0.94 * 0.90 * 0.87 * 0.80 * 0.75 * 0.71 * 0.67 * 0.66 * 0.64 * 0.61 * 0.59 * 0.56 * 0.65 * 0.79 * 0.41 * −0.07 −0.19 * 0.45 * −0.07 0.07 0.04
p20 1.00 0.99 * 0.98 * 0.95 * 0.91 * 0.88 * 0.85 * 0.83 * 0.82 * 0.79 * 0.77 * 0.74 * 0.50 * 0.89 * 0.56 * 0.02 0.04 0.63 * −0.14 * 0.11 0.10
p25 1.00 0.99 * 0.97 * 0.94 * 0.92 * 0.89 * 0.88 * 0.86 * 0.84 * 0.82 * 0.79 * 0.45 * 0.90 * 0.60 * 0.05 0.12 * 0.68 * −0.16 * 0.12 * 0.12 *
p30 1.00 0.99 * 0.97 * 0.94 * 0.92 * 0.91 * 0.90 * 0.87 * 0.86 * 0.83 * 0.41 * 0.91 * 0.63 * 0.08 0.19 * 0.72 * −0.19 * 0.13 * 0.14 *
p40 1.00 0.99 * 0.98 * 0.97 * 0.96 * 0.95 * 0.93 * 0.92 * 0.90 * 0.32 * 0.92 * 0.68 * 0.11 0.31 * 0.78 * −0.23 * 0.14 * 0.17 *
p50 1.00 0.99 * 0.99 * 0.98 * 0.98 * 0.97 * 0.95 * 0.93 * 0.26 * 0.91 * 0.71 * 0.14 * 0.40 * 0.81 * −0.27 * 0.15 * 0.19 *
p60 1.00 0.99 * 0.99 * 0.99 * 0.98 * 0.97 * 0.96 * 0.22 * 0.90 * 0.72 * 0.16 * 0.47 * 0.83 * −0.30 * 0.15 * 0.21 *
p70 1.00 0.99 * 0.99 * 0.99 * 0.99 * 0.97 * 0.19 * 0.89 * 0.73 * 0.18 * 0.52 * 0.85 * −0.32 * 0.15 * 0.22 *
p75 1.00 0.99 * 0.99 * 0.99 * 0.98 * 0.17 * 0.88 * 0.74 * 0.19 * 0.54 * 0.85 * −0.33 * 0.15 * 0.23 *
p80 1.00 0.99 * 0.99 * 0.98 * 0.15 * 0.87 * 0.74 * 0.19 * 0.56 * 0.86 * −0.33 * 0.15 * 0.23 *
p90 1.00 0.99 * 0.99 * 0.13 * 0.86 * 0.74 * 0.20 * 0.59 * 0.86 * −0.35 * 0.15 * 0.24 *
p95 1.00 1.00 0.11 0.85 * 0.75 * 0.21 * 0.61 * 0.86 * −0.37 * 0.15 * 0.25 *
p99 1.00 0.09 0.82 * 0.76 * 0.23 * 0.64 * 0.86 * −0.39 * 0.14 * 0.25 *

CC10 1.00 0.34 * 0.06 −0.07 −0.39 * 0.04 0.05 0.02 −0.08
CC20 1.00 0.40 * 0.03 0.24 * 0.77 * −0.08 0.20 * 0.13 *
CC30 1.00 0.25 * 0.51 * 0.55 * −0.49 * −0.03 0.20 *
CC40 1.00 0.35 * 0.16 * −0.17 * −0.04 0.17 *
k3D 1.00 0.60 * −0.41 * 0.09 0.29 *
SA 1.00 −0.23 * 0.37 * 0.21 *
ST 1.00 0.04 −0.30 *
SI 1.00 −0.16 *
PT 1.00
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Table A1. Cont.

CHM5 hmean hSD hmode hmax hmin p5 p10 p20 p25 p30 p40 p50 p60 p70 p75 p80 p90 p95 p99 CC10 CC20 CC30 CC40 k3D SA ST SI PT

hmean 1.00 0.30 * 0.96 * 0.85 * 0.17 * 0.69 * 0.84 * 0.95 * 0.97 * 0.98 * 0.99 * 0.99 * 0.99 * 0.98 * 0.98 * 0.97 * 0.96 * 0.95 * 0.93 * 0.30 * 0.92 * 0.67 * 0.05 0.26 * 0.80 * −0.26 * 0.14 * 0.19 *
hSD 1.00 0.49 * 0.56 * −0.40 * −0.42 * −0.24 * 0.01 0.09 0.16 * 0.28 * 0.36 * 0.42 * 0.47 * 0.49 * 0.51 * 0.54 * 0.56 * 0.58 * −0.45 * 0.20 * 0.44 * 0.15 * 0.91 * 0.55 * −0.34 * 0.12 * 0.25 *

hmode 1.00 0.88 * 0.07 0.52 * 0.69 * 0.84 * 0.88 * 0.91 * 0.95 * 0.97 * 0.98 * 0.98 * 0.98 * 0.98 * 0.97 * 0.97 * 0.95 * 0.20 * 0.86 * 0.70 * 0.11 0.44 * 0.83 * −0.30 * 0.15 * 0.22 *
hmax 1.00 −0.04 0.42 * 0.57 * 0.71 * 0.75 * 0.78 * 0.83 * 0.86 * 0.88 * 0.89 * 0.90 * 0.90 * 0.91 * 0.92 * 0.94 * 0.14 * 0.72 * 0.74 * 0.15 * 0.52 * 0.79 * −0.38 * 0.12 * 0.25 *
hmin 1.00 0.46 * 0.35 * 0.24 * 0.21 * 0.19 * 0.15 * 0.13 * 0.11 0.10 0.09 0.08 0.07 0.06 0.05 0.37 * 0.20 * 0.04 −0.03 −0.30 * 0.03 −0.02 −0.09 −0.03

p5 1.00 0.95 * 0.82 * 0.78 * 0.74 * 0.68 * 0.63 * 0.59 * 0.56 * 0.54 * 0.53 * 0.50 * 0.48 * 0.46 * 0.68 * 0.69 * 0.32 * −0.03 −0.37 * 0.35 * −0.04 0.06 0.01
p10 1.00 0.95 * 0.92 * 0.89 * 0.84 * 0.79 * 0.76 * 0.72 * 0.71 * 0.69 * 0.66 * 0.64 * 0.62 * 0.62 * 0.81 * 0.44 * −0.01 −0.24 * 0.50 * −0.09 0.08 0.07
p20 1.00 0.99 * 0.99 * 0.96 * 0.93 * 0.90 * 0.87 * 0.86 * 0.85 * 0.82 * 0.80 * 0.77 * 0.48 * 0.89 * 0.56 * 0.01 −0.02 0.65 * −0.15 * 0.11 0.12 *
p25 1.00 0.99 * 0.98 * 0.95 * 0.93 * 0.91 * 0.89 * 0.88 * 0.86 * 0.84 * 0.81 * 0.44 * 0.90 * 0.59 * 0.03 0.06 0.69 * −0.18 * 0.12 * 0.13 *
p30 1.00 0.99 * 0.97 * 0.95 * 0.93 * 0.92 * 0.91 * 0.89 * 0.87 * 0.85 * 0.41 * 0.91 * 0.62 * 0.03 0.12 * 0.72 * −0.19 * 0.13 * 0.15 *
p40 1.00 0.99 * 0.98 * 0.97 * 0.96 * 0.96 * 0.94 * 0.92 * 0.90 * 0.33 * 0.91 * 0.65 * 0.05 0.23 * 0.78 * −0.23 * 0.14 * 0.17 *
p50 1.00 0.99 * 0.99 * 0.98 * 0.98 * 0.97 * 0.95 * 0.93 * 0.28 * 0.91 * 0.68 * 0.06 0.31 * 0.81 * −0.26 * 0.15 * 0.19 *
p60 1.00 0.99 * 0.99 * 0.99 * 0.98 * 0.97 * 0.96 * 0.24 * 0.90 * 0.69 * 0.07 0.37 * 0.83 * −0.29 * 0.15 * 0.20 *
p70 1.00 0.99 * 0.99 * 0.99 * 0.99 * 0.97 * 0.20 * 0.89 * 0.70 * 0.08 0.42 * 0.84 * −0.31 * 0.15 * 0.22 *
p75 1.00 0.99 * 0.99 * 0.99 * 0.98 * 0.19 * 0.89 * 0.70 * 0.09 0.44 * 0.85 * −0.32 * 0.15 * 0.22 *
p80 1.00 0.99 * 0.99 * 0.98 * 0.17 * 0.88 * 0.71 * 0.09 0.46 * 0.85 * −0.33 * 0.15 * 0.23 *
p90 1.00 0.99 * 0.99 * 0.14 * 0.86 * 0.71 * 0.09 0.50 * 0.86 * −0.35 * 0.15 * 0.24 *
p95 1.00 0.99 * 0.13 * 0.85 * 0.72 * 0.10 0.53 * 0.86 * −0.36 * 0.14 * 0.24 *
p99 1.00 0.12 * 0.82 * 0.73 * 0.10 0.55 * 0.85 * −0.38 * 0.13 * 0.25 *

CC10 1.00 0.35 * 0.07 0.01 −0.44 * 0.05 0.05 0.03 −0.07
CC20 1.00 0.37 * 0.02 0.17 * 0.77 * −0.09 0.20 * 0.13 *
CC30 1.00 0.11 0.42 * 0.51 * −0.48 * −0.05 0.19 *
CC40 1.00 0.15 * 0.07 −0.09 −0.06 0.14 *
k3D 1.00 0.52 * −0.38 * 0.06 0.25 *
SA 1.00 −0.23 * 0.37 * 0.21 *
ST 1.00 0.04 −0.30 *
SI 1.00 −0.16 *
PT 1.00
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Appendix B

Table A2. Description (selected independent variables, estimated parameters, standard errors and
significance values) of six selected stand-level volume models, including Snowdon’s correction ratio
(CR) for bias correction (Equations (2) and (3)). Two models were selected for each CHM resolution
(1 m—CHM1, 2 m—CHM2, 5 m—CHM5). In the model name, number denotes a CHM resolution for
which the model was developed, whereas letter denotes whether the model was derived solely from
CHM metrics as independent variables (A), or from both CHM metrics and FMP variables (B).

Model Equation Parameters

Symbol Value Standard Error p Value

1-A ln(Vm) = β0 + β1 × hmax + β2 × p80 + β3 × CC30

β0 3.88550 0.07654 <0.00001
β1 −0.01524 0.00332 <0.00001
β2 0.09532 0.00392 <0.00001
β3 −0.45408 0.05968 <0.00001
CR 1.00769

1-B ln(Vm) = β0 + β1 × hmax + β2 × p80 + β3 × CC30 + β4 × SA

β0 4.06198 0.08733 <0.00001
β1 −0.01789 0.00320 <0.00001
β2 0.08348 0.00488 <0.00001
β3 −0.38302 0.06098 <0.00001
β4 0.00241 0.00062 <0.00001
CR 1.00731

2-A ln(Vm) = β0 + β1 × hmax + β2 × p50 + β3 × p95 + β4 × CC30

β0 3.08080 0.07612 <0.00001
β1 −0.01737 0.00346 <0.00001
β2 0.03844 0.00641 <0.00001
β3 0.06154 0.00729 <0.00001
β4 −0.45780 0.05839 <0.00001
CR 1.00750

2-B ln(Vm) = β0 + β1 × hmax + β2 × p70 + β3 × CC30 + β4 × SA

β0 4.10954 0.08453 <0.00001
β1 −0.01720 0.00322 <0.00001
β2 0.08093 0.00462 <0.00001
β3 −0.35325 0.05892 <0.00001
β4 0.00293 0.00059 <0.00001
CR 1.00716

5-A ln(Vm) = β0 + β1 × hmax + β2 × p30 + β3 × p90 + β4 × CC30

β0 3.89013 0.08219 <0.00001
β1 −0.01848 0.00463 0.00008
β2 0.01605 0.00441 0.00033
β3 0.08180 0.00622 <0.00001
β4 −0.40899 0.00581 <0.00001
CR 1.00778

5-B ln(Vm) = β0 + β1 × hmax + β2 × p25 + β3 × p90 + β4 × CC30 + β5 × SA

β0 4.07798 0.09199 <0.00001
β1 −0.02041 0.00451 <0.00001
β2 0.01747 0.00392 0.00001
β3 0.06718 0.00697 <0.00001
β4 −0.33150 0.05942 <0.00001
β5 0.00262 0.00063 0.00005
CR 1.00742

Vm: stand volume prior to correction for Snowdon’s correction ratio; hmax: maximum height; p25: 25th height
percentile; p30: 30th height percentile; p50: 50th height percentile; p70: 70th height percentile; p80: 80th height
percentile; p90: 90th height percentile; p95: 95th height percentile; CC30: the ratio between the area of canopy
with height greater than 30 m and the stand area; SA: stand age; β0: intercept; β1, β2, β3, β4, and β5: regression
coefficients; CR: Snowdon’s correction ratio.
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Appendix C

Table A3. Results of the stepwise regression (on the modeling dataset) and of the validation (on the
validation dataset) for the six selected stand-level volume models (double-log models, i.e., models with
the logarithmically transformed dependent and independent variables).

Model Variables Included
Modeling Dataset Validation Dataset

R2
adj

RMSE
(m3·ha−1)

RMSE%
(%)

MD
(m3·ha−1)

MD%
(%)

R2
adj

RMSE
(m3·ha−1)

RMSE%
(%)

MD
(m3·ha−1)

MD%
(%)

1-A′ hmax, p80, CC20 0.83 52.02 12.48 0.00 0.00 0.81 56.08 13.30 −3.13 −0.74
1-B′ hmax, p80, CC20, SA 0.84 50.28 12.07 0.00 0.00 0.83 52.93 12.55 −3.76 −0.89
2-A′ hmax, p40, p50, CC30 0.83 52.32 12.56 0.00 0.00 0.80 57.39 13.61 −4.29 −1.02
2-B′ hmax, p25, p40, p50, SA 0.85 49.70 11.93 0.00 0.00 0.83 53.24 12.63 −4.71 −1.12
5-A′ hmax, p80, CC30 0.82 52.46 12.59 0.00 0.00 0.81 56.74 13.46 −4.81 −1.14
5-B′ hmax, p25, p90, SA 0.84 50.97 12.23 0.00 0.00 0.83 53.04 12.58 −4.65 −1.10

R2
adj: adjusted coefficient of determination; RMSE: root mean square error; RMSE%: relative root mean square error;

MD: mean difference; MD%: relative mean difference.

Table A4. Description (selected independent variables, estimated parameters, standard errors and
significance values) of six selected stand-level volume models (double-log models, i.e., models with the
logarithmically transformed dependent and independent variables), including Snowdon’s correction
ratio (CR) for bias correction (Equations (2) and (3)). Two models were selected for each CHM resolution
(1 m—CHM1, 2 m—CHM2, 5 m—CHM5). In the model name, number denotes a CHM resolution for
which the model was developed, whereas letter denotes whether the model was derived solely from
CHM metrics as independent variables (A′), or from both CHM metrics and FMP variables (B′).

Model Equation Parameters

Symbol Value Standard Error p Value

1-A′ ln(Vm) = β0 + β1 × hmax + β2 × p80 + β3 × CC20

β0 2.47009 0.31889 <0.00001
β1 −0.45194 0.11086 0.00006
β2 1.46944 0.15866 <0.00001
β3 0.42649 0.09907 0.00002
CR 1.00789

1-B′ ln(Vm) = β0 + β1 × hmax + β2 × p80 + β3 × CC20 + β4 × SA

β0 2.55290 0.30744 <0.00001
β1 −0.50482 0.10729 <0.00001
β2 1.16292 0.16587 <0.00001
β3 0.32178 0.09789 0.00115
β4 0.25905 0.05470 <0.00001
CR 1.00761

2-A′ ln(Vm) = β0 + β1 × hmax + β2 × p40 + β3 × p50 + β4 × CC30

β0 2.65916 0.34331 <0.00001
β1 −0.42496 0.10948 0.00013
β2 −2.23820 0.49331 <0.00001
β3 3.70810 0.56427 <0.00001
β4 0.07661 0.01840 0.00004
CR 1.00817

2-B′ ln(Vm) = β0 + β1 × hmax + β2 × p25 + β3 × p40 + β4 × p50 + β5 × SA

β0 1.85652 0.18705 <0.00001
β1 −0.60472 0.10253 <0.00001
β2 1.72442 0.47945 0.00038
β3 −6.93192 1.65233 0.00004
β4 6.61737 1.24758 <0.00001
β 5 0.35602 0.05236 <0.00001
CR 1.00700

5-A′ ln(Vm) = β0 + β1 × hmax + β2 × p80 + β3 × CC30

β0 2.26908 0.34361 <0.00001
β1 −0.44165 0.13458 0.00117
β2 1.58609 0.16020 <0.00001
β3 0.05308 0.01528 0.00060
CR 1.00837

5-B′ ln(Vm) = β0 + β1 × hmax + β2 × p25 + β3 × p90 + β4 × SA

β0 1.61421 0.21136 <0.00001
β1 −0.55506 0.12936 0.00003
β2 0.35404 0.08479 0.00004
β3 1.11244 0.18175 <0.00001
β4 0.31759 0.05466 <0.00001
CR 1.00745

Vm: stand volume prior to correction for Snowdon’s correction ratio; hmax: maximum height; p25: 25th height
percentile; p40: 40th height percentile; p50: 50th height percentile; p80: 80th height percentile; p90: 90th height
percentile; CC30: the ratio between the area of canopy with height greater than 30 m and the stand area; SA: stand
age; β0: intercept, β1, β2, β3, β4, and β5: regression coefficients; CR: Snowdon’s correction ratio.
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Figure A2. Observed vs. predicted stand volume (V) for six selected double-log volume models
(validation dataset) described in Table A4. The solid line represents fitted linear model.
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Figure A3. Validation results by stand development stages (young, middle-aged, mature, and old) for
six selected double-log volume models (validation dataset) described in Table A3: (a) root mean square
error (RMSE); (b) relative root mean square error (RMSE%); (c) mean difference (MD); and (d) relative
mean difference (MD%).
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