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Abstract— Airspace capacity is limited primarily by the satura-
tion of air traffic controller’s capacity, whose workload increases
as air traffic complexity increases. Workload can be reduced
through task automation by advanced controller tools. Automa-
tion and the development of novel controller tools is therefore one
of the key aspects of future concepts of operations in European
and American air traffic management systems. Implementation of
trajectory-based operations (TBOs) has been proposed as a way
to reduce workload, but few studies have examined how TBO
affects air traffic complexity. This paper compares air traffic
complexity experienced by ten air traffic controllers in a real-
time simulation environment involving conventional operations
and TBO. Analysis of subjective complexity scores collected in
real time showed that TBO significantly reduced complexity
when at least 70% of aircraft were flying according to TBO
and when the airspace was occupied simultaneously by more
than 15 aircraft. Subjective complexity scores were tested for
correlation with 20 commonly used complexity indicators, and
six indicators were used to generate a predictive linear model
that performed well in conventional operations but less well
under TBO. Therefore, we defined and experimentally validated
two of seven novel TBO-specific complexity indicators. A second
correlation model combining these two novel indicators with four
already in use generated much better predictions of complexity
than the first model.

Index Terms— Air traffic complexity, trajectory-based
operations, subjective complexity, complexity indicators.

I. INTRODUCTION

GROWING demands on airspace are pushing the limits of
current operational capacity. To meet increased demand,

the Single European Sky ATM Research (SESAR) project
recommends an increase in airspace capacity without an asso-
ciated increase in ATM-related incidents or accidents, as well
as decrease of environmental impact per flight and decrease
in costs [1]. Achieving these goals will depend on adopting
4D trajectory management paradigm, which is the basis of
the future ATM concept of operations called trajectory-based
operations (TBO) [2].

In TBO, aircraft trajectories are agreed upon among airspace
users, air navigation service providers (ANSPs), and airports.
Airspace users are then obliged to fly their aircraft along the
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agreed trajectory with the required precision and accuracy
in the four dimensions. ANSPs and airports, for their part,
are obliged to facilitate that trajectory [2]. More precise and
accurate ATM practices are deployed during flight planning
and execution, which allows traffic conflicts to be solved on
a strategic level rather than relying on air traffic controllers to
solve them tactically. This approach improves management of
human resources and infrastructure, and airspace and airport
capacity; it also reduces financial and environmental costs of
air traffic.

By reducing the number of conflicts that must be solved
tactically, TBO is expected to reduce air traffic complexity, as
stipulated in the SESAR WP 4 – En route operations [3]:

The goal of the SESAR concept is to deploy tools to manage
complex situations in order to reduce complexity by strategic
deconfliction measures within the new ATM system.

In the context of air traffic control, complexity was rarely
clearly defined, perhaps due to assumed common knowledge.
One notable exception is Meckiff (et al.) who stated that the air
traffic complexity can be most easily defined as difficulty of
monitoring and managing a specific air traffic situation [4].
Complexity is not the same as traffic density. Obviously,
the number of aircraft in a sector (also known as density,
traffic load, or traffic count) directly influences the air traffic
complexity. This number, however, is not the only indicator of
the level of complexity, especially if one wishes to compare
different sectors of airspace [5]–[7].

Complexity is not a synonym for workload, although it
has been proven multiple times that the increase in com-
plexity results in the increase in workload which in turn
limits the airspace sector capacity [8], [9]. Mogford et al. [6]
reviewed numerous research articles in search of complexity
and workload relationship. They concluded that complexity is
actually the crucial factor for measuring controller workload.
However, complexity and workload are not directly linked.
Their relationship is mediated by several other factors, such
as equipment quality, individual differences, and controller
cognitive strategies, Figure 1.

Previously quoted expectation, stated in SESAR WP4 [3],
that the strategic deconfliction measures will decrease
complexity, is supported by several studies describing the
interactions among air traffic complexity, air traffic controller
workload and the resulting airspace capacity [6], [9], [10].

However, whether and how TBO affects air traffic complex-
ity has yet to be tested directly through empirical studies. The
objective of the present study was to examine directly, using
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Fig. 1. The Relationship between ATC Complexity and Workload [6].

human-in-the-loop simulations with air traffic controllers,
whether TBO leads to a reduction in the subjective air traffic
complexity of en-route airspace sectors. Since this question
is unexplored in the literature, the aim of this research is to
use the subjective complexity scores to test the validity of
commonly used objective air traffic complexity indicators for
a TBO environment.

II. METHODOLOGY

To ensure more realistic conditions for comparing TBO
and conventional operations, we opted for human-in-the-loop
simulations over fast-time simulations or observational studies.
Human-in-the-loop simulations have been used successfully
to assess air traffic complexity [11], [12]. The simulations
were carried out in a custom-built real-time air traffic control
environment in the Department of Aeronautics of the Faculty
of Transport and Traffic Sciences at the University of Zagreb.
The experiments contained three scenarios which were based
on the actual flight data: a scenario involving only aircraft
flying by purely conventional operations, a scenario in which
30% of aircraft flew by TBO, and a third scenario in which
70% of aircraft flew by TBO. In addition, each scenario was
created with one of three possible air traffic levels, giving a
total of nine scenarios altogether.

A. Apparatus

A simulator used in this research was built and validated at
the Laboratory for Control of Air Navigation at the Depart-
ment of Aeronautics, Faculty of Transport and Traffic Sci-
ences, University of Zagreb. The development of the research
simulator started after the review of the commercial off-the-
shelf simulators showed that it was impossible to perform
this kind of research on the existing equipment. The main
issues with the existing simulators were inability to simulate
4D trajectories, difficulty in measuring and storing all of
the necessary data, and costly customization. Also, it was
concluded that a custom-built simulator could later be adapted
and reused for future research.

The ATC simulator used in this research has the following
characteristics:

• Accurate and versatile aircraft models. EUROCON-
TROL’s Base of Aircraft Data (BADA) Aircraft Perfor-
mance Model (APM) was chosen as a starting point
for aircraft model. Its main advantages are support for
many different aircraft types, easy implementation, and
excellent documentation. Base of Aircraft Data (BADA)
is a database of aircraft data developed and updated

Fig. 2. ATC Simulator Working Environment.

by EUROCONTROL Experimental Centre (EEC).
As mentioned by Nuić et al. [14] the aircraft performance
information provided in BADA ’is designed for use in
trajectory simulation and prediction in ATM research as
well as for modeling and strategic planning in ground
ATM operations’. It provides ASCII files containing
operation performance parameters for 405 aircraft types
– out of which 150 are original aircraft types and 255 are
equivalent aircraft types. BADA, however, provides only
aircraft performance modelling so the models of aircraft
dynamics and FMS had to be developed from the start.

• Realistic working environment. It had to be similar to
the realistic working environment to which the ATCOs
are used to. This includes the layout of the radar screen,
auxiliary screens, a keyboard, a mouse, and some com-
munication switches. The user interface had to be similar
to the existing ATC simulators and workstations to give
the ATCOs a smooth transfer to the simulator (without
an extensive training) (Fig. 2.).

• Representative ATC tool operation. The simulator
supports the following tools: strip-less flight progress
monitoring system (for 3D and 4D navigation), map
display configuration tool, range and bearing lines, level
and SSR code filters, separation (SEP) tool, area prox-
imity warning (APW), short-term conflict alert (STCA),
separation infringement alert, display tools, flight profile
tool etc.

Before the simulator was used in the research, it was
validated using a series of tests. The user interface and tool
operation were validated by comparison with operational ATC
systems and by expert assessment, the aircraft models were
validated by comparison with real-life flight data collected
from quick access recorders, and working environment was
validated by the licensed ATCs [13].

B. Airspace

The airspace used for simulation experiments was the
Croatia Upper North sector (Fig. 3, dashed light blue line).
This airspace was chosen because the air traffic controllers
participating in the simulations were quite familiar with it
after working for several years for the Croatian ANSP (Croatia
Control Ltd). This familiarity helped ensure that participants
could accurately assess differences in air traffic complexity, it
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Fig. 3. Most frequently used routes in Croatia Upper North sector.

reduced the need for pre-simulation training and it eliminated
the possible confounder of different learning rates.

The Croatia Upper North airspace sector is class C airspace
dominated by the ZAG VOR/DME, through which most of
the RNAV routes in the sector pass.

During the simulations, participants were required to
adhere to the Flight Level Allocations and Special Proce-
dures (FLAS), coordination points and transfer of control
points stipulated within the Letters of Agreement govern-
ing the transfer of traffic between surrounding area control
centers (ACC) and Zagreb ACC. These conditions are intended
to ensure that flights crossing a boundary between ACCs can
land properly at the desired airport or join seamlessly with
existing traffic flows.

C. Traffic

To ensure that air traffic in the simulation experiments
was as realistic as possible for the selected airspace,
historic traffic data were obtained from EUROCONTROL for
a single summer day (30 August 2013), which was selected
because traffic varied substantially throughout that day. Of the
661 flights through the Croatia Upper North airspace sector,
approximately 70% involved commercial medium jets and
10% involved heavy jets. The remaining flights involved
primarily regional turboprops and business jets.

The routes used most frequently on the selected day
connected the southeast and the northwest of Europe (Fig. 3).
Overall, 90% of flights moved on a southeast-northwest axis,
and the remaining 10% on a northeast-southwest axis. More

than 50% of all flights followed one of the five most frequently
used routes. Other European airspace sectors have different
configurations of the traffic flows and therefore some results
of this research will not be directly applicable (e.g. values of
regression coefficients calculated for evaluation of objective
complexity indicators) but other results (e.g. subjective air traf-
fic complexity scores and list of validated objective complexity
indicators) are very likely to be applicable to some sectors with
different traffic flows.

Nine different scenarios were conducted during the experi-
ment, involving three operations environments (conventional,
30% TBO, or 70% TBO) and three air traffic levels (low, high,
or future). Traffic data were sampled during off-peak periods
to build scenarios with low traffic levels, and from peak
periods to build scenarios with high traffic levels. In the
scenarios featuring a future traffic level, additional flights were
added to routine traffic to give rise to an unrealistically high
aircraft count. In addition, the proportion of aircraft climbing
or descending was higher than in the scenarios with low or
high traffic levels. The aim of the future scenarios was to
expose controllers to complexity beyond what can be expected
nowadays and beyond what the controllers had previously
experienced in their careers.

The additional flights added to the routine, real data-based
flights in the future traffic scenarios were generated in a
semi-stochastic manner. Firstly, a route was chosen randomly
such that the probability of selecting a given route was equal
to the frequency with which it was flown on the selected
day. Secondly, aircraft type was randomly chosen so that
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the probability of selecting a given type reflected the actual
aircraft distribution on that day. Thirdly, an appropriate flight
level was chosen for the selected route based on semi-
circular flight level allocation rules (eastbound flights fly at
odd flight levels, whereas westbound flights use even flight
levels).

Finally, the time of entry into the sector for the given
flight needed to be generated in a way to ensure that no
conflicts occurred within 5 minutes of the aircraft’s entry
into the sector. This was mandated by Letters of Agreement
with the neighboring ACCs or by internal procedures if the
aircraft entered from another sector within the ACC. This
was achieved by randomly generating the time of entry which
satisfied this condition for that particular aircraft and com-
pliance was checked by running fast-time simulations. This
method ensured that the artificially generated flights showed
approximately the same pattern as the real ones, thereby
minimizing unrealistic traffic flows.

In the scenarios in which 30% or 70% of aircraft flew by
TBO, aircraft to be converted to TBO were selected so that
the proportion of TBO aircraft would remain nearly constant
throughout the simulation. Some fluctuation was unavoidable,
since conversion of a single flight to TBO could change
the relative proportions of conventional and TBO aircraft
by up to 10%. Post-hoc analysis showed that the relative
proportions remained constant within ±15% during 95% of
the low simulation scenario, excluding the very beginning
and end of the simulations, and that they remained constant
within ±5% during 95% of the other scenarios. TBO aircraft
were then deconflicted among themselves in order to simulate
strategic deconfliction, one of the main features of TBO [3].
Deconfliction was performed in fast-time simulations by
adjusting times of sector entry. If deconfliction could not be
achieved by modifying entry times by 30 seconds or less,
then the conflict was solved by changing the flight level for
one of the aircraft. If neither aircraft could change level,
e.g. because of other traffic or performance limitations, then
trajectories were adjusted slightly by inserting new waypoints
into the flight plans (which amounts to vectoring). After
strategic deconfliction, controllers honored the agreed business
trajectory of TBO aircraft without making any adjustments to
it at a tactical level. The aircraft flying according to TBO were
handed over in the same way as conventional aircraft, i.e. via
voice communication.

D. Participants

All 10 controllers (8 male, 2 female; mean age, 31;
age range, 27-34) who participated in the simulations were
recruited from the Croatian ANSP, Croatia Control Ltd. These
controllers had an average of 7 years’ experience (range, 4-11)
working at the Croatian ANSP, and an average of 5 years
(range, 2-9) had passed since they had received their air
traffic control license. They all had an extensive experience
of controlling the traffic in the Croatia Upper North airspace
sector. Two additional participants were aeronautical engineers
with master’s degrees who had completed formal training as
air traffic controllers and who assisted in the development and
testing of the experiment scenarios. These two participants

were not involved in the experiments in which subjective air
traffic complexity was measured.

Before the execution of the experiment, each controller
received a brief training in order to become accustomed
with the simulator interface and operational procedures. The
training consisted of an introductory lecture, pre-simulator
briefing, trial simulator runs, and a post-simulator briefing.
The introductory lecture covered basic topics in air traffic
complexity, the subjective complexity rating scale used in the
study, TBO, simulator tools and features, airspace, experiment
scenarios, and operational procedures. The trial simulator runs
lasted at least 90 min and involved two scenarios, one with
conventional operations and one with TBO. All participants
declined to participate in additional training simulations that
were offered, indicating that they felt sufficiently comfortable
with the simulator operations.

One of the authors participated as the pseudo-pilot in
all experiments. The controller could communicate with the
pseudo-pilot only via a headset. Since the pseudo-pilot had to
take on the role of air traffic controllers in other air traffic
control units, to facilitate coordination an assistant to the
pseudo-pilot participated in the scenarios involving high and
future traffic levels; this assistant was one of the aeronautical
engineers with a master’s degree. The experiments did not
involve planner controllers, only the executive ones.

In order to prevent learning or other unwanted effects due
to the order of scenarios, each controller was exposed to
the three operations environments (conventional, 30% TBO,
70% TBO) in random order. Within each type of operations
environment, however, the three traffic loads (low, high, future)
were always presented in the same order. This was intended
to help controllers assess complexity more consistently.

The scenarios began with an empty airspace to avoid
possible confounding due to the absence of a hand-over step.
Normally, controllers starting their shift with an occupied
airspace would have the benefit of observing traffic for
15 minutes or so while another controller manages it. Since
such a hand-over was not a part of our design, we did not
want to start our scenarios with an occupied airspace in order
to avoid inducing initial disorientation and increased workload
that might affect baseline complexity scoring.

E. Air Traffic Complexity Rating

The controllers were asked to subjectively rate air
traffic complexity throughout the simulation, using a modified
ATWIT scale [15] that we named the Air Traffic Complexity
Input Technique (ATCIT) [16]. The ATCIT scale features
seven levels of complexity (Table I).

The levels of subjective complexity on this scale reflect
primarily the controller’s self-assessment of situational aware-
ness, while also taking into account aircraft-aircraft and
aircraft-airspace interactions. Before using this scale, the con-
trollers were briefed about the objectives of the ATCIT scale
and the meaning of ‘complexity’, ‘interaction’, and ‘situational
awareness’.

During each simulation run, a Subjective Complexity
Measurement (SCM) tool opened every 2 minutes, accompa-
nied by non-intrusive aural notification. The tool presented
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TABLE I

ATCIT SCALE [14]

7 buttons labelled 1-7, and the controller had to click on
the button most closely matching the perceived level of air
traffic complexity. For reference, the scale was permanently
displayed on a piece of paper beside the radar screen. Each
assessment was time-stamped and automatically recorded.
Throughout the simulation run, at one-second intervals, the
data on objective complexity indicators were calculated, time-
stamped, and recorded. The purpose of this data was compar-
ison with subjective complexity indicators.

In order to identify commonly used indicators of air
traffic complexity that we might validate for the use with
TBO, we conducted a literature review that highlighted more
than 100 factors (gathered in two comprehensive reviews
in [17] and [18]). Since our focus was on air traffic complexity
under ideal conditions, we disregarded indicators related to
weather. All simulation runs were performed in the same
airspace sector and no attempts were made to compare it
with other sectors, therefore indicators related to the airspace
complexity were filtered out as well. Performing the whole
experiment in the same sector probably made some of the
results not applicable generally (e.g. values of regression
coefficients calculated for evaluation of objective complexity
indicators) but other results (e.g. subjective air traffic complex-
ity scores and list of validated objective complexity indicators)
were very likely applicable to other sectors because airspace-
specific data was not used in analysis. Previous research by
Kopardekar showed that this method produced models which
performed well in other sectors [19].

We also disregarded indicators related to emergencies,
government or military aircraft, and equipment malfunctions.
Since our focus was on en-route operations, we further dis-
carded factors related to terminal operations, departure/arrival
traffic flows, approach procedures, and airports. In the end, we
developed a list of clearly defined, previously experimentally
validated objective complexity indicators:

• Aircraft count;
• Volume of convex hull (described by aircraft position);
• Aircraft density I (based on sector volume);
• Aircraft density II (based on convex hull volume);
• Aircraft density II squared (based on convex hull volume

and the squared number of aircraft);
• Separation criticality index;
• Number of aircraft with horizontal separation less than 8

NM;
• Inverse of minimum horizontal separation in the same

vertical neighborhood;
• Inverse of minimum vertical separation in the same

horizontal neighborhood;
• Ratio of standard deviation to mean value for ground

speed;
• Ratio of mean aircraft distance to number of aircraft;
• The intersection angle for aircraft less than 13 NM apart;
• Fraction of aircraft with fewer than 600 seconds to

conflict;
• Fraction of aircraft climbing;
• Fraction of aircraft descending;
• Fraction of aircraft either climbing or descending;
• Number of aircraft pairs at a 3D Euclidean distance less

than 5 NM;
• Number of aircraft pairs at a 3D Euclidean distance of

10-15 NM;
• Variation in aircraft headings relative to the sector axis;

and
• Standard deviation of aircraft headings.

In addition to drawing on these literature-based complexity
indicators, we wanted to be in a position to identify new,
TBO-specific complexity indicators based on data from the
simulation experiments (see section III.C). Therefore data on
the state of all aircraft were recorded at 1-second time step in
the simulation. These state data included, but were not limited
to, position, velocity, heading, mass, pitch, bank, throttle, drag,
climb mode, acceleration mode, assigned flight level, speed,
heading, and route.

F. Study Limitations

To ensure that the most rigorous analyses could be
performed within the constraints of this study, only en-route
operations were considered, since simulating terminal airspace
conditions would require a completely different set of
simulation scenarios and participants. In addition, only nomi-
nal operations were considered, excluding inclement weather,
emergencies, and special operations (military, government,
medical). Our intention was not to model unique, off-nominal
situations but rather situations reflective of routine ATM.

The controllers in our simulations were required to honor
the business trajectory contracts. The conflicts among aircraft
flying according to conventional operations were solved
tactically, the conflicts among TBO aircraft were solved
strategically, and the conflicts between conventional and TBO
aircraft were solved tactically by honoring the business trajec-
tory contract of the TBO aircraft, meaning that the route of
the conventional aircraft was always adjusted. We adopted this
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Fig. 4. Example of subjective complexity scores before (top) and after (bottom) resampling.

rule as a simplifying measure to ensure consistency in our data
from different controllers. In practice, it seems more likely that
controllers would have the freedom to choose how they solve
conflicts in mixed operations. Nevertheless, although SESAR
documents do not currently recommend particular conflict
resolution procedures in mixed operations, it is possible that a
procedure similar to our rule may ultimately be implemented
to encourage TBO adoption among aircraft operators.

The controllers had available only a limited set of tools,
which was intentional to prevent equipment complexity from
influencing perceptions of air traffic complexity. The lim-
ited set of tools nevertheless seemed adequate because some
of the tools were never used by the controllers during
the experiment, and no controller expressed a desire for
additional tools.

III. RESULTS

A. Data Recording and Processing

Throughout the experiment, three types of data were
recorded: raw aircraft state data (every 1 second), which we
planned to use to develop potentially novel, TBO-specific
complexity indicators; the data on 20 complexity indicators
(calculated every 1 second) that we identified from the litera-
ture (section II.E); and subjective complexity scores (every
2 minutes). Each participant was asked to perform nine
simulation scenarios, each lasting approximately 50 minutes,
implying 25 complexity scores per participant per simulation
or 2250 complexity scores across all 10 participants. Of these,
only 1997 complexity scores were actually obtained because
one participant had to withdraw from the study for personal
reasons after completing only 7 simulation runs (accounting
for 50 lost scores), and some participants did not enter
complexity scores as soon as they were prompted, sometimes
due to intense focus on controlling the traffic (accounting for
146 lost scores). In addition, 6 participants did not complete
all the simulation runs with a future traffic level because
they lost situational awareness, leading to separation minima
infringement (accounting for 57 lost scores). These missing

57 data points were assigned the maximum ATCIT score of 7
and incorporated into our final analysis.

We used the nearest-neighbor interpolation to fill in the
146 gaps in subjective complexity caused by late input of
complexity scores. Re-sampling the scores at 15-second inter-
vals increased the number of samples for those parts of the
simulator run when scoring gaps were more prominent. Since
most scoring gaps occurred during the parts of the simulation
scenarios involving high workload, the interpolation procedure
slightly increased mean complexity scores.

Fig. 4 shows an extreme example of the changes caused
by re-sampling. Each short vertical line indicates a sampling
point. The upper panel shows that sampling was not uniform
throughout the simulation. In the resampled lower panel, the
sampling is distributed evenly.

For the particular data shown in Fig. 4, resampling increased
mean subjective complexity from 4.17 to 4.43 but reduced the
standard deviation from 2.21 to 2.03.

Since the simulations began with no aircraft in the airspace,
the controllers had some time until the aircraft count reached
the relevant traffic level, defined as >10 aircraft in low-
traffic scenarios, >15 aircraft in high-traffic scenarios and >20
aircraft in future-traffic scenarios (Fig. 5).

The cut-off times selected for extracting complexity scores
(shaded region in Fig. 5) were determined for each simulation
scenario in order to capture the features differentiating the
3 scenarios from each other. Since low-traffic scenarios and
high-traffic scenarios were created from historic traffic data
(off-peak and peak traffic, respectively), the cut-off was deter-
mined as the time at which the aircraft count in two scenarios
naturally diverged. For future-traffic scenarios, the cut-off was
determined as the time at which the aircraft count increased
beyond the historic peak levels. This procedure filtered out
the data which was similar to the scenario with lower aircraft
count and which was, therefore, not relevant for the given
scenario with higher aircraft counts.

Therefore, subjective complexity scores obtained at the
beginning of each simulation were omitted from the analysis.
For the same reason, the scores obtained at the end of
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Fig. 5. Example of filtering subjective complexity scores.

each simulation were also discarded as aircraft counts began
converging for all 3 scenarios.

The number of subjective complexity scores retained after
applying these cut-offs decreased as aircraft count increased
(Fig. 5).

B. Hypothesis Testing

Our hypothesis in these experiments was that TBO would
lead to lower air traffic complexity than conventional oper-
ations in en-route airspace sectors. This hypothesis can be
expressed mathematically as in Eq. 1, as hypothesis of equal
means (μ ), while alternative one is hypothesis that means are
different:

H0 : μc = μT B O30% = μT B O70% (1)

HA : μc = μT B O30% ∨ μc > μT B O70%. (2)

The hypothesis was tested in three stages: first, means
were compared between conventional and TBO scenarios in
simulations with low traffic level; next, this process was
repeated for simulations with high and future traffic levels.
Table II shows mean subjective complexity scores for each
participant and each scenario.

The hypothesis was tested using one-way repeated-measures
ANOVA independently for each of the three traffic levels.
Confidence intervals were adjusted using Bonferroni’s method;
if the result was non-significant, the least significant difference
was also calculated [20], [21].

Applying Mauchly’s [22] test to scores from low-traffic sce-
narios showed that the assumption of sphericity was violated
[χ2(2) = 14.116, p = 0.001], so the degrees of freedom
were corrected using the Greenhouse-Geisser [23] estimate of
sphericity (ε = 0.547). The results showed no significant effect
of TBO on subjective complexity scores [F(1.094, 9.843) =
0.980, p = 0.355].

Mauchly’s test for data from high-traffic scenarios indicated
that the assumption of sphericity was valid [χ2(2) = 0.378,
p = 0.828], so the degrees of freedom were not corrected.
The results showed that TBO was associated with significantly
lower subjective air traffic complexity scores [F(2, 18) =
14.707, p < 0.001]. Post-hoc analysis showed that the mean
difference was significant only between 0% TBO and 70%

TABLE II

MEANS AND VARIANCES OF SUBJECTIVE COMPLEXITY SCORES

TBO (MD = 0.79, p = 0.001), and between 30% TBO and
70% TBO (MD = 0.625, p = 0.007).

Since subjective complexity was assessed on an ordinal
scale, we confirmed our results with high-traffic scenarios
using the non-parametric Friedman test [24]. TBO signifi-
cantly reduced subjective complexity at a high traffic level
[χ2(2) = 15.8, p < 0.001], and post-hoc analysis using
the Wilcoxon signed ranks test [25] indicated a significant
difference between 0% TBO and 70% TBO (Z = 2.803,
p = 0.005), and between 30% TBO and 70% TBO
(Z = 2.805, p = 0.005), but not between 0% TBO and 30%
TBO (Z = 1.580, p = 0.114).
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Fig. 6. Overview of regression analysis procedure.

Applying Mauchly’s test to scores from future-traffic sce-
narios indicated that the assumption of sphericity was valid
[χ2(2) = 2.948, p = 0.229]. Analysis showed that TBO
significantly reduced subjective air traffic complexity scores
[F(2, 16) = 6.280, p = 0.01]. However, post-hoc analysis
with Bonferroni adjustment for multiple comparisons showed
no significant difference between pairs of scenarios: 0% TBO
vs 70% TBO (MD = 1.070, p = 0.071); 0% TBO vs 30%
TBO (MD = 0.655, p = 0.096); and 30% TBO vs 70%
TBO (MD = 0.415, p = 0.444). On the other hand, post-
hoc analysis using the less stringent least significant difference
to adjust for multiple comparisons showed significant differ-
ences between 0% TBO and 70% TBO (MD = 1.070, p =
0.024) and between 0% TBO and 30% TBO (MD = 0.655,
p = 0.032), but not between 30% TBO and 70% TBO
(MD = 0.415, p = 0.148).

Non-parametric Friedman testing showed a significant effect
of TBO on subjective complexity at future traffic levels [χ2(2)
= 6.889, p = 0.032], while post-hoc analysis using the
Wilcoxon signed ranks test indicated a significant difference
between 0% TBO and 70% TBO (Z = 2.192, p = 0.028), but
not between 30% TBO and 70% TBO (Z = 1.599, p = 0.110)
or between 0% TBO and 30% TBO (Z = 1.955, p = 0.051).

These results suggest that TBO can significantly reduce
subjective air traffic complexity, but only when the traffic level
and proportion of TBO aircraft are high.

As a test of the robustness of our ACTIT scale and
simulation procedure, we examined consistency of air traffic
complexity scores between different controllers for the same
scenarios and between different moments of the same scenario
for the same controller. In both cases consistency was low.
Different controllers often assigned substantially different
scores to the scenarios with the same traffic level, and in rare
cases some controllers assigned the same complexity score
throughout an entire scenario; in one case, this led to the
unlikely situation in which an airspace with only two aircraft
received the same score as an airspace with 12 aircraft.

C. Evaluation of Objective Complexity Indicators

Given that the present study is one of the first to examine
in detail how TBO may affect air traffic complexity, we
wanted to examine whether commonly used objective com-
plexity indicators are likely to be suitable for TBO. We used
linear regression, since it has already proven useful for other

researchers who tried modelling air traffic complexity using
objective complexity indicators, e.g. in [12], [26], and [27].
First, 20 commonly used and validated indicators (section II.E)
were tested against our subjective complexity data from all
nine scenarios. Second, the regression was repeated – this time
only on TBO simulations – using the same 20 indicators as
well as 7 potentially new, TBO-specific indicators (Fig. 6).
Regression was performed in a step-wise manner with stepping
criteria set to p < 0.05 for inclusion and p >0.10 for exclusion
of the indicator.

In the first step, using only 20 commonly used complexity
indicators, the model that best predicted subjective complexity
scores among all simulations showed the following character-
istics: R = 0.746; R2 = 0.556; R2-Adjusted = 0.554. The
R2-Adjusted is used here because it takes into account the
number of explanatory terms in a model relative to the number
of data points [28]. This best model contained the following
indicators, listed in order of importance: number of aircraft,
fraction of aircraft climbing or descending, heading variance,
number of aircraft pairs at a 3D Euclidean distance less than
5 NM, number of aircraft near the sector boundary (<10 NM),
and the ratio of mean aircraft distance to number of aircraft.

At low traffic levels, air traffic complexity scores often
remained constant or nearly so throughout the scenario.
Presumably the controllers perceived low complexity within
a narrow dynamic range, leading them to give just one score
(1 or 2) for the entire scenario. This threatened the robustness
of our model, which we assessed by applying the model to
each of the scenarios individually and to groups of scenarios
at the same traffic level (Table III).

This sensitivity analysis showed that less complex
simulations (all low-traffic scenarios + high-traffic 70% TBO
scenarios) had much lower R2 values than more complex
scenarios. This likely reflects the uniform ATCIT scores given
by participants in the low-complexity scenarios. The sensitivity
analysis also revealed a more subtle effect: among scenarios
at the same traffic level, R2 values decreased slightly as the
proportion of TBO aircraft increased (Fig. 7). This finding
suggests that the selected complexity indicators show greater
predictive power in conventional operations than in TBO,
which led us to attempt to identify more suitable TBO-specific
indicators.

We defined potential TBO-specific complexity indicators to
capture the interaction between TBO and conventional aircraft,
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Fig. 7. Values of R2–Adjusted for different scenarios.

TABLE III

RESULTS OF REGRESSION ANALYSES

given that TBO aircraft were strategically deconflicted, so they
did not interact with one another.

The following indicators were tested in linear regression
against data from TBO simulations [9]: fraction of TBO
aircraft, number of conflicts between conventional aircraft
and TBO aircraft (during 600 seconds), fraction of TBO
aircraft climbing or descending, fraction of conventional air-
craft climbing or descending, number of conventional aircraft
at a 3D Euclidean distance of less than 5 NM from TBO
aircraft, number of conventional aircraft at a 3D Euclidean
distance of 5-10 NM from TBO aircraft, and number of
conventional aircraft at a 3D Euclidean distance of 10-20 NM
from TBO aircraft.

Multiple step-wise linear regression analysis was performed
again, but this time with all 27 indicators and with only
those scenarios with TBO traffic. The resulting 6-factor model
included four complexity indicators that we identified from
the literature and two new TBO-specific indicators, listed in
order of importance: number of aircraft, number of conflicts
between conventional aircraft and aircraft flying according to
TBO (aggregated over 600 seconds), fraction of aircraft in
climb or descent, number of aircraft near sector boundary

(<10 NM), fraction of TBO aircraft, and number of aircraft
pairs at 3D Euclidean distance less than 5 NM.

The new model showed the following characteristics:
R = 0.833; R2 = 0.693; R2-Adjusted = 0.691. This new
model containing two novel complexity indicators correlated
better with scores from TBO simulations than the original
model comprising only indicators from the literature, which
gave an R2-Adjusted of 0.617 for 30% TBO and 0.463 for
70% TBO.

IV. DISCUSSION

Analysis of ATCIT scores in this human-in-the-loop
simulation experiment suggests that the air traffic complexity
perceived by controllers decreases as the proportion of TBO
aircraft increases, but only at higher traffic levels. This
can be attributed to the reduced number of aircraft-aircraft
interactions. The aircraft flying according to TBO were strate-
gically deconflicted, thus reducing the number of possible
interactions among aircraft at tactical level. This effect was
not noticeable to controllers at lower traffic levels, when few
interactions were present.

It may be that with a larger number of controllers and
scenarios, we would be able to detect an effect of TBO on
subjective air traffic complexity under conditions with fewer
aircraft and smaller proportions of TBO aircraft. Our study
shows the validity of this approach and so justifies larger, more
extensive investigations in the future.

Our results from the scenarios with future traffic levels
should be regarded with caution, partly as a result of sample
size issues, especially due to the withdrawal of one participant
from the study. The calculation of the required sample size for
scenarios with future traffic levels, using the same parameters
(effect size, significance level) as those in the scenarios with
high traffic levels, showed that the smallest sample size which
could be used to detect the effect of TBO on subjective
air traffic complexity was 11 controllers. Therefore, if the
effect size increased from high to future traffic level scenarios
(as it did from low to high traffic level scenarios) it might
be that one missing controller in scenarios with future traffic
levels was crucial for proving the research hypothesis (for
future scenarios). However, though we detected no significant
difference between pairs of scenarios in the scenarios with
future traffic levels when we imposed the relatively strict
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Bonferroni multiple-comparisons correction, we did detect an
effect when we used the less strict least significant difference
method. In this case, the results were similar to those for
simulations at high traffic level. In addition, non-parametric
testing gave different results from parametric testing.

One limitation to our approach is seen in the low
consistency that we observed within and among the
controllers. While this poor consistency did not affect the sta-
tistical analyses, they make it impossible to compare different
controllers’ perceptions of complexity, which may be valuable
for more detailed studies in the future. It is unclear how
such consistency can be improved using human-in-the-loop
simulations. Participants could perhaps receive more extensive
training, such as with static radar images of traffic situations,
in order to help them calibrate their scores and encourage them
to use the full range of the ATCIT scale. On the other hand,
imposing an explicit calibration system may introduce other
biases that cause controllers to behave non-naturally in the
simulations, threatening external validity.

The purpose of the second part of our study was to
determine whether current objective complexity indicators are
suitable for assessing complexity in TBO. Regression analysis
showed that a model with six objective complexity indicators
can explain the variance in subjective complexity scores with
an R2-Adjusted of 0.556. This value can be increased to 0.75
by selecting scenarios showing greater variance in subjective
complexity scores, thereby compensating to some extent for
poor rater consistency. These results are comparable to the
unadjusted R2 of 0.69 (probably smaller if adjusted) reported
by Kopardekar et al. in their modelling of air traffic complexity
in conventional operations [19]. Our finding that R2 reduced
with increasing proportion of TBO aircraft, regardless of traffic
level, suggests that currently used complexity indicators, while
providing reasonable predictions, are not suitable for TBO.

As a first step towards identifying and validating
TBO-specific objective air traffic complexity indicators, we
defined 7 candidate complexity indicators designed to explain
the interaction between conventional and TBO aircraft.
Multiple linear regression with all 27 indicators (20 old and
7 new) gave a model with 6 indicators (4 old and 2 new)
with an R2-Adjusted of 0.691. Thus, these 2 TBO-specific
indicators significantly improved prediction of subjective com-
plexity. It is likely that larger studies in the future will help
refine these TBO-specific indicators and identify additional
ones. Such studies should perhaps include non-linear model-
ing that includes objective complexity indicators in order to
increase predictive power.

V. CONCLUSION

These human-in-the-loop experiments, which we believe to
be the first direct test of the effects of TBO on air traffic
complexity, suggest that TBO can significantly decrease com-
plexity perceived by air traffic controllers, albeit only when air
traffic is high and when a large proportion of aircraft are flying
by TBO. The lack of consistency of perceived complexity for
the same air traffic controller and between different controllers
in our experiments highlights the need to confirm and extend

these findings in larger studies, perhaps involving optimization
or recalibration of the complexity scale.

When we carefully selected 20 indicators of air traffic
complexity from the literature and tested them against our
simulation data, we found that they showed reasonable but
not excellent fit. In fact, the goodness of fit decreased as
the proportion of TBO aircraft increased. We conclude that
for trajectory-based operations, researchers should apply addi-
tional, TBO-specific complexity indicators. As a first step
towards identifying and validating more suitable indicators,
we defined and tested 7, leading to 2 that could be combined
with 4 existing factors to predict complexity much better in a
TBO environment.

Future research should examine a larger number of
controllers and scenarios, terminal operations, and off-nominal
operations, such as inclement weather, ground problems,
equipment failure, and emergency flights. Each of these
experiments should aim at sample sizes comparable to this
research (at least 10 controllers). This research showed that
with that sample size, the effect of TBO can just barely be
detected. The number of scenarios should be increased to
cover all possible options as mentioned above, and that could
significantly expand the scope of the research.
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