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Accurate estimation of essential enzyme kinetic parameters, such as 𝐾𝑚 and 𝑉max, is very important in modern biology. To this
date, linearization of kinetic equations is still widely established practice for determining these parameters in chemical and enzyme
catalysis. Although simplicity of linear optimization is alluring, these methods have certain pitfalls due to which they more often
then not result in misleading estimation of enzyme parameters. In order to obtain more accurate predictions of parameter values,
the use of nonlinear least-squares fitting techniques is recommended. However, when there are outliers present in the data, these
techniques become unreliable. This paper proposes the use of a robust nonlinear regression estimator based on modified Tukey’s
biweight function that can provide more resilient results in the presence of outliers and/or influential observations. Real and
synthetic kinetic data have been used to test our approach. Monte Carlo simulations are performed to illustrate the efficacy and
the robustness of the biweight estimator in comparison with the standard linearization methods and the ordinary least-squares
nonlinear regression. We then apply this method to experimental data for the tyrosinase enzyme (EC 1.14.18.1) extracted from
Solanum tuberosum, Agaricus bisporus, and Pleurotus ostreatus. The results on both artificial and experimental data clearly show
that the proposed robust estimator can be successfully employed to determine accurate values of𝐾𝑚 and 𝑉max.

1. Introduction

Enzymes are molecules that act as biological catalysts and
are responsible for maintaining virtually all life processes.
Most enzymes are proteins, although a few are catalytic
RNA molecules. Like all catalysts, enzymes increase the rate
of chemical reactions without themselves undergoing any
permanent chemical change in a process. They achieve their
effect by temporarily binding to the substrate and, in doing
so, lowering the activation energy needed to convert it to a
product. The study of the rate at which an enzyme works is
called enzyme kinetics and it is often regarded as one of the
most fascinating research areas in biochemistry [1].

Mathematically, the relationship between substrate con-
centration and reaction rate under isothermal conditions for
many of enzyme-catalyzed reactions can be modeled by the
Michaelis-Menten equation [2]:

V = 𝑉max𝑠𝑠 + 𝐾𝑚 , (1)

where V denotes a reaction rate, 𝑠 is a substrate concentration,𝑉max is the maximum initial velocity, which is theoretically
attained when the enzyme has been “saturated” by an infinite
concentration of a substrate, and 𝐾𝑚 is the Michaelis con-
stant, representing a measure of affinity of the enzyme-
substrate interaction. By definition, 𝐾𝑚 is equal to the con-
centration of the substrate at half maximum initial velocity.
The Michaelis constant, 𝐾𝑚, is an intrinsic parameter of
enzyme-catalyzed reactions and it is significant for its biologi-
cal function [3].

Three most common methods, available in the literature,
for determining the parameters of Michaelis-Menten equa-
tion based on a series of measurements of velocity V as a func-
tion of substrate concentration, are Lineweaver-Burk plot,
also known as the double reciprocal plot, Eadie-Hofstee plot,
and Hanes-Woolf plot. All three of these methods are lin-
earizedmodels that transform the originalMichaelis-Menten
equation into a form which can be graphed as a straight line.
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Lineweaver-Burk [4] (LB) plot, still the most popular
and favored plot amongst the researchers, is defined by an
equation:

1
V
= 1𝑉max

+ 𝐾𝑚𝑉max

1𝑠 . (2)

The 𝑦-intercept in this plot is 1/𝑉max, the 𝑥-intercept in
second quadrant represents −1/𝐾𝑚, and the slope of the line
is𝐾𝑚/𝑉max.

Eadie-Hofstee [5] (EH) plot is a semireciprocal plot of V
versus V/𝑠. The linear equation has the following form:

V = 𝑉max − 𝐾𝑚 V𝑠 , (3)

where the 𝑦-intercept is 𝑉max and the slope is𝐾𝑚.
In Hanes-Woolf [6] (HW) plot, 𝑠/V is plotted against 𝑠.

The linear equation is given by

𝑠
V
= 𝐾𝑚𝑉max

+ 1𝑉max
𝑠, (4)

where the 𝑦-intercept is 𝐾𝑚/𝑉max and the slope is 1/𝑉max.
In all of the above-described linear transformations,

linear regression is used to estimate the slope and intercept
of the straight line and afterwards𝐾𝑚 and𝑉max are computed
from the straight line parameters. Although these methods
are very useful for data visualization and are still widely
employed in enzyme kinetic studies, each of them possesses
certain deficiencies, which make them prone to errors. For
instance, Lineweaver-Burk plot has the disadvantage of com-
pressing the data points at high substrate concentrations into
a small region and emphasizing the points at lower substrate
concentrations, which are often the least accurate [7]. The 𝑉-
intercept in Lineweaver-Burk plot is equivalent to inverse of𝑉max due to which any small error in measurement gets mag-
nified. Similarly, the Eadie-Hofstee plot has the disadvantage
that V appears on both axes; thus, any experimental error will
also be present in both axes. In addition, experimental errors
or uncertainties are propagated unevenly and become larger
over the abscissa thereby givingmoreweight to smaller values
of V/𝑠. Hanes-Woolf plot is the most accurate of the three;
however, itsmajor drawback is that again neither ordinate nor
abscissa represents independent values: both are dependent
on substrate concentration.

In order to reduce the errors due to the linearization
of parameters, Wilkinson [8] proposed the use of least-
squares nonlinear regression for more accurate estimation
of enzyme kinetic parameters. Nonlinear regression allows
direct determination of parameter values from untrans-
formed data points. The process starts with initial estimates
and then iteratively converges on parameter estimates that
provide the best fit of the underlying model to the actual data
points [9, 10]. The algorithms used include the Levenberg-
Marquardt method, the Gauss-Newtonmethod, the steepest-
descent method, and simplex minimization. Numerous soft-
ware packages, such as Excel, MATLAB, and GraphPrism,
nowadays include readily available routines and scripts to
perform nonlinear least-squares fitting [11, 12].

Least-squares nonlinear regression has been criticized for
its performance in dealing with experimental data. This is
mainly due to the fact that implicit assumptions related with
nonlinear regression are in general not met in the context
of deviations that appear as a result of biological errors
(e.g., variations in the enzyme preparations due to oxida-
tion or contaminations) and/or experimental errors (e.g.,
variations in measured volume of substrates and enzymes,
imprecisions of the instrumentation). With the presence of
outliers or influential observations in the data, the ordinary
least-squares method can result in misleading values for the
parameters of the nonlinear regression and estimates may no
longer be reliable [13].

In this paper, we propose the use of robust nonlinear re-
gression estimator based on modified Tukey’s biweight func-
tion for determining the parameters of Michaelis-Menten
equation using experimentalmeasurements in enzyme kinet-
ics. The main idea is to fit a model to the data that gives
resilient results in the presence of influential observations
and/or outliers. To the best of our knowledge, this is the first
study that examines the use of this technique for application
in Michaelis-Menten enzyme analysis. We employ Monte
Carlo simulations to validate the efficacy of the proposed
procedure in comparison with the ordinary least-squares
method and Eadie-Hofstee, Hanes-Woolf and Lineweaver-
Burk plots. In addition, we illustrate the viability of our
method by estimating the kinetic parameters of tyrosinase,
an important enzyme widely distributed in microorganisms,
animals, and plants, responsible for melanin production in
mammal and enzymatic browning in plants, extracted from
potato and two edible mushrooms.

The remainder of the paper is organized as follows.
Section 2 provides a brief overview of the robust estimation
model. Section 3 describes the experimental setup used in
this research and the diagnostics that will be used to evaluate
the effectiveness of the proposed procedure in determination
of enzyme kinetic parameters. Results are discussed in Sec-
tion 4. Finally, Section 5 summarizes the paper with a few
concluding remarks.

2. Robust Nonlinear Regression

Nonlinear regression, same as linear regression, relies heavily
on the assumption that the scatter of data around the ideal
curve follows, at least approximately, a Gaussian or normal
distribution.This assumption leads to the well-known regres-
sion goal: to minimize the sum of the squares of the vertical
distances (a.k.a residuals) between the points and the curve.
In practice, however, this assumption does not always hold
true. The analytical data often contains outliers that can play
havoc with standard regression methods based on the nor-
mality assumption, causing them to produce more or less
strongly biased results, depending on the magnitude of
deviation and/or sensitivity of the procedure. It is not unusual
to find an average of 10% of outlying observations in data set
of some processes [14].

Outliers are most commonly thought to be extreme val-
ueswhich are a result ofmeasurement or experimental errors.
Barnett and Lewis [15] provide a more cautious definition of
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the term outlier, describing it as the observation (or subset of
observations) that appears to be inconsistentwith the remain-
der of the dataset. This definition also includes the observa-
tions that do not follow themajority of the data, such as values
that have been measured correctly but are, for one reason or
another, far away from other data values, while the formu-
lation “appears to be inconsistent” reflecting the subjective
judgement of the observer whether or not an observation is
declared to be outlying.

The ordinary least-squares (OLS) estimate 𝛽LS of the
parameter vector 𝛽 = [𝛽1, 𝛽2, . . . , 𝛽𝑛] is obtained as the
solution of the problem:

𝛽LS = argmin
𝛽

1𝑛
𝑛∑
𝑖=1

𝑟𝑖 (𝑥, 𝛽)2

= argmin
𝛽

1𝑛
𝑛∑
𝑖=1

(𝑦𝑖 − 𝑓 (𝑥𝑖, 𝛽))2 ,
(5)

where 𝑛 denotes the number of observations, 𝑥 = [x1, x2, . . . ,
xn]𝑇 is a 𝑛 × 𝑝matrix, whose rows are 𝑝-dimensional vectors
of predictor variables (or regressors), 𝑦 = [𝑦1, 𝑦2, . . . , 𝑦𝑛]𝑇 is
a 𝑛 × 1 vector of responses, and 𝑓(𝑥𝑖, 𝛽) is model function.
Since all data points are attributed the same weights, OLS
implicitly favors the observations with very large residuals
and, consequently, the estimated parameters end up distorted
if outliers are present.

In order to achieve robustness in copingwith the problem
of outliers, Huber [16] introduced a class of so-called 𝑀-
estimators, for which the sum of function 𝜌 of the residuals is
minimized. The resulting vector of parameters 𝛽𝑀 estimated
by an𝑀-estimator is then

𝛽𝑀 = argmin
𝛽

𝑛∑
𝑖=1

𝜌 (𝑟𝑖𝜎) . (6)

The residuals are standardized by a measure of dispersion𝜎 to guarantee scale equivariance (i.e., independence with
respect to the measurement units of the dependent variable).
Function 𝜌(⋅) must be even, nondecreasing for positive
values, and less increasing than the square.

The minimization in (6) can always be done directly.
However, often it is simpler to differentiate 𝜌 function with
respect to 𝛽 and solve for the root of the derivative. When
this differentiation is possible, the 𝑀-estimator is said to be
of𝜓-type. Otherwise, the𝑀-estimator is said to be of 𝜌-type.

Let 𝜓 = 𝜌 be the derivative of 𝜌. Assuming 𝜎 is known
and defining weights 𝑤𝑖 = 𝜓(𝑟𝑖/𝜎)/𝑟𝑖, the estimates 𝛽𝑀 can
be obtained by solving the system of equations:

𝑛∑
𝑖=1

𝑤2𝑖 𝑟2𝑖 = 0. (7)

The weights are dependent upon the residuals, the residuals
are dependent upon the estimated coefficients, and the esti-
mated coefficients are dependent upon the weights. Hence,
to solve for 𝑀-estimators, an iteratively reweighted least-
squares (IRLS) algorithm is employed. Starting from some

initial estimates 𝛽(0), at each iteration 𝑡 until it converges, this
algorithm computes the residuals 𝑟(𝑡−1)𝑖 and the associated
weights 𝑤(𝑡−1)𝑖 = 𝑤[𝑟(𝑡−1)𝑖 ] from the previous iteration and
yields new weighted least-squares estimates.

2.1. Objective Function. Several 𝜌 functions can be used.
Here we opted for Tukey’s biweight [17] or bisquare function
defined as

𝜌 (𝑧𝑖) =
{{{{{{{{{

𝑐26 (1 − [1 − (𝑧𝑖𝑐 )
2]3) if 𝑧𝑖 ≤ 𝑐

𝑐26 if 𝑧𝑖 > 𝑐
}}}}}}}}}
, (8)

where 𝑐 is a tuning constant and 𝑧𝑖 = 𝑟𝑖/𝜎.
The corresponding 𝜓(𝑧𝑖) function is

𝜓 (𝑧𝑖) = {{{{{
𝑧𝑖 [1 − (𝑧𝑖𝑐 )

2]2 if 𝑧𝑖 ≤ 𝑐
0 if 𝑧𝑖 > 𝑐

}}}}}
. (9)

Tukey’s biweight estimator has a smoothly redescending𝜓 function that prevents extreme outliers to affect the
calculation of the biweight estimates by assigning them a
zero weighting. As can be seen in Figure 1, the weights for
the biweight estimator decline as soon as 𝑧 departs from 0
and are 0 for |𝑧| > 𝑐. Smaller values of 𝑐 produce more
resistance to outliers, but at the expense of lower efficiency
when the errors are normally distributed.The tuning constant
is generally picked to give reasonably high efficiency in
normal case; in particular 𝑐 = 4.685produces a 95%efficiency
when the errors are normal, while guaranteeing resistance to
contamination of up to 10% of outliers.

In an application, an estimate of the standard deviation
of the errors is needed in order to use these results. Usually a
robustmeasure of spread is used in preference to the standard
deviation of the residuals. A common approach is to take�̂� = MAD/0.6745, where MAD is the median absolute
deviation. Despite having the best possible breakout point
of 50%, the MAD is not without its weaknesses. It exhibits
superior statistical efficacy for the contaminated data (i.e.,
the data that contains extreme scores); however, when the
data approaches a normal distribution, the MAD is only37% efficient. Furthermore, it is ill-suited for asymmetrical
distributions, since it attaches equal importance to positive
and negative deviations from location estimate.

Hence, the scale parameter 𝜎 is computed using
Rousseeuw-Croux estimator 𝑄𝑛 [18]:

𝑄𝑛 = 𝑑 {𝑥𝑖 − 𝑥𝑗 ; 𝑖 < 𝑗}
(𝑘)

, (10)

where 𝑑 is a calibration factor and 𝑘 = ( ℎ2 ) ≈ ( 𝑛2 ) /4, whereℎ = 𝑛/2 + 1 is roughly half the number of observations.
The estimator 𝑄𝑛 has the optimal 50% breakdown point; it
is equally suitable for both symmetrical and asymmetrical
distributions and considerably more efficient (about 82%)
than the MAD under a Gaussian distribution.
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Figure 1: Tukey’s biweight estimator objective, 𝜓, and weight functions for 𝑐 = 4.685.

3. Experimental Setup

To illustrate the efficacy of the proposed approachweuse both
artificial data, generated from the Monte Carlo simulations,
and the experimental data for the tyrosinase enzyme (EC
1.14.18.1) extracted from three different sources.

3.1. Monte Carlo Simulations. Simulation studies are useful
for gaining insight into the examined algorithms strengths
and weaknesses, such as robustness, against number of
variable factors. There are three outlier scenarios and a total
of 18 different situations considered in this research.The data
sets are generated from the model:

𝑦𝑖 = (𝜃1𝑥𝑖)(𝜃2 + 𝑥𝑖) + 𝜖𝑖, 𝑖 = 1, 2, . . . , 𝑛, (11)

where regression coefficients are fixed 𝜃 = [80 240] for each𝑖 = 1, 2, . . . , 𝑛. The explanatory variables 𝑥𝑖 are set to 100 ⋅ 𝑖
and a zeromean unit variance randomnumberwithGaussian
density 𝜖𝑖 is added as measurement error.

The factors considered in this simulation are (1) level of
outlier contamination: 10% or 20%, (2) sample size: small
(𝑛 = 10), medium (𝑛 = 20), or large (𝑛 = 50), and (3)
distances of outliers from clean observations: 10 standard
deviations, 50 standard deviations, or 100 standard devia-
tions. There are 1200 replications for each scenario and all
simulations are carried out in MATLAB.The 3 scenarios and
the 18 situations considered in this research are summarized
in Table 1.

These simulated data are then used to estimate the
values of 𝐾𝑚 and 𝑉max using different fitting techniques.
The mean estimated values of 𝐾𝑚 and 𝑉max for a particular
scenario and fitting technique are subsequently calculated
by averaging 𝐾𝑚 and 𝑉max values obtained in each of the
1200 trials. The estimator efficacy is assessed in terms of its
bias, precision, and accuracy. Bias is defined as an absolute
difference between mean estimated parameter values and
known parameter values:

Bias =

∑𝑁𝑗=1 𝜃𝑖𝑗𝑁 − 𝜃𝑖

 , (12)

where𝑁 is the total number of replications in the simulated
scenario. The term precision refers to the absence of random
errors or variability. It is measured by the coefficient of

Table 1: The 18 situations considered in the simulations.

Scenario Situation Sample size Outliers 𝜎

1

1

10

10% 10
2 20% 10
3 10% 50
4 20% 50
5 10% 100
6 20% 100

2

7

20

10% 10
8 20% 10
9 10% 50
10 20% 50
11 10% 100
12 20% 100

3

13

50

10% 10
14 20% 10
15 10% 50
16 20% 50
17 10% 100
18 20% 100

variation (𝐶V), that is, the standard deviation expressed as a
percentage of the mean:

𝐶V = 𝜎
𝜃𝑖𝑗 ⋅ 100. (13)

The prediction accuracy is defined as the overall distance
between estimated values and true values. The accuracy is
measured by a normalized mean squared error (NMSE), that
is, the mean of the squared differences between the estimated
and the known parameter values normalized by a mean of
estimated data:

NMSE = 1𝑁
𝑁∑
𝑗=1

(𝜃𝑖𝑗 − 𝜃𝑖
𝜃𝑖𝑗 )

2

, (14)

where again 𝑁 is the total number of replications in the
simulated scenario.

3.2. Enzyme Data Sets. Tyrosinase (EC 1.14.18.1) is a ubiq-
uitous enzyme responsible for melanization in animals
and plants [19, 20]. In the presence of molecular oxygen,
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Table 2: Input experimental kinetic data sets.

Concentration [𝜇mol] Reaction rate [𝜇mol/min]
Ab Po Potato

25 0.0243 1.1 × 10−4 0.0004
50 0.0292 2.6 × 10−4 0.0011
100 0.0546 2.9 × 10−4 0.0018
250 0.1388 3.7 × 10−4 0.0023
500 0.1726 6.9 × 10−4 0.0030
1000 0.2374 13.1 × 10−4 0.0101
2500 0.3023 26.9 × 10−4 0.0124
5000 0.3395 49.6 × 10−4 0.0375
7500 0.3515 50.3 × 10−4 0.0485
10000 0.3652 60.7 × 10−4 0.0569

this enzyme catalyzes hydroxylation of monophenols to 𝑜-
diphenols (cresolase activity) and their subsequent oxidation
to 𝑜-quinones (catecholase activity). The latter products
are unstable in aqueous solution, further polymerizing to
undesirable brown, red, and black pigments. Tyrosinase has
attracted a lot of attention with respect to its biotechnological
applications [21], due to its attractive catalytic ability, as the
catechol products are useful as drugs or drug synthons.

For the purposes of present study, tyrosinase was
extracted from potato (Solanum tuberosum) and two species
of common edible mushrooms: Agaricus bisporus (Ab) and
Pleurotus ostreatus (Po). All the source materials were
purchased from the local green market in Split, Croatia.
Enzyme extraction was prepared with 100mL of cold 50mM
phosphate buffer (pH 6.0) per 50 g of a source material. The
homogenates were centrifuged at 5000 rpm for 30min and
supernatant was collected. The sediments were mixed with
cold phosphate buffer and were allowed to sit in cold condi-
tion with occasional shaking. Then the sediments containing
buffer were centrifuged once again to collect supernatant.
These supernatants were subsequently used as sources of
enzyme.

The tyrosinase activity was determined spectrophotomet-
rically at room temperature (𝑡 = 25∘C) and 𝜆 = 475 nm,
measuring the conversion of L-DOPA to red coloured oxi-
dation product dopachrome [22]. The reaction mixture—
obtained after adding a 50 𝜇L of enzyme extract to a cuvette
containing 1.2mL of 50mM phosphate buffer (pH 6.0) and
0.8mL of 10mM L-DOPA—was immediately shaken and the
increase in absorbance was measured for 3 minutes. The
change in the absorbance was proportional to the enzyme
concentration. The initial rate was calculated from the linear
part of the recorded progress curve. One unit of enzyme was
defined as the amount which catalyzed the transformation
of 1 𝜇mol of L-DOPA to dopachrome per minute under the
above conditions. The dopachrome extinction coefficient at
475 nm was 3600M−1 cm−1.

To determine the values of 𝐾𝑚 and 𝑉max for tyrosinase,
experimental kinetic data, summarized in Table 2, was gath-
ered by measuring enzyme activity in a cuvette where 50 𝜇L
of enzyme solution was added to 2mL of 50mM phosphate

buffer (pH 6.0) containing various concentrations of L-
DOPA (0–10mM). In this case, the estimator performance is
evaluated by computing mean absolute error (MAE), that is,
the mean of the absolute differences between the observed
reaction rate, V𝑖 and the expected reaction rate, calculated
using estimates of𝐾𝑚 and 𝑉max, at a concentration, 𝑠𝑖:

MAE = 1𝑛
𝑛∑
𝑖=1

(V𝑖 − 𝑉max ⋅ 𝑠𝑖𝑠𝑖 + 𝐾𝑚 ) , (15)

where 𝑛 is the number of experimental data points. Mean
absolute error is regularly employed quality measure that
provides an objective assessment of how well the various
estimated values of 𝐾𝑚 and 𝑉max fit the untransformed
experimental data.

4. Results and Discussion

4.1. Parameter Estimation Using Simulated Data. Figures 2–5
provide the summary of our simulation outcomes for differ-
ent sample sizes, different contamination levels, and different
outlier distances. By examining the simulation results, it
is evident that modified robust Tukey’s biweight estimator
outperforms all other four alternative fitting techniques with
respect to bias, coefficient of variation, and normalized mean
square error, yielding both accurate and precise estimates of𝐾𝑚 and 𝑉max at all test conditions. For example, looking at
the set of values obtained for a small sample size (𝑛 = 10)
with aminimal level of contamination present in the data and
minimal outlier scatter (Situation 1, Table 1), we observe that
as per the RNR estimator the average estimated values of𝐾𝑚
and𝑉max are 240.08±14.39 and 80±1.5. When EH, HW, and
LB plots were used, the data produced 224.38±38.01, 241.02±44.08, and 237.47±52.05, respectively, as average estimates of𝐾𝑚 and 78.18±4.46, 79.8±4.85 and 79.42±6.15, respectively,
as𝑉max. WhenOLS estimator was applied, the corresponding
average values of 𝐾𝑚 and 𝑉max were 238.71 ± 40.04 and79.86 ± 4.39, respectively. If the reported standard deviations
are scaled by dividing them with an appropriate mean, the
resulting coefficients of variation of𝐾𝑚 and𝑉max are 16.9 and5.7% (EH), 18.3%and 6.1% (HW), 21.9%and 7.7% (LB), 16.8
and 5.5% (OLS), and 6% and 1.9% (RNR), respectively. Thus,
it is revealed that, though all three Hanes-Woolf, Lineweaver-
Burke, and ordinary least-squares methods have a low bias
(Figures 2 and 4) and produce the results that are in a
close proximity of the values obtained by robust nonlinear
regression method, their estimates are much more imprecise
and as such are of a limited utility. Figure 6 shows the plots of
fitted reaction curves for the randomly selected replications
of situations with small sample size (Situations 1–6).

For a medium sample size (𝑛 = 20) with the same levels
of contamination and outlier scatter (Situation 7, Table 1),
the analysis for the RNR approach yielded almost identical
results, that is, average 𝐾𝑚 and 𝑉max estimates as 239.68 ±9.3 and 80 ± 0.68, respectively. The EH, HW, and LB plots
estimated the average 𝐾𝑚 as 228.83 ± 26.39, 238.01 ± 38.12,
and 238.52±49.21, respectively, and𝑉max as 79.09±2.12, 79.6±2.73, and 79.6±4.07, respectively.The average kinetic param-
eters, that is,𝐾𝑚 and𝑉max, obtained by the OLSmethod were
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Figure 2: Mean estimated values (black dots) and standard deviations of Michaelis constant,𝐾𝑚, for different simulated scenarios. Red lines
denote true parameter value.

238.75±28.43 and 79.88±2.05, respectively. Again, if the stan-
dard deviations are scaled by an appropriate mean, the result-
ing coefficients of variation of 𝐾𝑚 and 𝑉max are 11.5% and2.7% (EH), 16%and 3.4% (HW), 20.6%and 5.1% (LB), 11.9%
and 2.6% (OLS), and 3.9% and 0.8% (RNR), respectively.

Similarly, for a large sample size (𝑛 = 50) with the
same levels of contamination and outlier scatter (Situation 13,
Table 1), the values of 𝐾𝑚 and 𝑉max are estimated as 232.67 ±22.38 and 79.71 ± 0.98 (EH), 243.2 ± 29.88 and 79.99 ± 1.11
(HW), 246.97±78.33 and 80.15±3.43 (LB), 240.68±19.19 and80.08±0.86 (OLS), and 239.62±7.19 and 80.01±0.31 (RNR),
respectively. In this case, the resulting coefficients of variation
of 𝐾𝑚 and 𝑉max are 9.6% and 1.2% (EH), 12.3% and 1.4%
(HW), 31.7%and 4.3% (LB), 8%and 1.1% (OLS), and 3%and0.4% (RNR), respectively. It should be noted that, all thewhile
in all of the aforementioned cases, the Eadie-Hofstee method

has coefficients of variation that are highly comparable
to those based on ordinary least-squares method; the EH
estimated𝐾𝑚 and𝑉max values aremuch further away from the
true values than the estimates obtained byHanes-Woolf, ordi-
nary least-squares, and robust nonlinear regressionmethods.

With the increase of the contamination level and the
outlier scatter, the average estimates of 𝐾𝑚 and 𝑉max values
as per linear plots and the OLS method begin to deviate
significantly. However, the modified robust Tukey’s biweight
estimator is able to keep the errors in check and produce the
results that are highly comparable andmuch closer to the true
parameter values.

Numerically, by looking at the estimated values, it is hard
to tell which of the selected estimators has the overall best per-
formance; nevertheless, with the help of the normalizedmean
square error method we can see the values of parameters for
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Figure 3: Normalized mean square error of𝐾𝑚 for different scenarios.

which the error is minimum. Thus, from Figures 3 and 5, we
may say that the best (most accurate) values of 𝐾𝑚 and 𝑉max
are obtained in situation 17, for which the minimum error
values are 0.0541 and 8.5 × 10−4, respectively (as obtained by
RNR). This proves that the estimated values are more or less
similar to the true values.Theworst error values of 1.6982 and0.1517 for RNR method are obtained in situation 4 (Figures
3 and 5). In all other situations, the normalized mean square
errors for RNR method are less than 1 and 0.1, respectively
(Figures 3 and 5). This shows the credibility and the robust-
ness of the proposedmodified Tukey’s biweight estimator rel-
ative to other methods when outliers or influential observa-
tions are present in the data. If we compare the robust nonlin-
ear regression method with ordinary least-squares method,
we find that the RNRmethod normalizedmean square errors

are on average more than 10 times lower than the normalized
mean square errors produced by the OLS method.

4.2. Parameter Estimation Using Experimental Data. The
viability of the proposed robust estimator was also tested by
using the experimental kinetic data for tyrosinase enzyme.
The corresponding 𝐾𝑚 and 𝑉max values, produced by
different estimationmodels, are given in Table 3. Upon closer
inspection and analysis of these values, it can be observed
that, in case of Ab mushroom and potato tyrosinase, the
kinetic values, that is, 𝐾𝑚 and 𝑉max, yielded by the RNR
method (599 𝜇mol and 0.38 𝜇mol/min for Ab mushroom
and 10740 𝜇mol and 0.118 𝜇mol/min for potato, resp.)
are much closer to the values yielded by HW plot
(555 𝜇mol and 0.381 𝜇mol/min for Ab mushroom and
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Figure 4: Mean estimated values (black dots) and standard deviations of maximum initial velocity, 𝑉max for different simulated scenarios.
Red lines denote true parameter value.

Table 3: Kinetic parameters,𝐾𝑚 and 𝑉max, values, and mean absolute errors for tyrosinase extracted from different sources, estimated using
different methods.

Source Parameter Method
LB HW EH OLS RNR

Ab
𝐾𝑚 263.09 555.18 414.09 544.79 599.41𝑉max 0.2484 0.3812 0.3470 0.3767 0.3798
MAE 0.0511 0.0071 0.0137 0.0064 0.0048

Po
𝐾𝑚 359.91 3592.1 992.27 5700.3 6630.5𝑉max 0.0017 0.0079 0.0042 0.0095 0.0099
MAE 0.0013 2.6 × 10−4 7.5 × 10−4 1.7 × 10−4 1.5 × 10−4

Potato
𝐾𝑚 1216.0 10659 2093.4 25720 10740𝑉max 0.0208 0.1104 0.0394 0.2086 0.1180
MAE 0.0139 0.0022 0.0087 0.0018 0.0014
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10659 𝜇mol and 0.11𝜇mol/min for potato, resp.) than
by OLS method (545𝜇mol and 0.376 𝜇mol/min for Ab
mushroom and 25720𝜇mol and 0.209𝜇mol/min for
potato, resp.). Furthermore, it is interesting to note that
the parameter values yielded by LB plot (𝐾𝑚 263 𝜇mol and𝑉max 0.248𝜇mol/min for Ab mushroom, 𝐾𝑚 360 𝜇mol and𝑉max 0.002 𝜇mol/min for Po mushroom, and 𝐾𝑚 1216 𝜇mol
and 𝑉max 0.021 𝜇mol/min for potato) for all three tyrosinase
source are very far from the values yielded by other four
estimation methods. Figures 7(a), 7(b), and 8(a) show the
curves fitted to the experimental data using the modified
Tukey’s biweight estimator in comparison with the standard
linearization methods and the ordinary least-squares non-
linear regression. The mean absolute errors between the
predicted reaction rates and the actual data are plotted in
the right graph in Figure 8. Particularly, the mean errors for

RNR method are 0.0048, 1.5 × 10−4, and 0.0014, respectively,
which shows a good fit of the achieved model.

5. Conclusion

When an enzymatic reaction follows Michaelis-Menten
kinetics, the equation for the initial velocity of reaction as
a function of the substrate concentration is characterized by
two parameters, the Michaelis constant, 𝐾𝑚, and the maxi-
mum velocity of reaction, 𝑉max. Up to this day, these param-
eters are routinely estimated using one of these different
linearizationmodels: Lineweaver-Burke plot (1/V versus 1/𝑠),
Eadie-Hofstee plot (V versus V/𝑠), and Hanes-Wolfe plot
(𝑠/V versus V). Although the linear plots obtained by these
methods are very illustrative and useful in analyzing the
behavior of enzymes, the common problem they all share
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Figure 6: Curves fitted using different fitting techniques for random replications of situations 1–6.

is the fact that transformed data usually do not satisfy the
assumptions of linear regression, namely, that the scatter of
data around the straight line follows Gaussian distribution,
and that the standard deviation is equal for every value of
independent variable.

More accurate approximation of Michaelis-Menten
parameters can be achieved through use of nonlinear least-
squares fitting techniques. However, these techniques require
good initial guess and offer no guarantee of convergence to
the global minimum. On top of that, they are very sensitive
to the presence of outliers and influential observations in
the data, in which case they are likely to produce biased,
inaccurate, and imprecise parameter estimates.

In this paper, a robust estimator of nonlinear regression
parameters based on a modification of Tukey’s biweight
function is introduced. Robust regression techniques have
received considerable attention in mathematical statistics
literature, but they are yet to receive similar amount of
attention by practitioners performing data analysis. Robust
nonlinear regression aims to fit amodel to the data so that the
results are more resilient to the extreme values and are rela-
tively consistent when the errors come from the high-tailed
distribution. The experimental comparisons, using both real
and synthetic kinetic data, show that the proposed robust
nonlinear estimator based on modified Tukey’s biweight
function outperforms the standard linearization models and
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Figure 7: Curves fitted using different fitting techniques for tyrosinase extracted from Agaricus bisporus (a) and Pleurotus ostreatus (b)
mushrooms.
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Figure 8: Curves fitted using different fitting techniques for tyrosinase extracted frompotato (a).Mean absolute errors for different regression
models used (b).

ordinary least-squares method and yields superior results
with respect to bias, accuracy, and consistency, when there
are outliers or influential observations present in the data.
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