From economical point of view, most renewable energy sources currently show competitive economical properties in comparison with conventional sources, especially if their true lifecycle costs are taken into consideration. This multidisciplinary book focuses on the evaluation of the technoeconomic performances of photovoltaic and wind energy systems. Various modes of operation are considered. These modes include grid-connected and off-grid applications. In addition, various types of loads are considered, including non-deferrable and deferrable loads. Viable technoeconomic performance and optimization of Renewable Energy Systems (RESs) for economic performance maximization is among the main objectives of this reference. The book is written for students, researchers, and relevant specialists. Nineteen authors contributed to this book. They are from seven countries; Egypt, Turkey, Croatia, Mexico, Germany, Algeria, and Norway. The authors are: M. EL-Shimy (ed.), H. Balcioglu, K. Soyer, M. A. Abdelraheem, M. Said, M. Noor, T. Abdo, B. Đurin, J.G. Vargas-Hernández, A.C. Rangel, L. Nađ, K. Pallagst, P. Hammer, N. Bailek, K. Bouchouicha, A. Slimani, N. Aoun, A. Razagui, and N. Veggeland.

Renewable Energy Economics, May 2017

Mohamed EL-Shimy (Ed.)

Prof. Dr. Mohamed EL-Shimy is a professor with the depart. of Electrical Power and Machines – Ain Shams University. He is also an electromechanical specialist, and a freelance trainer. He is a technical reviewer for some major journals.

Economics of Variable Renewable Sources for Electric Power Production

EL-Shimy (Ed.)

Mohamed EL-Shimy (Ed.)

Economics of Variable Renewable Sources for Electric Power Production

Mohamed EL-Shimy (Ed.)

Economics of Variable Renewable Sources for Electric Power Production

LAP LAMBERT Academic Publishing

Impressum / Imprint

Bibliografische Information der Deutschen Nationalbibliothek: Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliografie; detaillierte bibliografische Daten sind im Internet über http://dnb.d-nb.de abrufbar.

Alle in diesem Buch genannten Marken und Produktnamen unterliegen warenzeichen-, marken- oder patentrechtlichem Schutz bzw. sind Warenzeichen oder eingetragene Warenzeichen der jeweiligen Inhaber. Die Wiedergabe von Marken, Produktnamen, Gebrauchsnamen, Handelsnamen, Warenbezeichnungen u.s.w. in diesem Werk berechtigt auch ohne besondere Kennzeichnung nicht zu der Annahme, dass solche Namen im Sinne der Warenzeichen- und Markenschutzgesetzgebung als frei zu betrachten wären und daher von jedermann benutzt werden dürften.

Bibliographic information published by the Deutsche Nationalbibliothek: The Deutsche Nationalbibliothek lists this publication in the Deutsche Nationalbibliografie; detailed bibliographic data are available in the Internet at http://dnb.d-nb.de.

Any brand names and product names mentioned in this book are subject to trademark, brand or patent protection and are trademarks or registered trademarks of their respective holders. The use of brand names, product names, common names, trade names, product descriptions etc. even without a particular marking in this work is in no way to be construed to mean that such names may be regarded as unrestricted in respect of trademark and brand protection legislation and could thus be used by anyone.

Coverbild / Cover image: www.ingimage.com

Verlag / Publisher: LAP LAMBERT Academic Publishing ist ein Imprint der / is a trademark of OmniScriptum GmbH & Co. KG Bahnhofstraße 28, 66111 Saarbrücken, Deutschland / Germany Email: info@omniscriptum.com

Herstellung: siehe letzte Seite / Printed at: see last page ISBN: 978-3-330-08361-5

Copyright © Copyright © 2017 OmniScriptum GmbH & Co. KG Alle Rechte vorbehalten. / All rights reserved. Saarbrücken 2017

ECONOMICS OF VARIABLE RENEWABLE SOURCES FOR ELECTRIC POWER PRODUCTION

Mohamed EL-Shimy M. Bekhet (editor)

Professor of electric power systems

Ain Shams University

Cairo, Egypt

May, 2017

To my wife Hala, and my children (Sara, Malak, Omar, and Aly)

List of Contributers

The contributors ordered as they appear in the book are as follows.

Mohamed EL-Shimy M. Bekhet (editor)	Professor of Electric Power Systems, Electrical Power and Machines Department, Faculty of Engineering, Ain Shams University, Cairo, Egypt. Tel.: 00201005639589; Email: mohamed_bekhet@eng.asu.edu.eg; shimymb@yahoo.com Website: http://shimymb.tripod.com
Hasret Balcioglu	Professor. Director of the Institute of Graduate Studies and Research, Head of the Department of Business Administration, Faculty of Economics and Administrative Sciences, Cyprus International University, North Cyprus, Mersin 10 Turkey. Tel: 0090 3926711111; E-mail: hbenar@ciu.edu.tr
Kemal Soyer	PhD candidate. Institute of Graduate Studies and Research, Cyprus International University, North Cyprus, Mersin 10 Turkey Email: ksoyer@ciu.edu.tr
Mohamed A. Abdelraheem	Professor of Electric Power Systems, Electrical Power and Machines Department, Faculty of Engineering, Ain Shams University, Cairo, Egypt. Tel.: 002-01222184828. Email: m_aal666333@hotmail.com
Mohamed Said	Electrical engineer; The Egyptian airports company (EAC), Egypt Email: engmohamedsaid2009@gmail.com
Mohamed Noor	Professor, Hydraulics and Irrigation Department, Faculty of Engineering, Ain Shams University Email: mhmdnour2@hotmail.com
Taha Abdo	Electrical engineer; Sun Infinite, Egypt Email: abduoco@yahoo.com
Bojan Đurin	Assistant Professor, Faculty of Geotechnical Engineering, University of Zagreb, Varaždin, Croatia Email: bojan@gfv.hr
José G. Vargas-Hernández	Professor. Emmanuel RodolfoAscencio Espinosa, Centro Universitario de Ciencias, Económica y Administrativas, Universidad de Guadalajara, Periférico Norte 799, Núcleo Universitario Los Belenes, Zapopan, Jalisco, C.P. 45100, México

	Email: jvargas2006@gmail.com
Arturo Córdova Rangel	Universidad Politécnica de Aguascalientes, Calle Paseo San Gerardo No. 207, Fracc. San Gerardo, Aguascalientes, Ags., C.P. 20342, México Email: arturo.cordova@upa.edu.mx
Lucija Nađ	Faculty of Geotechnical Engineering, University of Zagreb, Varaždin, Croatia Email: Lucijananad@gmail.com
Karina Pallagst	IPS Department International Planning Systems, Faculty of Spatial and Environmental Planning, Pfaffenbergstr. 95 Technische Universität Kaiserslautern, Germany Tel. +49 (0)631-205-5155. E-Mail: karina.pallagst@ru.uni- kl.de https://www.ru.uni-kl.de/ips/team/kpallagst/
Patricia Hammer	IPS Department International Planning Systems, Faculty of Spatial and Environmental Planning, Pfaffenbergstr. 95 Technische Universität Kaiserslautern, Germany E-Mail: patricia.hammer@ru.uni-kl.de
Nadjem Bailek	Djillali Liabes University, Faculty of Science, Department of Physics, 22000 Sidi Bel-Abbes, Algeria Email: prbailek@gmail.com
Kada Bouchouicha	Unité de Recherche en Energies Renouvelables en Milieu Saharien (URERMS), Centre de Développement des Energies Renouvelables (CDER), 01000 Adrar, Algérie Email: k.bouchouicha@gmail.com
Abdeldjalil Slimani	Unité de Recherche en Energies Renouvelables en Milieu Saharien (URERMS), Centre de Développement des Energies Renouvelables (CDER), 01000 Adrar, Algérie Email: abdousli2005@gmail.com
Nouar Aoun	Unité de Recherche en Energies Renouvelables en Milieu Saharien (URERMS), Centre de Développement des Energies Renouvelables (CDER), Adrar, Algérie. Email: nouar.aoun@gmail.com
Abdelhak Razagui	Centre de Développement des Energies Renouvelables, CDER, Alger, Algérie Email: a_razagui@yahoo.fr
Noralv Veggeland	Professor of Public Policy, Inland Norway University of Applied Sciences, Lillehammer, NORWAY E-mail: noralv.veggeland@inn.no; Mobile: + 47 90 12 21 92

TABLE OF CONTENTS	
LIST OF CONTRIBUTERS	3
PREFACE	13
PART 1: OVERVIEW OF RENEWABLE ENERGY SYSTEMS	16
1 Renewable Energy - Background	17
1.1 Introduction	17
1.2 Renewable Energy Resources and Sources	20
1.3 Renewable Energy around the World	27
2 Techno-economic modeling and analysis of renewable energy projects	35
2.1 Introduction	35
2.2 Financial and economic performance indicators	37
2.2.1 Simple Payback	37
2.2.2 Annual Energy/Cost Savings	37
2.2.3 Time Value of Money	40
2.2.4 Inflation Rate	42
2.2.5 Present Value Annuity Factor (PVAF)	43
2.2.6 Net Present Value (NPV)	43
2.2.7 Internal Rate of Return (IRR)	44
2.2.8 Discount Rate	45
2.2.9 Return on Equity (ROE)	49
2.2.10 Cash Return On Assets Ratio	49
2.2.11 Equity payback	49
2.2.12 Benefit Cost Ratio (BCR)	49
2.3 Basic Cashflow	50
2.4 Levelized Cost of Energy (LCOE)	50
2.5 Breakeven or Grid Parity analysis	55
2.6 SWOT Analysis	57
3 Operational Characteristics of Renewable Sources, Challenges, and Future Prospective	63
3.1 Introduction	63
3.2 Simplified Energy Production Estimation	70
3.2.1 Solar-PV Generators	70
3.2.1 Wind Turbine Generators (WTGs)	73
3.3 Energy Storage for Power Balance	75
3.3.1 Energy Storage Options	76
3.3.2 Approximate modeling of P2H2P systems	89

PART 2: TECHNO ECONOMIC ANALYSIS AND OPTIMIZATION OF GRID CONNECTED SOLAR-PV AND WIND ENERGY PRODUCTION SYSTEMS

99

4 Detailed Techno-economic Analysis of Solar-PV Projects – Egypt Case Studies	101
Nomenclature	101
4.1 Introduction	105
4.2 Modeling of LCOE and Grid Parity	111
4.3 Case Studies, Results and Discussion	124
4.3.1 Base Case	124
4.3.2 Sensitivity Analysis	127
4.3.3 Technological and Locational Impacts on Energy Production and LCOE	130
A. Technological Impact (sun tracking and PV technology)	133
B. Locational Impact:	139
4.4 Grid Parity Analysis	145
5 Optimization of Wind Energy Projects for Viability Maximization Considering Exter	nal
Costs	147
Nomenclature	147
5.1 Introduction	147
5.2 Problem Statement and Mathematical Modeling	150
5.2.1 Modeling the ECOE.	10
5.2.2 Energy production and output power curve models	160
5.2.3 Correction of the Weibull PDF parameters	169
5.2.4 Optimal site matching of WTGs	172
5.3 Case Study	176
5.3.1 Selection of the study sites and data adaptation	176
5.3.2 Results and Discussion	183
A. Optimal Site Matching of WTGs	183
B. Energy production estimation	187
C. Estimation of the LCOE	196
D. Grid parity analysis	201
D. Optimal Selected Commercial Wind Turbines:	205
Appendix A: Estimation of the Weibull Parameters	209
Appendix B : WTG Power Curve Models	214
Appendix C: Spectrum of main parameters of commercial WTGs and their relative frequency occurrence	y of 217
6 Comparison Between the Economic Performances of Wind and Solar-PV Projects Considering External Costs	221
Nomenclature	221
6.1 Introduction	221
6.2 Results and Discussions:	225
6.3 Grid parity analysis	234

PART 3: TECHNO ECONOMIC ANALYSIS OF VARIABLE RENEWABLE SOURCES SUPPLYING DEFERRABLE LOADS 24	11
SUPPLYING DEFERRABLE LOADS 24	41
7 Overview of Pumping Systems with Focus of Deferrable Irrigation Loads 24	43
Nomenclature 24	43
7.1 Introduction 24	19
7.2 Types of pumps 25	53
7.2.1 Direct Lifting Devices 25	54
A. Reciprocating and cyclic direct lifting devices 25	54
B. Rotary direct lifting devices 25	54
7.2.2 Positive displacement pumps "PD"25	54
A. Reciprocating Displacement Pumps 25	55
B. Rotary Displacement Pumps 25	55
7.2.3 Roto-Dynamic Pumps "RD" 25	56
A. Centrifugal Pumps "CP" 25	56
7.2.4 Air Lift Pumps 25	59
7.2.5 Impulse (Water Hammer) Devices 25	59
7.3 Water Lifting Devices and Pumps for Irrigation System 25	59
7.4 Selection Conditions of Pump 26	53
7.5 Basics of pump operating characteristics 26	56
7.5.1 Pump head (Total Dynamic Head)26	56
A. Total Static Head (Hs) 26	57
B. Pressure Head (H _p) 26	57
C. Velocity Head (Hv) 26	59
D. Friction Head (H _f) 26	59
7.5.2 Pump Performance Curves 27	70
A. Positive Displacement (PD) Pumps 27	70
B. Centrifugal Pumps 27	72
7.5.3 Pump Operating Point 27	73
7.5.4 Pump Performance Calculation 27	74
7 6 Pump Drivers 27	76
7.6.1 Internal Combustion (I.C) Engines	76
A Types of I C Engines 27	77
B Electrical Motors	.' 77
B 1 Synchronous Motors 27	78
B 2 Induction Motors 27	78

B.3 Variable Frequency Drives VFD	279
C. Solar PV Power	279
7.7 Pump selection for a specific application	282
7.7.1 Define Requirements	282
7.7.2 Define the System Operating Conditions	282
7.7.3 Define the Pump Rated Point	282
7.8 Types of Irrigation Systems	283
7.8.1 Surface Irrigation Method	285
7.8.2 Sprinkler Irrigation Method	287
7.8.3 Micro-Irrigation System	288
7.9 Irrigation Water Requirements	290
7.9.1 Evapotranspiration Concepts	292
A. Reference Crop Evapotranspiration (ET _o)	293
B. Crop Evapotranspiration under Standard Conditions (ET _c)	293
C. Crop Evapotranspiration under Non-Standard Conditions $(ET_{c Adj})$	294
E. Determination of Evapotranspiration	294
D.1 Measurement of Evapotranspiration (ET)	294
D.2 Computation of Evapotranspiration from Meteorological data	295
D.3 ET estimated from Pan Evaporation	295
D.4 Blaney-Criddle Method	296
D.5 FAO-Penman-Monteith Equation	297
7.9.2 Estimation of the Crop Coefficients	303
A. Initial Growth Stage	304
B. Other Growth Stages	304
8 Viability And Emission Analysis of Various Energy Supply Ontions for Irrigation Wa	ter
Pumping Systems	309
Nomenclature	309
8.1 Introduction	309
8.2 SWOT Analysis	316
8.2 Solar-PV Water Pumping System Configuration	319
8.3 Mathematical Modeling of the System	321
8.3.1 Solar Energy Modeling	321
8.3.2 Solar-PV Array Model	327
A. Maximum Power Point Tracking (MPPT) Technique	329
B. Inverter model	332
D. Motor Type and Model	334

E. Pump Model	338
F. Irrigation Water Distribution Systems	340
G. Evaluation of the Optimal Tilt Angle and sun tracking	343
8.4 System Sizing approach	346
8.5 Levelized Cost of Energy LCOE	351
8.6 The True Cost of Electricity Generation Technologies	356
8.7 Green House Gases (GHG) analysis	357
8.8 Methodology	361
8.9 A Standalone PV Water Pumping System	364
8.10 Diesel Engine Based Water Pumping System	368
8.11 Electricity grid based water pumping system	372
8.12 Analysis of the Study Site	373
8.12.1 Meteorological Data	373
8.12.2 Hydraulic Energy Demand	376
8.13 Results	380
8.13.1 Correlation Models Result	380
8.13.2 Optimal Tilt Angle Results	380
8.13.3 Effect of the Optimal Tilt Angles on Ht	385
8.13.4 Sizing Approach Results	387
8.13.5 COE and LCOE Results	389
8.13.6 Green House Gases (GHS) analysis	391
8.14 Conclusion	392
9 Generalized method for sizing optimization of standalone 100% renewable energy source for supplying deferrable loads	mixed 395
9.1 Introduction	395
9.2 Problem Statement and Formulation	398
9.2.1 Sizing of Variable Sources Supplying Deferrable Loads - Basic Concepts	398
9.2.2. Sizing Optimization of Solar-PV Arrays	400
9.2.3 Sizing Optimization of Wind Farms	402
9.2.4 Sizing Optimization of Mixed Wind and Solar-PV	403
9.2.5 Hydraulic Energy Demand Modeling	404
9.2.6. Design Month Selection	405
9.3 Application Example	405
9.3.1. Location, Input Data	405
9.3.3. Technological Selection	410
9.3.4. Optimization Results	411
A. Standalone solar-PV generator	411

B. Standalone wind generator	412
C. Mixed solar-PV and wind generators	413
9.4 Conclusions	414
Appendix 1: Detailed Meteorological data of the study site	416
Appendix 2: Costs of solar-PV and WTG sources	419
A. Solar-PV components	419
B. Conventional horizontal axis WTG	419
C. WindTronics WTG	420
Appendix 3: Evaluation of various solutions	421
PART 4: INTERNATIONAL EXPERIENCES AND MISCELLENEOUS TOPICS 10 Cost and Benefit Analysis of Using Solar Energy to Produce Electricity in North (425 Cyprus
	427
10.1 Summary	427
10.2 Introduction	428
10.3 Energy Sector in NC	429
10.4 Energy Resources in Islands	432
10.5 Generating Electricity in North Cyprus	432
10.6 Literature Review	434
10.7 Cost-Benefit Analysis	435
10.8 Methodology	120
10.0 Summary of the Beculta	438
10.9 Summary of the Results	438 439

10.11 References	441
11 Renewable Energy in Mexico: Development and Outlook of Photovoltaic (PV) Energy	443
Summary	443
11.1 Introduction	444
11.2. Objective	445
11.3 Background	446
11.4. Description of Technology	446
11.4.1. Grid-connected systems	449
11.4.2. Isolated or off-grid systems	449
11.5. Industry of solar energy in Mexico	451
11.6. Market structure	452
11.6.1. Major PV companies in Mexico	452

11.6.2. Share of renewable energy companies in Mexico45511.6.3. Concentration index segment45511.7. Costs456

11.8. Regulatory frameworks for renewable energy	458
11.8.1. General Law on Climate Change	458
11.8.2. Law on the Use of Renewable Energies, Financing of Energy Transi and its regulations	tion (LAERFTE), 458
11.8.3. Interconnection Agreement for Renewable Energy and Power Coger Small and Medium Scale	eration System in 459
11.8.4. Interconnection Agreement for Renewable Energy of Collective Sou System in Small Scale Cogeneration contract (to be published by the CRE)	rce or Collective 459
11.9. Conclusions	460
References	461
12 Urban Green Spaces as a Component of an Ecosystem: Functions, Serv Community Involvement, initiatives and Actions	vices, Users, 465
12.1 Introduction	466
12.2 Components of urban green spaces	467
12.3 Ecosystems functions and services of urban green spaces	469
12.4 Methodological considerations	478
12.5 Users of urban green spaces	480
12.6 Factors of successful community involvement in urban green spaces	487
12.7 Challenges and opportunities	497
12.8 Research gaps	503
References	504
13 Updated status of Renewable and Sustainable Energy Projects in Alger	ia 519
13.1 Introduction	519
13.2 Renewable energy in Algeria	521
13.2.1 Solar Energy	522
13.2.2 Wind Energy	525
13.2.3 Other Energies	526
13.3 Promotion of the Scientific Research in the field of Renewable Energy	527
13.4 Conclusions	528
14 Solar Resource Potentials in Algeria	529
14.1. Introduction	529
14.2. Study Area	531
14.3. Data	532
14.3.1. Satellite-Derived Data	532
14.3.2. Digital Elevation Model Data	533
14.4. Methodology	534
14.5. Results and Discussion	536
14.6 Conclusion	543
	515

Acknowledgments	544
References	544
15 The Risk of Oil Fund Policy Globally	548
15.1 Summary	548
Research objective	548
The research problem and methods	548
The process of argumentation	548
Research result	549
Conclusions, innovation and recommendation	549
15.2 Some facts on Norwegian oil and gas resources.	549
15.3 What does Norway get out of the GPF-G? Risk capital is not venture capital targeting entrepreneurship	550
15.4 What does Norway get out of the GPF-G? The dilemma; foreign investments versus domestic investments	551
15.5 Given this situation, how should Norway best policy look like?	552
15.6 What does Norway get out of the GPF-G? The dilemma; negative ethical exclusion ver innovative positive selection	sus 554
15.7 References	556

PREFACE

Renewable energy sources (RESs) are essential for the future energy security. These energy sources provide a viable alternative energy, and cost effective sources in various types of electric energy grids such as utility grids, smart grids, and microgrids. In addition, RESs are currently considered as a feasible techno-economic alternative for supplying remotely located offgrid electric and non-electric energy loads.

RESs are freely abundant and accessible, and environmentally friendly; however, the widespread use and large-scale integration of renewable energy systems to electric power systems face three critical challenges. These categories cover the main operational, dynamical, and economical prospective.

From electricity grid operation point of view, the popular renewable sources have high and risky levels of variability, intermittency, resource predictability, interface controllability, and economic generation dispatchability. These inherent problems are mainly attributed to the stochastic and varying nature of renewable energy sources as well as the inherent uncontrollability of the input natural resources (such as wind speed or solar radiation) and the impossibility of storing them in their natural form. Many approaches are proposed for reducing these operational problems. These approaches include geographical diversity, interconnections between systems, energy storage, distributed renewable sources, and smart grids. More details about the operational characteristics of variable RESs are presented in Chapter 3. In addition, the chapter includes suggestions for 100% renewable energy sources based on the power-to-gas-to-power conversions. These energy conversions minimize the inherent operational characteristics of variable energy sources.

From dynamical point of view, the behaviors of the host power grid are significantly modified by the dynamic characteristics, control settings, and switching of converters utilized in the grid interface of the generators, the active elements in the power networks, and the dynamic loads as well as their interactions. In comparison with conventional synchronous generators, renewable energy includes a massive number of technologies, each of which has different technological structural, control capabilities, and dynamical properties. Therefore, the dynamic behavior of renewable energy sources as well as their interaction with power systems is highly different in comparison with conventional synchronous generators. This situation requires continuous updating of the models to cope with these technologies and assessment of their impacts on power systems for various themes of power system studies. The dynamical issues of RESs and their impacts on power grids are out of the scope of this textbook; however, numerous previous publications effectively handle these issues. The readers may refer to the following textbooks for recent details about the dynamical behavior of electric power systems and RESs.

- M. EL-Shimy. Dynamic Security of Interconnected Electric Power Systems - Volume 1. Lap Lambert Academic Publishing / Omniscriptum Gmbh & Company Kg; Germany; ISBN: 978-3-659-71372-9; May, 2015.
- M. EL-Shimy. Dynamic Security of Interconnected Electric Power Systems - Volume 2: Dynamics and stability of conventional and renewable energy systems. Lap Lambert Academic Publishing / Omniscriptum Gmbh & Company Kg; Germany; ISBN: 978-3-659-80714-5; Nov. 2015.

From economical point of view, most renewable energy sources currently show competitive economical properties in comparison with conventional sources, especially if their true lifecycle costs are taken into consideration. This book focuses on the evaluation of the techno-economic performances of solar-PV and wind energy systems. Various modes of operation are considered. These modes include grid-connected and off-grid applications. In addition, various types of loads are considered, including non-deferrable and deferrable loads. Viable techno-economic performance and optimization of Renewable Energy Systems (RESs) for economic performance maximization is among the main objectives of this textbook. This book consists of four parts as illustrated in the following figure.

For the convenience of the readers, each part is constructed as self contained structure with minor dependence on the surrounding parts. We hope that this multi-disciplinary book will provide a significant support to students and researchers as well as various related specialists. We welcome any supporting feedback from the readership.

M. EL-Shimy

May, 2017