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a b s t r a c t 

A damage model for quasi-brittle materials embedded into the two dimensional C 1 continuity triangular 

finite element formulation based on the strain gradient continuum theory is considered. The isotropic 

damage law is applied to the higher-order stress-strain constitutive model, which enables the analysis 

of both homogeneous and heterogeneous materials. Such softening formulation also ensures a decrease 

of the intensity of the material nonlocality associated with the damage growth, which is necessary for 

the correct description of the narrow localized deformation. In order to obtain the required constitutive 

matrices, the second-order homogenization procedure is applied to the various representative volume el- 

ements in the frame of a multiscale approach. The derived finite element formulation is implemented 

into the finite element program ABAQUS by means of user subroutines. The superior regularization capa- 

bilities, as well as the accuracy and efficiency of the proposed higher-order gradient damage model are 

demonstrated by the standard benchmark examples. 

© 2017 Elsevier Ltd. All rights reserved. 
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. Introduction 

The damage phenomenon, macroscopically characterized by de-

rease in the elastic material stiffness or so-called softening, is

ommon in all engineering materials and can significantly decrease

tructural load-carrying capacity and eventually lead to a com-

lete loss of mechanical integrity. When there is no plasticity in-

olved before or after initiation of damage, materials soften imme-

iately after reaching the critical elastic deformation and can be

hen classified as quasi-brittle. Materials like these include, among

thers, high-strength steels, polymers, composites and various geo-

aterials such as concrete and rock. 

Concerning the numerical simulations, it is well-known that

he strain softening cannot be properly resolved with the applica-

ion of the classical continuum mechanics. This approach leads to

he local loss of positive definiteness of the material tangent stiff-

ess, which may cause the local loss of ellipticity of the governing

ifferential equations. The mathematical description of the model

hen becomes ill-posed and numerical solutions do not converge

o a physically meaningful solution ( Peerlings et al., 1996 ). If the

nite elements are applied as a discretization technique, the so-

utions are then completely dependent on both mesh refinement

nd mesh alignment. In other words, the energy dissipated in the

racture process tends to zero when the size of the elements in-
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olved in the softening process is reduced, and the localization

one exhibits an extreme tendency to propagate along the mesh

ines ( de Borst et al., 1993 ). 

Various regularization techniques have been developed in the

ast few decades to overcome this problem. Many of them are

ased on the improvement of the classical continuum model, pre-

isely on its enrichment with the internal length scale parame-

er in several different ways. Some of the known methods in-

lude the micropolar ( Chang and Ma, 1990 ) and viscoplastic theory

 Sluys and de Borst, 1992 ), but they suffer from the lack of general-

ty since the preservation of ellipticity is possible only in some spe-

ific cases. On the other hand, the theories related to the nonlocal

aterial behavior have been shown to be the most versatile. In the

ase of the nonlocal models, the stress at a material point does not

epend only on the strain and other state variables at this point, as

t is the case with the classical continuum theory, but also on the

trains and other state variables of the points in the surrounding

rea. Physically, the nonlocality represents the heterogeneities and

nteractions taking place at the microscale, which cannot be ne-

lected in the damage analysis, where the scale of the macrostruc-

ural fluctuations of the constitutive variables approaches the scale

f the microstructure ( Bažant, 1991 ). The intensity of these inter-

ctions is described by the aforementioned internal length scale

arameter, which in this way introduces a microstructural contri-

ution in the model ( Peerlings, 1999 ). 

Basically, there are two different approaches regarding the im-

lementation of the material nonlocality in the model, the integral

nd the gradient approach. The integral approach, introduced by

ažant et al. (1984) , accounts for the influence of previously men-
strain gradient continuum theory, International Journal of Solids 
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tioned microstructural interactions through the weighted average

of a variable driving the damage process, typically strain. This leads

to very complicated constitutive relations made of convolution-

type integrals, making the numerical implementation very de-

manding. In the case of the gradient approach, either the classi-

cal constitutive relation is enhanced with the strain gradients, or

both the strain gradients and their stress conjugates are introduced

in the model via higher-order continuum. In the case when only

strain-gradients are used as an enhancement of the constitutive

relation, the explicit and especially the implicit gradient formula-

tions are usually used when dealing with softening, either in elas-

ticity context ( Peerlings et al., 1998 ), plasticity context ( de Borst

and Mühlhaus, 1992; Engelen et al., 2003 ) or in the analysis of the

elastic wave propagation ( Sluys et al., 1993 ). Although the struc-

tural responses are mesh objective, the mentioned formulations

suffer from the spurious damage growth reported by Simone et al.,

(2004) , where the damage process zone evolves incorrectly after

initiation in the mode-I and the shear band problems. The de-

scribed phenomenon occurs if the conventional integral and gradi-

ent enhancements are used, which assume a constant interaction

domain throughout the entire load history. Because of this assump-

tion, the energy is transferred from the damage process zone to

a neighboring elastically unloading region, resulting in a smeared

damage zone instead in a localized deformation band ( Poh and

Sun, 2017 ). This problem can be more or less successfully avoided

by using the modified nonlocal formulations which assume the

evolving internal length scale parameter. Most of these formula-

tions employ the increasing length scale parameter with the ris-

ing deformation level ( Pijaudier-Cabot et al., 2004; Nguyen, 2011;

Triantafyllou et al., 2015 ). By doing so, it is presumed that the in-

tensity of microstructural interactions also increases, which does

not have a correct physical background. This is explained in more

detail in ( Poh and Sun, 2017 ), where a new model based on the de-

creasing microstructural interactions is presented, recognizing that

the width of the fracture process zone localizes towards a macro-

scopic crack in the quasi-brittle fracture. 

The strain gradient continuum theory, where both the strain

gradients and their stress conjugates contribute to the internal en-

ergy ( Mindlin and Eshel, 1968 ) is employed less often, mainly be-

cause it is numerically more complex. In the recent developments,

this higher-order stress-strain theory is employed in the context of

a damage modeling of an infinitely long bar ( Chang et al., 2002 ),

where it is concluded that the addition of the higher-order stress

terms results in stabilizing the positive definiteness of the tan-

gent stiffness moduli when entering the strain softening regime.

In such a way the physically consistent solutions leading to a re-

alistic reproduction of the softening phenomenon can be ensured.

Further development from one-dimensional to multi-dimensional

simulation of a localized failure process is made in ( Yang and

Misra, 2010 ). In both Chang et al. (2002) and Yang and Misra

(2010) element-free Galerkin (EFG) meshless method is used for

finding the approximate solutions to the corresponding bound-

ary value problems. Another advantage of the higher-order stress-

strain theory is that material heterogeneity in the constitutive re-

lations can be easily introduced through the non-diagonal higher

order material stiffness tangents ( Kaczmarczyk et al., 2008 ). The

stiffness tangents can be obtained by applying the second-order

homogenization technique ( Kouznetsova et al., 2002 ) on the rep-

resentative volume element (RVE) ( Gitman et al., 2007 ). The con-

stitutive relations emerging from the second-order homogenization

described in Kouznetsova et al. (2002 ) and Lesi ̌car et al. (2014 ) are

dependent on the choice of the RVE size, or in other words, the

size effect can be studied by changing the RVE sizes rather than

changing the model dimensions. On the other hand, as suggested

in Li (2011) and Li and Zhang (2013) , the gradient constitutive be-

havior is a material property, and as such it should not be influ-
Please cite this article as: F. Putar et al., Damage modeling employing

and Structures (2017), http://dx.doi.org/10.1016/j.ijsolstr.2017.04.039 
nced by the choice of the RVE size, but only by a stochastic as-

ect of the heterogeneities included in the RVE. For this purpose, a

orrection that is to be applied on the strain gradient modulus of

he sixth order is derived in Li (2011 ), making the overall consti-

utive relations more consistent and intrinsic. Although the previ-

usly mentioned gradient feature of the constitutive law resulting

rom the standard homogenization procedure is not as physically

ppropriate, when a real engineering material is considered, the

ecessary RVE size can be determined and the unique and con-

istent strain gradient constitutive relations can be obtained. An-

ther limitation of the standard second-order homogenization is

oncerned with the microfluctuation field inside the RVE, as it is

ecognized by Forest and Trinh (2011) . Here the authors suggest

nother approach for its resolution by treating the microfluctuation

erm in the extended Hill-Mandel condition different from zero,

hich is exactly the opposite from what is generally used in the

tandard approach, e.g. as described in Kouznetsova et al. (2002 )

nd Lesi ̌car et al. (2014 ). Beside the second-order computational

omogenization, which can be used for an arbitrary RVE geometry

nd is the most general in that sense, a constitutive model for the

aterials with a simple microstructure can be established using an

nalytical approach, e.g. as described in Zybell et al. (2008 ). 

Concerning the numerical implementation of the strain gra-

ient continuum theory using the finite element method, both

 

0 and C 1 continuous elements have already been employed.

ervos et al. (2009) showed a superior robustness of the C 1 dis-

lacement based finite elements over the C ° elements used with

 penalty function approach. In Akarapu and Zbib (2006 ), the C 1 

ormulation is used for the crack analysis in the context of the lin-

ar elastic fracture mechanics. Fischer et al. (2010) presented an

n-depth analysis of the performance of three different C 1 contin-

ous finite elements and additionally made a comparison with the

 

1 Natural Element Method. Lesi ̌car et al. (2014) developed a tri-

ngular displacement based C 1 finite element and used it in the

cope of the multiscale modeling of heterogeneous materials. Re-

arding the damage mechanics, the C ° finite elements based on the

ixed formulation are mostly used due to their lower complexity,

ither when the implicit gradient enhancement ( Peerlings et al.,

996 ) or the micromorphic approach ( Poh and Sun, 2017 ) is used

s a regularization technique. To the authors’ knowledge, the two-

imensional C 1 displacement based finite elements have not yet

een employed for the analysis of softening materials. Although

he C 1 formulation is considered more complex owing to a rela-

ively high polynomial used for the displacement field approxima-

ion, there is no need for the introduction of the additional vari-

bles representing the link to the microstructure, e.g. the non-local

quivalent strain or the micromorphic variable, which are specific

or the C ° formulations. In that sense, the C 1 displacement based

nite elements can be considered more intrinsic as all state vari-

bles are calculated in terms of the displacements and their deriva-

ives. Besides, due to the mentioned displacement field approxi-

ation using a high polynomial, a much coarser discretization is

enerally sufficient, compared to the C ° finite elements. 

This contribution is concerned with the development of a dam-

ge model based on the strain gradient continuum theory which

ncludes both the strain gradients and their stress conjugates.

or this purpose, the C 1 continuity displacement based triangu-

ar finite element developed in Lesi ̌car et al. (2014 ) is employed.

nlike in this reference, here the sequential micro-macro proce-

ure is abandoned, although the terms relating to the micro- and

he macrostructural level are preserved. The microstructural con-

ribution is incorporated through the constitutive tensors which

re obtained using the second-order computational homogeniza-

ion, while the softening analysis is performed exclusively on the

acroscale model once the constitutive tensors are known. The

amage model proposed by Yang and Misra (2010) is adopted,
 strain gradient continuum theory, International Journal of Solids 
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hich has a very attractive property to decrease the intensity of

he microstructural interactions while the softening progresses. In

his way a physically correct structural response standing behind

 fracturing process can be captured, unlike the results obtained

sing the conventional implicit gradient damage model, where the

purious damage growth can be observed ( Geers et al., 1998; Si-

one et al., 2004 ). Herein, the isotropic damage law is imple-

ented into the constitutive relations of the strain gradient the-

ry, whereby the constitutive matrices, which describe the inten-

ity of the material nonlocal behavior, are directly decreased by the

erm involving damage variable. All derived numerical algorithms

re embedded into the aforementioned C 1 triangular finite element

ormulation and implemented into the FE software ABAQUS (Simu-

ia, 2013) using user subroutines. The performance of the proposed

ormulation is demonstrated by two standard benchmark exam-

les, where both homogeneous and heterogeneous materials are

onsidered. In order to test the effect of the varying nonlocal re-

ponse, only the academic examples of heterogeneous materials

re taken into account. It is shown that the proposed formula-

ion succeeds in achieving a complete regularization of the mate-

ial failure mathematical model, meaning that mesh independent

esults with no spurious damage growth can be obtained. 

The paper has the following structure. Section 2 briefly dis-

usses the fundamentals of the isotropic continuum damage model

nd gives the most common relations used in the modeling of

uasi-brittle damage. In Section 3 the formulation and numeri-

al implementation of the higher-order stress-strain damage the-

ry into the C 1 continuity finite element is presented. Therein,

he continuum damage mechanics is realized in its simplest form

hrough the isotropic damage model. The calculation of the stiff-

ess matrices using the second-order homogenization, as well as

he overall calculation scheme of the proposed algorithm are also

xplained in this section. The algorithm is then numerically tested

n Section 4 by using two typical benchmark examples, where

oth homogeneous and heterogeneous materials are employed. The

ull regularizing capability of the proposed algorithm is demon-

trated through a shear band failure problem, also discussed in

imone et al. (2004) . The last section is reserved for some con-

luding remarks. 

. Continuum damage model 

The reduction of the elastic stiffness properties in the isotropic

amage model is expressed by the following well known relation

 

eff = ( 1 − D ) C , (1) 

here D is a scalar damage variable ranging from zero (undamaged

aterial) to one (fully damaged material), while C 

eff and C are the

ffective and the elastic stiffness tensors, respectively. The damage

tate is governed by the monotonically increasing scalar history pa-

ameter κ , which can be determined as an average local equivalent

calar measure of the strain εeq through Kuhn-Tucker relations 

≥ 0 , ε eq − κ ≤ 0 , ˙ κ( ε eq − κ) = 0 . (2)

The two different equivalent elastic strain measures are gen-

rally used in the context of the softening behavior of a quasi-

rittle material. The first one is defined in ( Mazars and Pijaudier-

abot, 1989 ) as 

 eq = 

√ 

3 ∑ 

i =1 

〈 ε i 〉 2 (3) 

ith εi ( i = 1, 2, 3) representing the principal strains. It is clear

hat, in this case, the equivalent elastic strain measure depends

nly on the positive principal strains, making it more sensi-

ive to tensile than to compressive strains. On the other hand,
Please cite this article as: F. Putar et al., Damage modeling employing 

and Structures (2017), http://dx.doi.org/10.1016/j.ijsolstr.2017.04.039 
he von Mises equivalent strain measure according to de Vree

t al. (1995) and given by 

 eq = 

k − 1 

2 k ( 1 − 2 ν) 
I 1 + 

1 

2 k 

√ 

( k − 1 ) 
2 

( 1 − 2 ν) 
2 

I 2 
1 

− 12 k 

( 1 + ν) 
2 

J 2 , (4) 

ncludes a parameter k which represents the ratio between uniax-

al compressive and tensile strength of the material. For the k = 1,

eaning that both compression and tension influence the equiva-

ent strain measure equally, Eq. (4) results in 

 eq = 

1 

1 + ν

√ 

−3 J 2 . (5) 

In above expressions I 1 and J 2 are the first invariant of the

train tensor and the second invariant of the deviatoric strain ten-

or, respectively. 

When it comes to the theoretical considerations of the dam-

ge process, the damage evolution governed by the linear softening

aw ( Peerlings, 1999 ) is usually used 

 = 

{ 

κu ( κ − κ0 ) 

κ( κu − κ0 ) 
if κ0 ≤ κ ≤ κu 

1 if κ > κu 

, (6) 

here κ0 and κu are the material parameters representing the

hreshold strain at which the damage is initiated, and the strain

t which material completely loses its stiffness, respectively. The

oftening in the real materials is usually nonlinear, where the ap-

lication of the exponential softening law is the most common

 Peerlings, 1999 ) 

 = 1 − κ0 

κ
{ 1 − α + α exp [ β( κ0 − κ) ] } if κ > κ0 (7) 

ith α and β as model parameters. As evident from above, the

amage-driving state variable is a local equivalent strain, which

iffers from most gradient-enhanced formulations, where the dam-

ge is governed by the nonlocal state variable. In this contribution

he nonlocality is incorporated through the strain gradient contin-

um theory, which is discussed in the following section. 

. Damage algorithm based on strain gradient continuum 

heory 

Herein, derivation of the damage algorithm based on the

train gradient continuum theory is presented. For this pur-

ose, the C 1 continuity triangular finite element developed by

esi ̌car et al. (2014) is employed. Both the basic strain gradient

ontinuum relations and a brief description of the employed finite

lement are given for clarity reasons only. Because the calculation

f the stiffness matrices for heterogeneous materials requires the

pplication of the second-order homogenization, the most impor-

ant relations of this method are also shown. Thereafter, the soft-

ning analysis procedure employing the derived damage algorithm

s explained. 

.1. C 

1 continuity triangular finite element 

The basic strain gradient continuum relations are given in ten-

orial notation in Table 1 . In the small strain continuum theory the

train tensor ε is defined as a symmetric part of the displacement

radient field ∇�u , as shown in Eq. (9). In Eq. (11) σ is the Cauchy

tress tensor and 

3 μ stands for the third-order double-stress ten-

or, representing an energetically conjugate measure to the strain

radient tensor 3 η. Variation of the work done by internal forces,

s defined by Eq. (12) with ∇ 

A and D as the surface gradient and

ormal gradient operators, respectively, while n represents the unit

utward normal to surface A of a body of volume V . In the varia-

ion of the external work, Eq. (13), t and τ stand for the traction
strain gradient continuum theory, International Journal of Solids 
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Table 1 

Basic relations of the strain gradient continuum. 

The strain gradient is defined as 

3 η = ∇ � ε , (8) 

where 

ε = 

1 

2 

(∇ � u + ( ∇ � u ) 
T 
)
. (9) 

The strain energy density function: 

W = W 

(
ε , 3 η

)
. (10) 

Variation of the strain energy function: 

δW = σ : δε + 

3 μ
. 
. 
. δ3 η. (11) 

Variation of the internal work: 

δW 

int = 

∫ 
A 

{[
n ·

(
σ−

(∇ · 3 μ
))

+ 

(∇ 

A · n 
)

� n ·
(
n · 3 μ

)
−∇ 

A ·
(
n · 3 μ

)]
· δu 

}
d A 

− ∫ 
V 

{[∇ ·
(
σ −

(∇ · 3 μ
))]

· δu 
}

d V + 

∫ 
A 

[(
n · 3 μ · n 

)
· ( D � ( δu ) ) 

]
dA 

(12) 

with ∇ 

A =∇ • ( I −n �n ) and D=n • ∇ . 

Variation of the external work: 

δW 

ext = 

∫ 
A 

( t · δu ) d A + 

∫ 
A 

[ τ · ( D � ( δu ) ) ] d A , 

where 

t = n ·
(
σ −

(∇ · 3 μ
))

+ 

(∇ 

A · n 
)

� n ·
(
n · 3 μ

)
− ∇ 

A ·
(
n · 3 μ

)
, τ = n · 3 μ · n . 

(14) 

The effective stress: 

˜ σ = σ −
(∇ · 3 μ

)
. (15) 

The equilibrium equation: 

∇ · ˜ σ = 0 . (16) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. C 1 triangular finite element ( Lesi ̌car et al., 2014 ). 
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and double surface traction vectors, respectively, with their defini-

tions given in Eq. (14). Equilibrium equation (16) is derived from

the principle of virtual work ( δW 

int =δW 

ext ), where ˜ σ represents

the effective stress defined by Eq. (15). More detailed information

on the strain gradient elasticity can be found in ( Mindlin, 1965 ). 

The C 1 continuity plane strain triangular finite element derived

by the authors of this contribution in ( Lesi ̌car et al., 2014 ) is shown

in Fig. 1 . It consists of three nodes and 36 degrees of freedom with

the displacement field approximated by the condensed fifth order

polynomial. The nodal degrees of freedom are the two displace-

ments and their first- and second-order derivatives with respect to

the Cartesian coordinates. The physical interpretation of the men-

tioned nodal degrees of freedom is comprehensively described in

( Lesi ̌car et al., 2017 ). The derivation of the element equations is

obtained employing the principle of virtual work, which can be ex-
Please cite this article as: F. Putar et al., Damage modeling employing

and Structures (2017), http://dx.doi.org/10.1016/j.ijsolstr.2017.04.039 
(13) 

ressed for the strain gradient continuum as 
 

A 

δε 

T σ d A + 

∫ 
A 

δηT μ d A = 

∫ 
s 

δu 

T t d s + 

∫ 
s 

δ
(
grad u 

T 
)
T d s , (17)

ith s representing the perimeter of the element and T the double

raction tensor, T = τn . All other quantities are already mentioned

nd described above. In addition to Eq. (17) , the boundary condi-

ions expressed by the displacement and the normal derivative of

isplacement ( ∇�u ) • n should be prescribed to solve the bound-

ry value problem. 

The strain and strain gradient tensors are given by 

 = 

[ 

ε 11 

ε 22 

2 ε 12 

] 

= B ε v , η = 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎣ 

η111 

η222 

η221 

η112 

2 η121 

2 η212 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎦ 

= B ηv , (18)

here B ε and B η represent the matrices containing adequate first

nd second derivatives of the element shape functions N , while v

s the vector of the nodal degrees of freedom. Considering a non-

inear problem described by Eq. (17) , the displacement vector u ,

he stress tensor σ and the double stress μ are updated according

o 

 = u 

i −1 + 
u , 

= σ i −1 + 
σ, 

= μi −1 + 
μ, 

(19)

here the exponent ( i −1) refers to the last converged equilib-

ium state, and the symbol 
 indicates an incremental change

nd mathematically acts as a differential operator. The incremental

onstitutive relations for the undamaged material are defined as 

σ = C σε 
ε + C ση
η, 

μ = C με 
ε + C μη
η, 

(20)

ith C σε , C ση , C με and C μη as the constitutive stiffness matri-

es. The strain and the second-order strain increments, employing

q. (18) , in terms of the displacement vector increment 
v , read 

ε = B ε 
v , 
μ = B η
v . 

(21)

.2. Implementation of the isotropic damage law 

When the isotropic damage law (1) is applied to the strain gra-

ient constitutive model, the following relations are obtained 

= ( 1 − D ) C σε ε + ( 1 − D ) C σηη, 

= ( 1 − D ) C με ε + ( 1 − D ) C μηη. 
(22)

Introduction of the damage enhanced constitutive relations rep-

esented by Eq. (22) into the principle of the virtual work for the
 strain gradient continuum theory, International Journal of Solids 
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train gradient continuum, given by Eq. (17) , leads to the following

ariational expression in terms of the damage variable 
 

A 

δε 

T 
[
( 1 − D ) C σε ε + ( 1 − D ) C σηη

]
d A 

+ 

∫ 
A 

δηT 
[
( 1 − D ) C με ε + ( 1 − D ) C μηη

]
d A 

 

∫ 
s 

δu 

T t d s + 

∫ 
s 

δ
(
grad u 

T 
)
T d s . 

(23) 

In this paper the linearized finite element equation is derived

rom the principle of the virtual work expressed by Eq. (17) , us-

ng the standard incremental approach. Accordingly, by inserting

qs. (19) and (21) into (17) , and after some straightforward math-

matical manipulation, the following incremental relation may be

btained 

 

A 

B 

T 
ε 
σ d A + 

∫ 
A 

B 

T 
η
μ d A = 

∫ 
s 

(
N 

T t + grad N 

T T 

)
d s 

−
∫ 
A 

(
B 

T 
ε σ

i −1 + B 

T 
η μi −1 

)
d A. (24) 

The right-hand side terms in the above expression represent the

xternal and internal nodal force vectors F e and F i , respectively.

onsidering the constant values of the constitutive stiffness matri-

es and the updates of the strain tensor, the strain gradient tensor

nd the damage variable in the form of 

 = ε 

i −1 + 
ε , 

= ηi −1 + 
η, 

 = D 

i −1 + 
D, 

(25) 

Eq. (22) written in the incremental form reads 

σ = 

(
1 − D 

i −1 
)(

C σε 
ε + C ση
η
)

− 
D 

(
C σε ε 

i −1 + C σηηi −1 
)
, 

μ = 

(
1 − D 

i −1 
)(

C με 
ε + C μη
η
)

− 
D 

(
C με ε 

i −1 + C μηηi −1 
)
. 

(26) 

Here, the incremental change of the damage variable may be

xpressed by 

D = 

(
d D 

d ε 

)i −1 


ε , (27) 

ince the damage variable is assumed to be a function only of the

train tensor D = D ( ε ). When the incremental higher-order damage

onstitutive model represented by Eq. (26) is embedded into the

ncremental relation (24) , and using Eq. (27) , the following expres-

ion is obtained 

 

A 

B 

T 
ε 

[ (
1 − D 

i −1 
)
C σε B ε 
v − C σε ε 

i −1 

(
d D 

d ε 

)i −1 

B ε 
v 

] 

d A 

 

∫ 
A 

B 

T 
ε 

[ (
1 − D 

i −1 
)
C σηB η
v − C σηη

i −1 

(
d D 

d ε 

)i −1 

B ε 
v 

] 

d A 

 

∫ 
A 

B 

T 
η

[ (
1 − D 

i −1 
)
C με B ε 
v − C με ε 

i −1 

(
d D 

d ε 

)i −1 

B ε 
v 

] 

d A 

 

∫ 
A 

B 

T 
η

[ (
1 − D 

i −1 
)
C μηB η
v − C μηη

i −1 

(
d D 

d ε 

)i −1 

B ε 
v 

] 

d A 

 

∫ 
s 

(
N 

T t + grad N 

T T 

)
d s −

∫ 
A 

(
B 

T 
ε σ

i −1 + B 

T 
η μi −1 

)
d A. 

(28) 
Please cite this article as: F. Putar et al., Damage modeling employing 
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After some regrouping of the terms in the above relation, the

nite element equation can be written as 

K εε + K εη + K ηε + K ηη

)

v = F e − F i , (29) 

here the particular element stiffness matrices are defined as 

 εε = 

∫ 
A 

B 

T 
ε 

[ (
1 − D 

i −1 
)
C σε − C σε ε 

i −1 

(
d D 

d ε 

)i −1 

−C σηηi −1 
(

d D 
d ε 

)i −1 
] 

B ε d A, 

 εη = 

∫ 
A 

B 

T 
ε 

(
1 − D 

i −1 
)

C σηB η d A, 

 ηε = 

∫ 
A 

B 

T 
η

[ (
1 − D 

i −1 
)
C με − C με ε 

i −1 

(
d D 

d ε 

)i −1 

−C μηηi −1 
(

d D 
d ε 

)i −1 
] 

B ε d A, 

 ηη = 

∫ 
A 

B 

T 
η

(
1 − D 

i −1 
)

C μηB η d A. 

(30) 

.3. Calculation of constitutive stiffness matrices 

For the analysis of the softening behavior of an arbitrary het-

rogeneous material all constitutive stiffness matrices appearing in

q. (30) have to be known, which is not the case with the homo-

eneous material, as described later in the text. To compute these

atrices, the second-order computational homogenization proce- 

ure is utilized, for which the basic relations are listed in Table 2 .

enerally, the procedure is performed in the multiscale analyses,

here the quantities from lower scales have to be homogenized to

ut them in use at higher scales. The sequential micro-macro algo-

ithm, which consists of the solutions of the boundary value prob-

ems at two different levels, is employed. The macrolevel refers to

he model discretized by the aforementioned C 1 triangular finite

lements, where in each integration point the microstructural con-

ribution is included through the analysis of the RVE, in this pa-

er discretized by the C 0 quadrilateral finite elements. In the ta-

le, the presented quantities denoted by the subscript “M” corre-

pond to the macrolevel, while the subscript “m” indicates a mi-

rolevel quantity. In Eq. (31), x is the spatial coordinate on the

VE boundary, while r represents the microstructural fluctuation

eld. By means of the Hill-Mandel condition given by Eq. (32), the

rst- and second-order stress tensors can be derived in the form

f Eq. (33), where D and H are the coordinate matrices which in-

lude all boundary nodes i = 1, 2, ..., n of the RVE, while f b rep-

esents the RVE boundary nodal force vector. Taking into account

he internal (subscript “a”) and the boundary (subscript “b”) con-

ributions of the RVE, the finite element equation for the nonlinear

roblems can be written in the incremental form as presented in

q. (35). Employing Eq. (20) , the incremental form of the first- and

econd-order stress tensors represented by Eq. (38) can then eas-

ly be obtained, which yields the tangent stiffness matrices given

y Eq. (39). Detailed information about the second-order homoge-

ization procedure can be found in ( Kaczmarczyk et al., 2008 ) and

 Lesi ̌car et al., 2014 ). 

In the case of material homogeneity, material isotropy, and

ymmetry of the RVE considered the tangent stiffness matrices C ση

nd C με are equal to zero ( Kaczmarczyk et al., 2008 ). The remain-

ng two tangent stiffness matrices can be computed analytically

 Kouznetsova et al., 2004; Kaczmarczyk et al., 2008 ), which may
strain gradient continuum theory, International Journal of Solids 
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Table 2. 

Basic relations of the second-order homogenization. 

The RVE displacement field: 

u m = x T ε M + 

1 

2 
x T ηM x + r . (31) 

The Hill-Mandel condition: 

1 

V 

∫ 
V 

(
δε T m σm 

)
d V = δε T M σM + δηT 

M μM . (32) 

The first- and second-order stress tensors: 

σM = 

1 
V 

D f b , 

μM = 

1 
V 

H f b , 
(33) 

where 

D = 

1 
2 

[
D 

T 
1 D 

T 
2 ... D 

T 
n 

]
, 

H = 

1 
2 

[
H 

T 
1 H 

T 
2 ... H 

T 
n 

]
, 

(34) 

and 

D i = 

1 
2 

[ 

2 x 0 y 

0 2 y x 

] 

, 

H i = 

1 
2 

[ 

2 x 2 0 2 y 2 0 xy 0 

0 2 y 2 0 2 x 2 0 xy 

] 

. 

The partitioned finite element equation in incremental form: 

[ 

K aa K ab 

K ba K bb 

] [ 


u a 


u b 

] 

= 

[ 


f a 


f b 

] 

. (35) 

In the convergence state 


f a = 0 , 


f b = ̃

 K bb 
u b , 
(36) 

with ˜ K bb = K bb − K ba K 
−1 
aa K ab . 

The RVE boundary nodes displacement increment: 


u b = D 

T 
ε M + H 

T 
ηM . (37) 

The incremental values of the first- and second-order stress tensors: 


σM = 

1 
V 

(
D ̃

 K bb D 

T 
ε M + D ̃

 K bb H 

T 
ηM 

)
, 


μM = 

1 
V 

(
H ̃

 K bb D 

T 
ε M + H ̃

 K bb H 

T 
ηM 

)
. 

(38) 

The tangent stiffness matrices: 

C σε = 

1 
V 

D ̃

 K bb D 

T , 

C ση = 

1 
V 

D ̃

 K bb H 

T , 

C με = 

1 
V 

H ̃

 K bb D 

T , 

C μη = 

1 
V 

H ̃

 K bb H 

T . 

(39) 

 

 

 

Fig. 2. Scheme of the damage algorithm. 
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be written symbolically in the form 

C σε = C σε ( E, ν) , 

C μη = C μη( E, ν, l ) , 
(40)

where l denotes the microstructural length scale. On the other

hand, the stiffness matrices can be also computed numeri-
Please cite this article as: F. Putar et al., Damage modeling employing

and Structures (2017), http://dx.doi.org/10.1016/j.ijsolstr.2017.04.039 
ally using the homogenization procedure as already done in

 Lesi ̌car et al., 2014 ). Therein the microstructural parameter is ex-

ressed by the relation 

 

2 = 

L 2 

12 

, (41)

here L is the RVE side length. As displayed above, the material

onlocality is included into the second-gradient continuum theory

hrough the higher-order constitutive matrices C ση , C με and C μη in

erms of the microstructural parameter l . When these matrices are

ultiplied by the term (1 −D ) according to Eq. (22) , the nonlocality

ecreases if the damage rises. 

.4. Analysis procedure 

The analysis procedure is concisely shown as a flowchart in

ig. 2 . It should be noted that this is not a true multiscale al-

orithm which includes subsequent solving of the two boundary

alue problems, the one at the macrolevel and the other at the

icrolevel. Instead, the boundary value problem has to be solved

ere only for the macromodel, while the microstructural RVE anal-

sis, comprised only of the stiffness homogenization, is performed

n a preprocessing step to obtain the values of the constitutive

tiffness tensors. Since the linear elastic material behavior is con-

idered in the presented damage analysis, the homogenized so-

utions do not depend on the macroscale deformation. Therefore,

he homogenization procedure has to be performed only once in

ach analysis. The homogenized stiffness values then enter the

onstitutive relations, and remain constant until the end of the

onlinear damage analysis. When the damage is initiated in the

odel, the elastic stiffness is being reduced according to (1) and

o the damage enhanced constitutive relations (22) as well. In each
 strain gradient continuum theory, International Journal of Solids 
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Fig. 3. Geometry and boundary conditions of the plate subjected to tensile load. 
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Fig. 4. Comparison of damage profiles along the horizontal central axis of the plate 

obtained using the presented FEM damage model to the EFG results from the liter- 

ature. 

Fig. 5. The coarsest finite element mesh of the plate under tension. 

Fig. 6. Comparison of damage profiles along horizontal central axis of the plate 

under tension for three different mesh densities. 
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nite element integration point, the incremental-iterative proce-

ure is carried out, where the stress and double stress tensors

re calculated from the updated values of the strain tensor, the

econd-order strain tensor and the damage variable, as well as

he constant elastic stiffness tensors obtained in the preprocessing

tep. The presented damage algorithm together with the formula-

ion of the triangular finite element is implemented into the FE

rogram ABAQUS employing the user subroutines. 

. Numerical examples 

.1. Plate with an imperfect zone subjected to tensile load 

.1.1. Homogeneous plate, algorithm verification and damage 

esponses 

The presented algorithm is verified in a benchmark problem

lready studied in ( Yang and Misra, 2010 ), where only a homo-

eneous material is considered. In this contribution the analysis

s extended to the consideration of heterogeneous materials, too.

he geometry and boundary conditions of the rectangular plate

ith an imperfect zone under tension are shown in Fig. 3 . The

azars equivalent strain measure (3) is used together with the

amage evolution governed by the linear softening. The material

ata are: the Young’s modulus E = 20, 0 0 0 N/mm 

2 , the Poisson’s

atio ν =0.25, the limit elastic strain κ0 =0.0 0 01, the equivalent

train corresponding to the fully damaged state κu =0.0125. The

orizontal displacement of u = 0.0325 mm is prescribed at the right

dge. In order to trigger localization, the Young’s modulus is re-

uced by 10% in the 10 mm wide zone in the middle hatched area

f the plate. Along the vertical edges the second-order derivatives

f the displacement component in the normal direction, u 1,11 and

 1,22 , together with the mixed derivatives, u 1,12 and u 2,12 , are sup-

ressed. The first-order derivatives associated with the shear de-

ormation, u 1,2 and u 2,1 , are also set to zero. These boundary con-

itions yield the straight vertical edges. Here, the indices 1 and 2

efer to the Cartesian coordinates x and y , respectively. 

The solutions of the same numerical example are obtained by

eans of the EFG meshless method in Yang and Misra (2010) .

herein, the constitutive tensors are derived for the materials with

ranular microstructure, so the underlying microstructural theory

iffers when compared with the second-order homogenization ap-

roach. The constitutive model is restricted only to homogeneous

aterials, where the corresponding stiffness tensors can be written

n the form of Eq. (40) with the particle radius r instead of the mi-

rostructural parameter l . The same constitutive model is used for

he computation of the softening response of the plate by means

f the proposed FEM algorithm. The damage responses obtained

or the same microstructural values and using different approaches

re presented in Fig. 4 . In this numerical example, the distribu-

ions of the damage and equivalent strain are considered along the
Please cite this article as: F. Putar et al., Damage modeling employing 

and Structures (2017), http://dx.doi.org/10.1016/j.ijsolstr.2017.04.039 
orizontal central axis of the plate, crossing the hinged joint at

 = 21 mm. 

As can be seen from Fig. 4 , the calculated damage profiles show

ery good agreement with the solutions from the literature. The

gure also illustrates the effect of the microstructural size on the

acrostructural behavior. The increase in the microstructural val-

es leads to the expansion of the localization zone and a slight

ecrease in the peak damage values, as expected. 

Furthermore, the mesh sensitivity of the proposed algorithm is

xamined by using the three different finite element discretiza-

ions. Fig. 5 presents the coarsest mesh of 72 elements with the
strain gradient continuum theory, International Journal of Solids 
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Fig. 7. Evolution of the equivalent elastic strain εeq along horizontal central axis of 

the plate for different loading levels. 

Fig. 8. Evolution of the damage variable D along horizontal central axis of the plate 

for different loading levels. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 9. Distribution of the equivalent elastic strain εeq for homogeneous material at 

failure stage. 

Fig. 10. Distribution of the damage D for homogeneous material at failure stage. 
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reduced material properties in the marked area covered by only

few elements. A homogeneous material with the internal length

scale of l = 1.5 mm is considered. 

As evident from Fig. 6 , the reduction of the element size in the

last two discretizations does not lead to the further localization of

the damage profile in the softening zone, which proves that the

presented damage model is independent on the mesh refinement.

It is also interesting to note that values of the nodal variables com-

puted by the coarsest and the finest discretization are quite similar,

leading to the conclusion that convergence can be achieved with a

relatively coarse mesh and accordingly with a significant reduction

of the computational time. 

Next, the evolution of the equivalent elastic strain measure as

well as the damage variable is depicted in Figs. 7 and 8 . It can

be noted that the growth of the equivalent elastic strain emerges

within the imperfection and rather early in the softening process

reaches its final width, which does not change in the subsequent

loading stages. Instead, the localization drastically intensifies dur-

ing final loading stages in the narrow region in the middle of the

plate, which is basically a continuum representation of a macro-

scopic crack. In Geers et al. (1998) the similar problem is studied

in only one dimension employing the conventional implicit gradi-

ent enhancement, resulting in an unacceptable growth of the dam-

age zone. Instead of the localization into a macroscopic crack, the

expansion of the damaged zone with the loading progression is re-

ported for the analyzed bar in tension. The solutions obtained by

the strain gradient formulation proposed in this contribution show

no such spurious damage growth, which is obviously an advantage

when compared with the conventional implicit gradient formula-

tion. The described physically meaningless phenomenon is elimi-

nated in Geers et al. (1998) in the form of the somewhat compli-
Please cite this article as: F. Putar et al., Damage modeling employing

and Structures (2017), http://dx.doi.org/10.1016/j.ijsolstr.2017.04.039 
ated strain-based transient-gradient damage method which cou-

les the nonlocal effect to the local deformation state of the ma-

erial. It can be noted that a similar thing is basically done in

he present contribution, where the local and nonlocal effects are

oupled through the damage constitutive relations of the second-

radient continuum theory, knowing that the damage variable is a

unction of the local equivalent strain measure. 

For a better perception of the softening process in the fail-

re deformation stage, the distributions of equivalent elastic strain

easure and damage variable are displayed in Fig. 9 and Fig. 10 ,

espectively. In Fig. 9 the localized deformation band can be clearly

een, with the highest values of equivalent elastic strain in the cen-

ral part of the plate, being a consequence of the lateral contrac-

ion. Namely, since the edges defined by the normal vectors in ver-

ical direction are free boundaries, the material is more pliable in

heir vicinity and it stretches in the loading direction more than

he material in the central part of the plate. Besides, due to the

oisson’s effect, it contracts more laterally and therefore does not

ontribute to the Mazars equivalent elastic strain measure defined

n Eq. (3) . As evident, the damage distribution in Fig. 10 appears

verly spread in contrast to the equivalent elastic strain distribu-

ion in Fig. 9 . This phenomenon can be explained by considering

he damage irreversibility and knowing that the fracture usually

tarts as a zone of high material nonlocal behavior, and ends as

 narrow localized deformation band where nonlocality is signifi-

antly reduced. Additionally, it is worth to mention that softening

aws for the quasi-brittle materials usually give rather high damage

alues for the equivalent elastic strain values just slightly above the

imit strain κ0 . 

The equivalent stress field defined by 

eq = ( 1 − D ) E ε eq (42)

s depicted in Fig. 11 , where its reduction can clearly be seen in the

rea which coincides with the localization zone shown in Fig. 9 .
 strain gradient continuum theory, International Journal of Solids 
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Fig. 11. Distribution of the equivalent stress σ eq for homogeneous material at fail- 

ure stage. 

Fig. 12. Distribution of the strain gradient component η111 for homogeneous mate- 

rial at failure stage. 

Fig. 13. Distribution of the double stress component μ111 for homogeneous mate- 

rial at failure stage. 
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Fig. 14. RVE_0 described by the size L = 5.2 mm ( l = 1.5 mm), average hole radius 

r ave =1.118 mm and porosity e = 0.13. 

Fig. 15. Evolution of the equivalent elastic strain εeq along horizontal central axis 

of the heterogeneous plate for different loading levels. 
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s it is obvious from Fig. 9 , the softening of the material is at its

ighest in the middle of the plate, whereas its intensity decreases

owards the free boundaries. Therefore, it is to expect that the ma-

erial at the free horizontal boundaries carries more load than that

hich is closer to the central part of the plate. The direct conse-

uence of such a behavior are the higher equivalent stress values

f the material closer to the boundaries, taking into account the

q. (42) . Of course, with the increasing distance from the highly

amaged area, where the high gradients are present, the stress

eld becomes more uniform towards the left and the right vertical

oundaries, where the straight edges are enforced. 

The contour plots of the strain gradient component η111 and the

orresponding double stress component μ111 are shown in Figs. 12

nd 13 , respectively. As evident from Fig. 12 , the two symmetrically

irrored strain gradient bands are formed on the edges of the lo-

alization band displayed in Fig. 9 . In the narrow area in the mid-
Please cite this article as: F. Putar et al., Damage modeling employing 

and Structures (2017), http://dx.doi.org/10.1016/j.ijsolstr.2017.04.039 
le of the localization band, where the strain ε11 reaches its peak

alue, the strain gradient component η111 changes the sign and it

s equal or very close to zero. The double stress component μ111 in

ig. 13 closely resembles the strain gradient component η111 , which

s logical due to their direct connection through the second consti-

utive relation of the strain gradient continuum theory shown in

q. (22) . 

.1.2. Damage responses of heterogeneous plate 

The next step is the consideration of damage responses of the

eterogeneous plate. The materials used in the following calcula-

ions are described by the porous RVEs at microstructural level.

ere all homogenized stiffness tensors according to the damage

nhanced constitutive relations (22) are included in the computa-

ion. As stated earlier in the paper, the influence of the hetero-

eneous microstructure described by the RVE on the macrostruc-

ural anisotropic response is carried by the non-diagonal constitu-

ive tensors of the fifth order, C ση and C με . The homogenization

rocess has been described in the previous sections. The RVEs dif-

er in the size, porosity and in the number, size and distribution of

he holes. The material properties are the same as for the homo-

eneous plate. Firstly, a simple RVE, presented in Fig. 14 , is used to

nalyze the plate softening behavior. This RVE geometry is labelled

s RVE_0 in the following consideration. 

The evolution of the equivalent elastic strain measure and the

amage variable is depicted in Figs. 15 and 16 for different load-

ng levels. The distributions of the same variables over the whole

late at the failure stage are depicted as contour plots in Figs. 17

nd 18 , respectively. A slight shift of the presented variables to the

ight can be seen from the given diagrams and contour plots when

ompared with the diagrams and contour plots concerning the ho-

ogeneous material, given in Figs. 7–10 . Such behavior can be as-

ribed to the microscopic heterogeneity which is mathematically

xpressed by the relatively high values of the non-diagonal C ση
strain gradient continuum theory, International Journal of Solids 
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Fig. 16. Evolution of the damage variable D along horizontal central axis of the 

heterogeneous plate for different loading levels. 

Fig. 17. Distribution of the equivalent elastic strain εeq for heterogeneous material 

represented by RVE_0 at failure stage. 

Fig. 18. Distribution of the damage D for heterogeneous material represented by 

RVE_0 at failure stage. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 19. Three different-sized samples of the same heterogeneous material: (a) 

RVE_1 with the size L = 3 mm ( l = 0.87 mm), (b) RVE_2 with the size L = 7.5 mm 

( l = 2.16 mm) and (c) RVE_3 with the size L = 15 mm ( l = 4.33 mm). 

Fig. 20. Comparison of damage profiles along horizontal central axis of the plate for 

heterogeneous material represented by three different-sized RVEs and homogenous 

material of the corresponding internal length scales. 
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and C με matrices in the damage enhanced constitutive Eq. (22) .

As obvious, the differences between the damage distributions in

Figs. 10 and 18 are just barely visible, but in order to retain the

consistence of the whole work presented, the latter figure is shown

too. 

Additionally, if the softening analysis is performed by the con-

stitutive tensors acquired for the RVE_0 rotated for 180 °, the ob-

tained results are symmetrically mirrored to the ones depicted

in Figs. 15–18 , as expected. Taking this into account, and know-

ing that microscopic samples in the form of RVE_0 are randomly

distributed in various directions in the real material, an average

contribution of all RVEs could lead to the isotropic macrostruc-

tural response. Thus, it is clear that the given academic RVE lacks

the statistical representativeness, i.e. it is not representative in a

global sense, for the whole material. From comparison of Fig. 7 and

Fig. 15 , it can be noted that the maximum equivalent strain value
Please cite this article as: F. Putar et al., Damage modeling employing

and Structures (2017), http://dx.doi.org/10.1016/j.ijsolstr.2017.04.039 
or the homogenous material is slightly higher than that for the

eterogeneous material. Because the heterogeneous plate is more

liable in the whole domain due to the holes in the microstructure,

he bulk material outside of the localization zone permits higher

quivalent strain in this particular area, leading to the slightly

maller equivalent strain in the middle of the plate when com-

ared with the equivalent strain in the homogeneous plate. 

As for the homogeneous material, the increase in the RVE size,

hich expresses the change in the microstructural interactions,

eads to the expansion of the localization zone. Here the three

ifferent-sized RVEs of the same heterogeneity are considered,

hich is defined by the porosity of e = 0.13 and the average hole

adius of r ave =0.744 mm, as shown in Fig. 19 . In Fig. 20 , the dam-

ge profiles for the three described heterogeneous RVEs are com-

ared to the damage responses of the homogeneous material with

he same nonlocal parameter l . 

As can be seen from Fig. 20 , a slight deviation from the dam-

ge profile of the corresponding homogenous material is shown for

he damage profile obtained using the smallest RVE, while this dif-

erence is much less pronounced for the other two heterogeneous

amples. This confirms that for statistically well-defined RVE, the

amage distribution in qualitative sense should not deviate signif-

cantly from the damage distribution for the homogeneous mate-

ial of the same internal length scale. Next, an analysis employing

he two different heterogeneous materials, defined by the RVEs of

he same side length of L = 6.9 mm and porosity of e = 0.13, but

ifferent average hole radii, r ave =1.5 and 0.6 mm, is performed.

heir damage responses are compared to the damage response

f the homogeneous material defined by the same RVE size, as

hown in Fig. 21 . As expected, the damage response of the hetero-

eneous material with larger average hole radius shows a notable

hift when compared to the damage response of the corresponding
 strain gradient continuum theory, International Journal of Solids 

http://dx.doi.org/10.1016/j.ijsolstr.2017.04.039


F. Putar et al. / International Journal of Solids and Structures 0 0 0 (2017) 1–15 11 

ARTICLE IN PRESS 

JID: SAS [m5G; May 22, 2017;9:43 ] 

Fig. 21. Comparison of damage profiles along horizontal central axis of the plate for two heterogeneous materials of the same porosity and corresponding homogenous 

material. 

Fig. 22. RVE_4 described by the size L = 1.73 mm ( l = 0.5 mm), average hole radius 

r ave =0.075 mm and porosity e = 0.27. 

Fig. 23. Comparison of structural responses of the plate under tension for hetero- 

geneous material represented by RVE_4 and homogeneous material of the same in- 

ternal length scale. 
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omogeneous material. Obviously, this difference is much smaller

or the heterogeneous material with smaller average hole radius.

he aforementioned shift in the case of the heterogeneous mate-

ial defined by the r ave =1.5 mm occurs as a consequence of the

arger macrostructural anisotropic response. 

Finally, the RVE with the higher porosity e , labelled RVE_4 and

epicted in Fig. 22 , is employed for the calculation of the stiffness

atrices required for the softening analysis. 

Because of the higher RVE porosity, a significant decrease in

he loading associated with the start of the softening process is

xpected, which is shown in the load-displacement diagram dis-

layed in Fig. 23 . In the diagram, the reaction forces at the right
Please cite this article as: F. Putar et al., Damage modeling employing 

and Structures (2017), http://dx.doi.org/10.1016/j.ijsolstr.2017.04.039 
nd of the plate are plotted versus the imposed displacement for

oth the heterogeneous material defined by the RVE_4 and the cor-

esponding homogeneous material. It can clearly be seen that re-

uced stiffness of the heterogeneous material causes the softening

nitiation at much lower load level than in the case of the homo-

eneous material. 

It is to note that the presented damage analysis of the hetero-

eneous structure is based on the microlevel homogenization pro-

edure in order to compute the stiffness matrices, while the soft-

ning response is modeled by the damage enhanced constitutive

elations (22) at the macrolevel. Although the proposed analysis

as its advantages due to the simplicity and low computational

osts, it should be stressed that a true multiscale analysis should

e performed to obtain more accurate results. Namely, a more ac-

urate computation of the damage response of heterogeneous ma-

erials requires the application of the constitutive relations directly

t the microlevel considering all material constituents in the RVE

nd, after a homogenization procedure, transfer of the state vari-

bles to the macrostructural level. The derivation of this multiscale

pproach is out of the scope of this contribution and will be con-

idered in the authors’ further research. 

.2. Shear band problem 

The second example, where further capacities of the presented

lgorithm are shown, is a plate with an imperfect zone subjected

o compressive load, presented in Fig. 24 a. Due to symmetry, only

he upper half of the plate is discretized by the C 1 continuity tri-

ngular finite element employing appropriate boundary conditions,

s depicted in Fig. 24 b. The compressive loading is applied using a

irect displacement control, where the analysis stops at the ver-

ical displacement of v = 0.08mm. Firstly the homogeneous mate-

ial is considered which is characterised by the Young’s modulus

 = 20, 0 0 0 N/mm 

2 and the Poisson’s ratio ν =0.2. For modeling of

amage responses, a modified von Mises equivalent elastic strain

easure (5) together with the exponential softening law (7) is

sed, for which the parameters are set to: κ0 =0.0 0 01, α=0.99 and

=300. To induce localization, the reduced value of κ0 =0.0 0 0 05

s a material imperfection is imposed on the small region of h /10

h /10 as shown in Fig. 24 a. The material microstructural pa-

ameter is taken as l = 2 mm. Since both the symmetry plane

nd the loaded edge have to remain straight during the analysis,

he boundary conditions for the straight edge are enforced there.

erein, the second-order derivatives of the displacement compo-

ent in the normal direction, u 2,11 and u 2,22 , together with the

ixed derivatives, u 1,12 and u 2,12 , are suppressed. The first-order

erivatives associated with the shear deformation, u 1,2 and u 2,1 , are
strain gradient continuum theory, International Journal of Solids 
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Fig. 24. (a) Geometry and boundary conditions of the plate with an imperfect zone subjected to compressive load and (b) computational model consisting of upper half of 

the plate and appropriate boundary conditions, with a depicted mesh detail. 

Fig. 25. Distribution of the equivalent elastic strain εeq through several loading stages for homogeneous material. 
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also set to zero. As mentioned before, the indices 1 and 2 refer to

the Cartesian coordinates x and y , respectively. 

The same specimen has already been studied by

Simone et al. (2004) with the adoption of the damage model

based on the conventional implicit gradient enhancement, result-

ing in the spurious damage growth along the bottom horizontal

boundary with the rise of the deformation level, which is obviously

a non-physical behavior. As discussed in ( Poh and Sun, 2017 ), the

conventional nonlocal models, being either integral or gradient,

deal with a material softening employing a constant interac-

tion domain throughout the entire loading history. This leads

to the transfer of the energy from the damage process zone

to a neighboring elastically unloading region, resulting in the

smeared damage distribution within and beyond the shear band.

The consequence of such unwanted behavior is the inability of a

macrocrack formation. 

The regularizing capabilities of the proposed formulation in

terms of the elimination of the spurious damage growth are shown

by plotting the distribution of the equivalent elastic strain in

Fig. 25 and the distribution of the damage in Fig. 26 , through sev-

eral loading stages. The results are compared with the solutions

obtained in Simone et al. (2004) . For a better comparison of the

given variables, the loading levels chosen for the contour plots are

the same as shown in Simone et al. (2004) , where the aforemen-

tioned spurious damage growth is observed. It can clearly be seen,

especially from Fig. 26 , that in the present contribution the shear

band starts to develop from the defect region and propagates to-
Please cite this article as: F. Putar et al., Damage modeling employing

and Structures (2017), http://dx.doi.org/10.1016/j.ijsolstr.2017.04.039 
ards the right edge of the plate model, as expected. In the for-

ulation in Simone et al. (2004) the shear band is developing

long the horizontal boundary, which is unrealistic. Furthermore,

he contour plots obtained in the present formulation display that

nce the shear band reaches its final width, which is very early

n the softening process, the localization of the deformation con-

inues in its center until the shear fracture occurs. This is partic-

larly visible in Fig. 25 starting from the loading level at v = 0.021

m. At lower displacements, a development of the localized defor-

ation cannot be seen because the equivalent elastic strain is just

lightly beyond the critical value of κ0 . This can be confirmed by

he damage distribution images in Fig. 26 and knowing that even

or a very small equivalent elastic deformation the damage field

ises to very high values in the case of exponential softening law. A

imilar shear band evolution accompanied with the strong localiza-

ion and no spurious damage growth is also obtained in ( Poh and

un, 2017 ), where the localizing gradient damage model derived in

he micromorphic framework is used. The similar realistic results

re observed in the experimental investigations in ( Alshibli and

ture, 20 0 0 ) as well. 

To examine the mesh sensitivity, an additional finite element

iscretization of 800 triangular finite elements is considered, op-

osed to the 3200 elements used so far. Generally, the accurate

esults could also be obtained by using a non-uniform mesh and

uch smaller number of finite elements, as proven earlier in the

aper. In this case, in order to maintain the mesh uniformity for

implicity, such fine discretization is conditioned by a very small
 strain gradient continuum theory, International Journal of Solids 
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Fig. 26. Distribution of the damage D through several loading stages for homogeneous material. 

Fig. 27. Comparison of damage distribution D for homogeneous material for two different disretizations consisting of 800 (left) and 3200 (right) triangular finite elements. 

Fig. 28. Comparison of damage distribution D for homogeneous material defined 

with the internal length scales l = 1 mm (left) and l = 2 mm (right). 
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mperfect region. As portrayed in Fig. 27 , there are no differences

n the damage responses. The damage profile is correctly captured

or the two different discretization sizes. 

If a smaller internal length scale is used, the shear band de-

reases in the width, as expected, which is shown in Fig. 28 . 
Please cite this article as: F. Putar et al., Damage modeling employing 

and Structures (2017), http://dx.doi.org/10.1016/j.ijsolstr.2017.04.039 
Calculation of the damage response of the heterogeneous mate-

ial in the context of the shear band problem is performed with

n RVE qualitatively similar to the RVE_4 shown in Fig. 22 , but

efined with the side length of L = 6.9 mm and the average hole

adius r ave =0.297 mm. Here, the whole plate model depicted in

ig. 24 a has to be used due to the material anisotropy which is

 consequence of the microstructural heterogeneity. The contour

lots displaying the damage responses of the considered heteroge-

eous and homogeneous material show barely notable differences

nd are therefore not shown. On the other hand, from the load-

isplacement diagram depicted in Fig. 29 , a very pronounced de-

rease in the reaction force at the initial softening can be seen for

he heterogeneous material when compared to the reaction force

f the corresponding homogeneous material, similar as in the pre-

ious numerical example. 

Finally, it should be stressed that the presented damage model

an successfully predict the strain localization, as well as the

amage growth without any spurious phenomena in contrast to

he formulation using the conventional implicit gradient-enhanced

amage model yielding the non-physical damage response. It is

elieved that the main reason for this ability lies in the consti-

utive damage model based on the strain gradient theory, where

he right-hand sides of both equations are influenced by the same

actor (1 −D ) as a result of the damage growth. If this factor is
strain gradient continuum theory, International Journal of Solids 
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Fig. 29. Comparison of structural responses of the plate under compression for het- 

erogeneous material and homogeneous material of the same internal length scale. 
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observed as a reduction mechanism of the higher-order stiffness

tensors C ση , C με and especially C μη , which are directly connected

to the size of the microstructural interaction area, i.e. a nonlo-

cal material behavior, it can be said that the intensity of the mi-

crostructural interactions decreases with the damage progression

and that the material gradually loses the ability to behave non-

locally at a particular damaged point. Such material behavior is

physically completely valid and motivated by the fact that a frac-

turing of quasi-brittle materials usually starts as a diffuse network

of microcracks, represented by a large microstructural interaction

domain, and ends with their localization into a macrocrack, char-

acterized by almost non-existent intensity of microstructural inter-

actions, as discussed in more detail in ( Poh and Sun, 2017 ). 

5. Conclusion 

A computational approach employing the strain gradient con-

tinuum theory for the modeling of quasi-brittle damage phenom-

ena is proposed. The model is based on the isotropic damage

law so that right-hand sides of the constitutive relations are pre-

multiplied by the same term governing the damage process. The

growth of the damage causes this term to decrease, which not only

ensures the softening of the material by reducing the values of the

constitutive tensors, but it also effects the size of the microstruc-

tural interaction domain, included in the constitutive tensors defi-

nition, in the same way. The latter is mandatory for the correct de-

scription of the final localized deformation band, i.e. a macrocrack,

which comes into existence from the scattered network of micro-

cracks at the onset of the softening, when the size of microstruc-

tural interaction domain is the largest. The highly non-linear soft-

ening model is embedded into the triangular C 1 finite element and

implemented into the FE software ABAQUS via UEL subroutine. 

The capabilities of the proposed computational strategy to sim-

ulate the strain localization are demonstrated in two benchmark

examples in which the verification of the derived algorithm is per-

formed by the comparison with the available solutions. Both ho-

mogeneous and heterogeneous materials are considered by em-

ploying the second-order homogenization procedure, mainly used

in the multiscale computational approach, to obtain the required

material stiffness matrices. It is observed that the damage response

depends on the RVE size, porosity and average hole radius of the

heterogeneous material. The structural responses clearly indicate

that heterogeneous material has a much lower load-carrying ca-

pacity, as expected. 

In contrast to the results obtained in the literature, where the

conventional implicit gradient damage formulation is adopted, the

proposed damage algorithm yields a fully localized deformation
Please cite this article as: F. Putar et al., Damage modeling employing

and Structures (2017), http://dx.doi.org/10.1016/j.ijsolstr.2017.04.039 
and without any notice of spurious damage growth. The con-

ucted analyses demonstrate that the proposed damage model

ased on the strain gradient continuum theory is able to success-

ully predict the initiation of the damage growth as well as to de-

cribe the subsequent localization of the deformation into a macro-

copic crack, meaning that a complete regularization of the math-

matical model of the material failure behavior can be achieved. 
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