Inter J Nav Archit Oc Engng (2009) 1:89~94
http://dx.doi.org/10.2478/IJNAOE-2013-0011

OpenFOAM: Open source CFD in research and industry

Hrvoje Jasak'*

'Wikki Ltd. London, United Kingdom, ’FSB, University of Zagreb, Croatia

ABSTRACT: The current focus of development in industrial Computational Fluid Dynamics (CFD) is integration of CFD into
Computer-Aided product development, geometrical optimisation, robust design and similar. On the other hand, in CFD
research aims to extend the boundaries of practical engineering use in “non-traditional” areas. Requirements of computational
flexibility and code integration are contradictory: a change of coding paradigm, with object orientation, library components,
equation mimicking is proposed as a way forward. This paper describes OpenFOAM, a C++ object oriented library for
Computational Continuum Mechanics (CCM) developed by the author. Efficient and flexible implementation of complex
physical models is achieved by mimicking the form of partial differential equation in software, with code functionality provided
in library form. Open Source deployment and development model allows the user to achieve desired versatility in physical
modeling without the sacrifice of complex geometry support and execution efficiency.

KEY WORDS': CFD; Open Source; Finite volume; Object-Oriented; C++; Equation mimicking.

INTRODUCTION

Leading simulation software in Computational
Continuum Mechanics (CCM) combines accurate and robust
numerics, complex geometry support and an impressive
range of physical models in a user-friendly user environment.
Current simulation challenges are related to integration and
automation of simulation tools in a Computer Aided
Engineering (CAE), including automatic geometry retrieval,
surface and volume meshing, scripted code execution with
variants of boundary conditions, material properties and
model settings as well as sensitivity and optimisation studies.
Here, dynamic mesh handling, parallel computing support
and a wide range of pre-implemented physical models is
considered as standard.

In research, the focus is shifted to efficient and reliable
implementation of complex and coupled physical models,
aimed to extend numerical modeling capabilities beyond
current engineering practice. The objective of software
design for “research use” is to allow the researcher to
experiment with new physical models, validate them against
experimental data and examine their performance on real
industrial problems.

Two sets of requirements are sometimes contradictory:
ease of implementation of new models does not necessarily

Corresponding author: Hrvoje Jasak
e-mail: h.jasak@wikki.co.uk and hrvoje.jasak@fsb.hr

go hand in hand with the needs of industrial environment. In
an ideal world, transition from a model development
framework to industrial application should be seamless: re-
using the same software and validation data.

This paper describes the design of OpenFOAM, an
object-oriented library for Computational Continuum
Mechanics designed in pursuit of the above. In place of
monolithic software design and “user coding” extensions,
OpenFOAM implements the components of mesh handling,
linear system and solver support, discretisation operators and
physical models in library form, where they are re-used over
a number of top-level solvers. Implementation of complex
physical models follows the idea of mimicking the form of
partial differential equations in software. Auxiliary tools,
from pre-processing, mesh manipulation, data acquisition,
dynamic mesh handling etc. are built into the system,
bringing it to the level expected by industrial CFD tools.

OBJECT ORIENTATION AND EQUATION
MIMICKING

Complexity of monolithic functional software stems from
its data organisation model: globally accessible data is
operated on by a set of functions. Here, each added feature
interacts with all other parts of the code, potentially
introducing new defects (bugs) — with the growing size of

Copyright © 2009 Society of Naval Architects of Korea. Production and hosting by ELSEVIER B.V. This is an open access article under the CC BY-NC 3.0 license

(http://creativecommons.org/licenses/by-nc/3.0/).

http://creativecommons.org/licenses/by-nc/3.0

90

software, the data management and code validation problem
necessarily grows out of control.

Object orientation attempts to resolve the complexity in a
“divide and conquer” approach. The idea is to recognise self-
contained objects in the problem and place parts of
implementation into self contained types (classes) to be used
in building the complexity. In C++, a class (object) consists
of:

* A public interface, providing the capability to the user;
* Private data, needed to provide functionality and
managed by the public interface.

As an example, consider a sparse matrix class. It will
store matrix coefficients in its preferred manner (private data)
and provide manipulation functions, e.g. matrix transpose,
matrix algebra (addition, subtraction, multiplication by a
scalar etc.). Each of these operates on private data in a
controlled manner but its internal implementation details are
formally independent of its interface.

Classes introduce new user-defined types into problem
description, allowing the programmer to create a “look and
feel” of the high-level code, ideally as close to the problem as
possible.

In the arena of CCM, one can state that a natural
language for physical model development already exists: it is
a partial differential equation. Attempting to represent
differential equations in their natural language in software as
closely as possible is our stated goal.

Looking at the example of a turbulence kinetic energy
equation in Reynolds Averaged Navier-Stokes (RANS)
models:

ok
E+V-(uk)—V-[(v+vt)Vk] =

|) . (1)
v [—(Vu+VuT)} _ 0y
2 kO

we shall follow the path to its encoded version in
OpenFOAM:

solve

fvm: :ddt (k)
+ fvm::div (phi, k)
- fvm::laplacian(nu() + nut, k)
== nut*magSqgr (symm (fvc::grad(U)))

- fvm::Sp(epsilon/k, k)

Inter J Nav Archit Oc Engng (2009) 1: 89~94

Correspondence between Eqn. (1) and the code is clear,
even with limited programming knowledge and without
reference to object-orientation or C++.

FIVE BASIC CLASSES

The main objects used in code snippet above are listed
below. Some basic types, like scalar, vector,
tensor, List, word efc. underpin the system and will
not be reviewed in detail.

Space and Time

In computational terms, the temporal dimension is split
into a finite number of time-steps. Formally, it is sufficient to
track the time step count and time increment At. A set of
database operations associated with time-marching finds its
natural home in the Time class, including simulation data
output every n time-steps or x seconds of computational
time and general time-related data handling, e.g. book-
keeping for old-time level field data handling needed in
temporal discretisation operators.

OpenFOAM implements polyhedral mesh handling,
where a cell is described as a list of faces closing its volume,
a face is an ordered list of point labels and points are gathered
into an ordered list of (x, y, z) locations, stored as vectors.
Lowlevel implementation is discretisation-independent,
where the polyMesh class provides the addressing and
mesh metrics (cell volumes, face areas, cell and face centres
etc.). For convenient use with discretisation, basic mesh
information is wrapped for convenience of use. fvMesh, for
example, supports the Finite Volume Method (FVM), while
tetFemMesh supports the Finite Element (FE) solver. In
both cases, basic mesh structure and functionality is shared: a
single mesh can simultaneously support the FVM and FEM
solver without duplication of data and functionality.

Field Variable

Continuum mechanics operates on field variables, each of
which is approximated as a list of typed values at pre-defined
locations of the mesh. Thus, a vectorField class consists
a list of vectors (three floating point numbers) and vector
field operations: addition, subtraction, scalar multiplication,
magnitude, dot- and cross-products etc. Arbitrary rank tensor
fields are defined in the same manner.

Boundary conditions, encoded as patch fields carry
behaviour in addition to its values. For example, a
fixedvalue field carries its values but shall not change on
assignment: its value is fixed. Some other cases, like a
fixedGradient field class can “evaluate” boundary
values, given the internal field and a surface-normal gradient.
This constitutes a family of related classes: each calculates its
boundary value based on behaviour, but does the job in its
own specific way.

Inter J Nav Archit Oc Engng (2009) 1: 89~94

Grouping the field data with its spatial dependence
(reference to a mesh), boundary conditions and a dimension
set creates a self contained Geometric Field object. Examples
are the volScalarField k or volVectorField Uin
the code snippet above.

Matrix, Linear System and Linear Solver

A sparse matrix [A] and linear system [A][x] = [b]
hold the result of discretisation and provide the machinery for
its solution. It suffices to say that code organisation as
presented above allows the FEM and FVM to share sparse
matrix implementation and solver technology, resulting in
considerable code re-use.

Discretisation Method

Discretisation operators assemble an implicit or explicit
representation of operators, and are implemented in three
levels.

Interpolation evaluates the field variable between
computational points, based on prescribed spatial and
temporal variation (shape function).

Differentiation, where calculus operations are performed
on fields to create new fields. For example, the following
code:

volVectorField gradP = fvc::grad(p);

creates a new FVM vector field of pressure gradient
given a pressure field p. Calculus operator above carry the
fvc: : prefix.

Discretisation operates on differential operators (rate of
change, convection, diffusion), and creates a discrete
counterpart of the operator in sparse matrix form.
Discretisation operators in software carry the fvm: : prefix.

Physical Modelling Library

Taking object orientation further, one can recognise
object families at the physics modelling level. For example,
all RANS turbulence models in effect provide the same
functionality: evaluating the Reynolds stress term u'u’ in the
momentum equation. Grouping them together guarantees
inter-changeability and decouples their implementation from
the rest of the flow solver. In such situation, the momentum
equation communicates with a turbulence model through a
pre-defined interface. A turbulence model contributes a
discretisation matrix to the momentum equation, usually
consisting of a diffusion term and explicit correction and no
special knowledge of a particular turbulence model is needed.

Physics Solver

The components described so far act as a numerical tool-
kit used to assemble various physics solvers. Each flow

91

solver is a standalone tool, and handles only a narrow set of
physics, eg. turbulent flow with LES, or partially premixed
combustion. Capability of such solvers is underpinned by a
combination of complex geometry support and parallelisation.
List of top-level solvers available in OpenFOAM closely
mimics the capabilities of commercial CFD, with room for
further vertical integration and customisation by the user.

OpenFOAM IN USE

In what follows, we shall illustrate the performance of
top-level OpenFOAM solvers whose functionality is
assembled from library components.

Flash-Boiling Model

In the spectrum of the flow with pressure-driven phase
change, flash-boiling indicates the situation where the effect
of inter-phase heat transfer plays a considerable role. At the
cold end of the spectrum, cavitating flow models rely on the
fact that low density of the cavitating vapour requires a small
amount of energy transfer, allowing the use of equilibrium
assumptions. In flash boiling, energy transfer is a limiting
factor, and the phase equilibrium assumption no longer
applies.

Under such conditions, the role of equation of state is
replaced by a Homogeneous Relaxation Model (HRM),
where the quality (mass fraction) x relaxes to equilibrium X
over a time-scale ©, obtained from empirical relations:

t
® — ®OE—0.54¢1.76 (3)

Other equations defining the system include conservation
of mass:

P,y _ 4
5 TV @p)=0 4)

and conservation of momentum:

(a/;ct/o_) +V-(pU")=-Vp" +V-(uiNVU"). ©)

Absence of the equation of state complicates the
numerical implementation of this model. In recent work
(Schmidt et al., 2009), Gopalakrishnan and Schmidt, of
University of Massachusetts, Amherst develop a novel
formulation of the pressure equation, encompassing the

92

change of nature of the flow. The pressure equation reduces
to its incompressible form in single phase flow and accounts

s ap .
for compressibility effects when i is non-zero:

1(9p)| [a(pp

k+1
ot)}V'(”UP"”FWW

(6)

1 N oM [.
_pvzvpk 1+M(pk)+g(pk l_pk):()

Complexity of such algorithms is substantial, as
implementation errors may appear in operator discretisation,
boundary conditions, linearisation of coupling terms or in
equation coupling. Isolating discretisation issues from
equation coupling and model physics allows the researcher to
concentrate on their area of expertise, while relying on
correct operation of basic code components.

OpenFOAM, with its simple encoding of discretisation
represents the above model in a concise manner. Efficiency
of implementation, polyhedral mesh support, parallel
processing capability etc. require no further work: they are
embedded in the low-level code structure. Access to the
source code at this level is not possible without the open
source development paradigm and equation mimicking. As
an illustration of code clarity, the complete flash boiling
model code is listed below.

// Continuity equation
solve
(
fvm: :ddt (rho)
+ fvm::div (phiv,
)

rho)

// Momentum equation
fvVectorMatrix UEqQn
(
fvm: :ddt (rho, 0U)

+ fvm::div(phi, U)

- fvm::laplacian (mu, U)
)
solve (UEgqn == -fvc::grad(p)):

// Pressure equation
solve
(
psi/sqgr (rho) * (fvm: :ddt (rho, p)
+ fvm::div(phi, p))
+ fvc::div(phivStar)
- fvm::laplacian (xrUA, p)
+ MSave + fvm::SuSp(dMdp, p)
- dMdp*pSave

Inter J Nav Archit Oc Engng (2009) 1: §9~94

Velocity Magnitude (m/s)
23,6 47.2 70,8 94.4

(-

Void Fraction

0,00, 02500 05000 0750 1.00

Density (Kg/m?3)
] 500, 750,

1.00e+03

Fig. 1 Flash-boiling in a Diesel injector nozzle. Results by
Gopalakrishnan and Schmidt.

Inter J Nav Archit Oc Engng (2009) 1: 89~94

The flash boiling model by Gopalakrishnan and Schmidt
can be immediately tested on geometries of industrial interest
without re-implementation. An example is given in Fig. 1, on
a 3-D geometry of an asymmetric fuel injector nozzle.

Flash boiling is initiated at the inlet edge of the nozzle,
indicated by the increase in the vapour fraction, and extends
to the outlet plenum. Effect of phase change can also be seen
in the velocity field.

Floating Body Simulation: 6-DOF,MovingMesh and Free
Surface Flows

The Volume-of-Fluid (VOF) free surface flow solver
models the governing equations as a single continuum with a
jump in properties at the free surface. The volume fraction
variable is used to follow the interface motion and used to

calculate the corresponding jump in physical properties (g, p).

The VOF solver in OpenFOAM has been developed in
several stages. The first generation (Ubbink and Issa, 1999)
uses compressive discretisation on the volume fraction
equation, with limitations on cases with dominant surface
tension. Subsequent variants use the VOF formulation from a
multi-phase flow (Rusche, 2003) with implicit compression
terms, with or without compression flux limiting. As an
illustration, Fig. 2 shows two examples of free surface flow
around partially submerged bodies.

pressure
1000 25

height
-0.2 0.1125 -0.025 0.0625 0.15
[]

Surface-piercing hydrofoil

Fig. 2 Examples of free surface flows.

93

A natural extension of the VOF solver involves floating
bodies in free surface flows, combining the VOF flow solver
with a 6 Degree of Freedom (6-DOF) solid body motion
solver. Forces acting on a solid body are calculated from the
flow field and fed to the 6-DOF solver. In return, ordinary
differential equations, (ODE) of solid body motion define
mesh deformation on the surface of the body.

In terms of implementation, the VOF solver uses the FV
discretisation for the flow equations as described above, with
support for moving mesh and topological changes. A 6-DOF
ODE solver available in the library is used within a
floatingBody object, calculating the flow forces and
motion on the hull patch. A list of floating bodies is held in a
floatingBodyFvMesh, where an automatic mesh motion
solver calculates point motion for the complete mesh, based
on prescribed motion on individual boundaries.

For cases of complete capsize, the mesh can be split into
two components, coupled with a sliding interface. The inner
component undergoes translation and rotation with the body,
while the external part undergoes only translation. The two
surfaces are coupled using a General Grid Interface (GGI)
feature (Beaudoin and Jasak, 2008), originally developed for
turbomachinery applications. This is completely encapsulated
in the dynamic mesh class, without impact at the toplevel
solver.

Time: 1.269090

Fig. 3 Simulation of 6-DOF floating bodies with a VOF free
surface flow solver.

94

The separation of tasks between the solver and dynamic
mesh class shows the power of object orientation. On one
side, flow solver handles the solution of volumetric equations,
accounting for a possibility of mesh motion and topological
changes. On the other side, a floating body dynamic mesh
class executes the motion based on the external forces: in this
case, calculated from the free surface flow field. The two are
independent from each other: such separation of tasks (flow
solver vs. dynamic mesh instance) leads to a clear interface
and code re-use.

SUMMARY

This paper describes design principles and basic class
layout of OpenFOAM, an object-oriented package for
numerical simulation in Continuum Mechanics in C++. On
the software engineering side, its advantage over monolithic
functional approach is in its modularity and flexibility.

Object orientation breaks the complexity by building
individual software components (classes) which group data
and functions together and protect the data from accidental
corruption.

Inter J Nav Archit Oc Engng (2009) 1: 89~94

Components are built in families and hierarchies where
simpler classes are used to build more complex ones. A
toolkit approach implemented in OpenFOAM allows the user
to easily and reliably tackle complex physical models in
software.

BIBLIOGRAPHY

Schmidt, D. Gopalakrishnan, S. and Jasak, H., (in review)
Multidimensional simulation of thermal non equilibrium
channel flow. Journal of Multiphase Flow.

Ubbink, O. and Issa, R.I., 1999. A method for capturing
sharp fluid interfaces on arbitrary meshes. Journal of
Comp. Physics, 153, pp.26-50.

Rusche, H., 2003. Computational fluid dynamics of dispersed
two-phase flows at high phase fractions. Ph.D. Imperial
College, University of London.

Beaudoin, M. and Jasak, H., 2008. Development of a

generalized grid interface for turbomachinery
simulations with OpenFOAM. In: open Source CFD
International Conference. Berlin, Germany 4-5
December 2008.

	OpenFOAM: Open source CFD in research and industry
	INTRODUCTION
	OBJECT ORIENTATION AND EQUATION MIMICKING
	FIVE BASIC CLASSES
	Space and Time
	Field Variable
	Matrix, Linear System and Linear Solver
	Discretisation Method
	Physical Modelling Library
	Physics Solver

	OpenFOAM IN USE
	Flash-Boiling Model
	Floating Body Simulation: 6-DOF,MovingMesh and Free Surface Flows

	SUMMARY
	BIBLIOGRAPHY

