

AB
Co
re
fle
eq
Co
ph
in
m

KE

IN

Co
nu
ra
Cu
au
En
su
va
m
H
an
co

im
aim
cu
de
ex
ex
in

ea

C
e

BSTRACT: T
omputer-Aided

esearch aims to
exibility and co
quation mimick
omputational
hysical models
 library form.
odeling withou

EY WORDS: C

NTRODUCTI

Leading s

ontinuum Mec
umerics, comp
ange of physica
urrent simulati
utomation of
ngineering (CA
urface and vol
ariants of bou

model settings a
ere, dynamic

nd a wide ran
onsidered as sta

In research,
mplementation
med to exten

urrent enginee
esign for “res
xperiment with
xperimental da
ndustrial proble

Two sets of
ase of impleme

Corresponding
e-mail: h.jasak

 OpenF

1Wikki

The current focu
d product deve
o extend the bo
ode integration
king is propos
Continuum M
is achieved by
 Open Source

ut the sacrifice

CFD; Open So

ION

simulation s
chanics (CCM)
plex geometry
al models in a u
ion challenges

simulation t
AE), including
lume meshing,
undary condit
as well as sensi

mesh handlin
nge of pre-imp
andard.
the focus is s
of complex a

nd numerical
ering practice
search use” is
h new physical
ata and exami
ems.
f requirements
entation of new

g author: Hrvoj
k@wikki.co.uk

FOAM: O

Ltd. London

us of developm
elopment, geo

oundaries of pr
n are contradi
sed as a way

Mechanics (CCM
y mimicking th

deployment a
of complex ge

ource; Finite vo

software in
) combines acc
y support and
user-friendly u
s are related to
tools in a C
g automatic ge
, scripted code
tions, material
itivity and opti

ng, parallel co
plemented phy

shifted to effic
and coupled p
modeling cap
. The objecti
s to allow th
l models, valid
ine their perfo

s are sometim
w models doe

je Jasak
and hrvoje.jas

Open sourc

Hrv

, United King

ment in industri
ometrical optim
ractical enginee
ictory: a chang
forward. This

CM) developed
e form of parti

and developme
eometry suppor

olume; Object-

Computation
curate and robu
d an impressi
user environme
o integration a
Computer Aid
eometry retriev
e execution w
l properties a
imisation studi

omputing supp
ysical models

cient and reliab
physical mode
pabilities beyo
ive of softwa
he researcher
date them again
ormance on r

es contradicto
s not necessar

sak@fsb.hr

ce CFD in

voje Jasak1,2

gdom, 2FSB, U

ial Computatio
misation, robu
ering use in “n
ge of coding p
s paper descri
d by the autho
ial differential
ent model allow
rt and executio

Oriented; C++

nal
ust
ive

ent.
and
ded
val,

with
and
ies.

port
is

ble
els,
ond
are
to

nst
real

ory:
rily

go hand
an ide
framew
using th

Thi
object-o
Mechan
monolit
OpenFO
linear s
physica
a numb
physica
partial
from p
dynami
bringin

OBJEC
MIMIC

Com

its dat
operate
interact
introdu

Inter

n research

University of

onal Fluid Dyn
ust design and
non-traditional
aradigm, with
ibes OpenFOA
or. Efficient an
equation in sof
ws the user to
n efficiency.

+; Equation mim

d in hand with
eal world, tra
work to industr
he same softwa
is paper desc
oriented libr
nics designed
thic software
OAM impleme
system and sol
al models in lib
ber of top-lev
al models follo

differential e
pre-processing,
ic mesh hand

ng it to the leve

CT ORIENTA
CKING

mplexity of mo
ta organisation
ed on by a set
ts with all o

ucing new defe

r J Nav Archit O
http://dx.doi.org/10.2478/IJNAOE-2013-0011

and indus

f Zagreb, Croa

namics (CFD)
d similar. On
l” areas. Requ
object orienta

AM, a C++ ob
nd flexible im

oftware, with co
o achieve desir

micking.

h the needs of i
ansition from
rial application
are and validat
cribes the des
ary for Co
in pursuit of
design and “

ents the comp
ver support, di
brary form, wh
el solvers. Im
ows the idea o
quations in s
, mesh manip
dling etc. are
el expected by i

ATION AND

onolithic funct
n model: glo
of functions.

other parts o
ects (bugs) –

Oc Engng (200

stry

atia

is integration o
the other han
irements of com

ation, library c
bject oriented

mplementation
ode functional
red versatility

industrial envi
m a model d

n should be se
tion data.
sign of Open
omputational
f the above. I
“user coding”
onents of mes
iscretisation op
here they are r

mplementation
of mimicking
oftware. Auxi

pulation, data
e built into t
industrial CFD

D EQUATION

tional software
obally accessib

Here, each ad
of the code,
with the grow

09) 1:89~94

of CFD into
nd, in CFD
mputational
components,

library for
of complex

lity provided
in physical

ironment. In
development
eamless: re-

nFOAM, an
Continuum

In place of
extensions,

sh handling,
perators and
re-used over
of complex
the form of
iliary tools,
acquisition,

the system,
D tools.

N

 stems from
ble data is
dded feature

potentially
wing size of

Copyright © 2009 Society of Naval Architects of Korea. Production and hosting by ELSEVIER B.V. This is an open access article under the CC BY-NC 3.0 license
(http://creativecommons.org/licenses/by-nc/3.0/).

http://creativecommons.org/licenses/by-nc/3.0

90 Inter J Nav Archit Oc Engng (2009) 1: 89~94

software, the data management and code validation problem
necessarily grows out of control.

Object orientation attempts to resolve the complexity in a
“divide and conquer” approach. The idea is to recognise self-
contained objects in the problem and place parts of
implementation into self contained types (classes) to be used
in building the complexity. In C++, a class (object) consists
of:

• A public interface, providing the capability to the user;
• Private data, needed to provide functionality and
 managed by the public interface.

As an example, consider a sparse matrix class. It will

store matrix coefficients in its preferred manner (private data)
and provide manipulation functions, e.g. matrix transpose,
matrix algebra (addition, subtraction, multiplication by a
scalar etc.). Each of these operates on private data in a
controlled manner but its internal implementation details are
formally independent of its interface.

Classes introduce new user-defined types into problem
description, allowing the programmer to create a “look and
feel” of the high-level code, ideally as close to the problem as
possible.

In the arena of CCM, one can state that a natural
language for physical model development already exists: it is
a partial differential equation. Attempting to represent
differential equations in their natural language in software as
closely as possible is our stated goal.

Looking at the example of a turbulence kinetic energy
equation in Reynolds Averaged Navier-Stokes (RANS)
models:

()

()

()

21 0
2 0

T

k k t k
t

kt k

ν ν

ν

∂
+ ∇ ⋅ − ∇ ⋅ + ∇ =⎡ ⎤⎣ ⎦∂

∈⎡ ⎤∇ + ∇ −⎢ ⎥⎣ ⎦

u

u u

 (1)

we shall follow the path to its encoded version in

OpenFOAM:

solve

(

fvm::ddt(k)

+ fvm::div(phi, k)

- fvm::laplacian(nu() + nut, k)

== nut*magSqr(symm(fvc::grad(U)))

- fvm::Sp(epsilon/k, k)

);

Correspondence between Eqn. (1) and the code is clear,
even with limited programming knowledge and without
reference to object-orientation or C++.

FIVE BASIC CLASSES

The main objects used in code snippet above are listed

below. Some basic types, like scalar, vector,
tensor, List, word etc. underpin the system and will
not be reviewed in detail.

Space and Time

In computational terms, the temporal dimension is split

into a finite number of time-steps. Formally, it is sufficient to
track the time step count and time increment ∆ݐ. A set of
database operations associated with time-marching finds its
natural home in the Time class, including simulation data
output every ݊ time-steps or ݔ seconds of computational
time and general time-related data handling, e.g. book-
keeping for old-time level field data handling needed in
temporal discretisation operators.

OpenFOAM implements polyhedral mesh handling,
where a cell is described as a list of faces closing its volume,
a face is an ordered list of point labels and points are gathered
into an ordered list of (ݔ, ,ݕ .locations, stored as vectors (ݖ
Lowlevel implementation is discretisation-independent,
where the polyMesh class provides the addressing and
mesh metrics (cell volumes, face areas, cell and face centres
etc.). For convenient use with discretisation, basic mesh
information is wrapped for convenience of use. fvMesh, for
example, supports the Finite Volume Method (FVM), while
tetFemMesh supports the Finite Element (FE) solver. In
both cases, basic mesh structure and functionality is shared: a
single mesh can simultaneously support the FVM and FEM
solver without duplication of data and functionality.

Field Variable

Continuum mechanics operates on field variables, each of

which is approximated as a list of typed values at pre-defined
locations of the mesh. Thus, a vectorField class consists
a list of vectors (three floating point numbers) and vector
field operations: addition, subtraction, scalar multiplication,
magnitude, dot- and cross-products etc. Arbitrary rank tensor
fields are defined in the same manner.

Boundary conditions, encoded as patch fields carry
behaviour in addition to its values. For example, a
fixedValue field carries its values but shall not change on
assignment: its value is fixed. Some other cases, like a
fixedGradient field class can “evaluate” boundary
values, given the internal field and a surface-normal gradient.
This constitutes a family of related classes: each calculates its
boundary value based on behaviour, but does the job in its
own specific way.

Inter J Nav Archit Oc Engng (2009) 1: 89~94 91

Grouping the field data with its spatial dependence
(reference to a mesh), boundary conditions and a dimension
set creates a self contained Geometric Field object. Examples
are the volScalarField k or volVectorField U in
the code snippet above.

Matrix, Linear System and Linear Solver

A sparse matrix ሾܣሿ and linear system ሾܣሿሾݔሿ ൌ ሾܾሿ
hold the result of discretisation and provide the machinery for
its solution. It suffices to say that code organisation as
presented above allows the FEM and FVM to share sparse
matrix implementation and solver technology, resulting in
considerable code re-use.

Discretisation Method

 Discretisation operators assemble an implicit or explicit

representation of operators, and are implemented in three
levels.

Interpolation evaluates the field variable between

computational points, based on prescribed spatial and
temporal variation (shape function).

Differentiation, where calculus operations are performed

on fields to create new fields. For example, the following
code:

volVectorField gradP = fvc::grad(p);

creates a new FVM vector field of pressure gradient

given a pressure field p. Calculus operator above carry the
fvc:: prefix.

Discretisation operates on differential operators (rate of

change, convection, diffusion), and creates a discrete
counterpart of the operator in sparse matrix form.
Discretisation operators in software carry the fvm:: prefix.

Physical Modelling Library

Taking object orientation further, one can recognise

object families at the physics modelling level. For example,
all RANS turbulence models in effect provide the same
functionality: evaluating the Reynolds stress term uԢu′തതതതത in the
momentum equation. Grouping them together guarantees
inter-changeability and decouples their implementation from
the rest of the flow solver. In such situation, the momentum
equation communicates with a turbulence model through a
pre-defined interface. A turbulence model contributes a
discretisation matrix to the momentum equation, usually
consisting of a diffusion term and explicit correction and no
special knowledge of a particular turbulence model is needed.

Physics Solver

The components described so far act as a numerical tool-

kit used to assemble various physics solvers. Each flow

solver is a standalone tool, and handles only a narrow set of
physics, eg. turbulent flow with LES, or partially premixed
combustion. Capability of such solvers is underpinned by a
combination of complex geometry support and parallelisation.

List of top-level solvers available in OpenFOAM closely
mimics the capabilities of commercial CFD, with room for
further vertical integration and customisation by the user.

OpenFOAM IN USE

In what follows, we shall illustrate the performance of

top-level OpenFOAM solvers whose functionality is
assembled from library components.

Flash-Boiling Model

 In the spectrum of the flow with pressure-driven phase

change, flash-boiling indicates the situation where the effect
of inter-phase heat transfer plays a considerable role. At the
cold end of the spectrum, cavitating flow models rely on the
fact that low density of the cavitating vapour requires a small
amount of energy transfer, allowing the use of equilibrium
assumptions. In flash boiling, energy transfer is a limiting
factor, and the phase equilibrium assumption no longer
applies.

Under such conditions, the role of equation of state is
replaced by a Homogeneous Relaxation Model (HRM),
where the quality (mass fraction) ݔ relaxes to equilibrium ݔҧ
over a time-scale Θ, obtained from empirical relations:

,Dx x x
Dt

−
=

Θ
 (2)

0.54 1.76

0 φ−
∈Θ = Θ (3)

Other equations defining the system include conservation
of mass:

() 0

t ν
ρ φ ρ∂
+∇⋅ =

∂
 (4)

and conservation of momentum:

0
0 0() () ().nU U p U

t
ρ φ μ∂

+∇⋅ = −∇ +∇⋅ ∇
∂

 (5)

Absence of the equation of state complicates the

numerical implementation of this model. In recent work
(Schmidt et al., 2009), Gopalakrishnan and Schmidt, of
University of Massachusetts, Amherst develop a novel
formulation of the pressure equation, encompassing the

92

ch
to
fo

im
bo
eq
eq
co
co

re
of
pr
em
so
so
an
m

//
so
(

);

//
fv
(

);
so

//
so
(

);

2

hange of nature
 its incompres

or compressibil

,

1 ()

x ht

a

ρ
ρ

ρ

⎛∂ ∂
⎜∂ ⎝

− ∇

Complexity

mplementation
oundary condi
quation coupl
quation couplin
oncentrate on
orrect operation

OpenFOAM
epresents the ab
f implementa
rocessing capa
mbedded in th
ource code at
ource developm
n illustration o

model code is lis

/ Continui
olve

fvm::dd
+ fvm::di

;

/ Momentum
vVectorMat

fvm::dd
+ fvm::di
- fvm::la

;
olve(UEqn

/ Pressure
olve

psi/sqr
+ fvm::di
+ fvc::di
- fvm::la
+ MSave +
- dMdp*pS

;

e of the flow.
ssible form in s
lity effects whe

(

1

1

()

1

k

k

p

p
t

p M p
a

ρ +

+

⎞∂
+∇⎟∂ ⎠

∇ +

of such a
errors may ap

itions, linearisa
ling. Isolating
ng and model p

their area of
n of basic code

M, with its sim
bove model in

ation, polyhed
ability etc. requ
he low-level c
this level is n

ment paradigm
of code clarit
sted below.

ity equatio

dt(rho)
iv(phiv, r

m equation
trix UEqn

dt(rho, U)
iv(phi, U)
aplacian(m

== -fvc::g

e equation

r(rho)*(fvm
iv(phi, p)
iv(phivSta
aplacian(r
+ fvm::SuS
Save

The pressure
single phase fl
en డఘ

డ௣
 is non-z

()

) (

1k

k k

Up

Mp p
p

ρ ρ+

+

⋅ + ∇

∂
+
∂

lgorithms is
ppear in operat
ation of coup
g discretisatio
physics allows
f expertise, w
e components.

mple encoding
n a concise ma
dral mesh s
uire no furthe
code structure
not possible w

m and equation
ty, the comple

on

rho)

mu, U)

grad(p));

m::ddt(rho
)
ar)
rUA, p)
Sp(dMdp, p)

equation reduc
low and accou
zero:

)

*

1 0kp

φ

+

∇ ⋅

− =

 (6

substantial,
tor discretisatio
ling terms or
on issues fro
the researcher

while relying

of discretisati

anner. Efficien
support, paral
r work: they a

e. Access to t
without the op
n mimicking.
ete flash boili

o, p)

)

ces
nts

6)

as
on,
in

om
r to
on

ion
ncy
llel
are
the
pen
As
ing

Fig. 1
Gopala

 Inter J

Flash-boiling
akrishnan and S

J Nav Archit Oc

in a Diesel in
Schmidt.

c Engng (2009

njector nozzle.

9) 1: 89~94

 Results by

In

ca
w
a 3

in
to
in

Fl
Su

m
ju
va
ca

se
us
eq
ten
m
ter
ill
ar

Fi

nter J Nav Arch

The flash bo
an be immediat
ithout re-imple
3-D geometry

Flash boilin
ndicated by the

 the outlet plen
n the velocity fi

loating Body
urface Flows

The Volum

models the gove
ump in propert
ariable is used
alculate the cor

The VOF so
everal stages. T
ses compressi
quation, with
nsion. Subsequ

multi-phase flow
rms, with or
lustration, Fig.
round partially

ig. 2 Examples

hit Oc Engng (2

oiling model b
tely tested on g
ementation. An
of an asymmet
g is initiated a

e increase in th
num. Effect of
ield.

Simulation: 6

me-of-Fluid (V
erning equation
ties at the free
d to follow the
rresponding jum
olver in OpenF
The first gener
ive discretisat
limitations on
uent variants u
w (Rusche, 20

without comp
 2 shows two
submerged bo

s of free surface

(2009) 1: 89~94

y Gopalakrish
geometries of i
n example is gi
tric fuel injecto
at the inlet edg
he vapour fract
f phase change

6-DOF,Moving

OF) free surf
ns as a single c
e surface. The
e interface mo
mp in physical
FOAM has be
ration (Ubbink
tion on the
n cases with d
use the VOF fo
003) with impl
pression flux
examples of f

odies.

e flows.

4

hnan and Schm
industrial inter
iven in Fig. 1,
or nozzle.
ge of the nozz
tion, and exten
 can also be se

gMesh and Fr

face flow solv
continuum with

volume fracti
otion and used
l properties (μ,
een developed
k and Issa, 199
volume fracti

dominant surfa
ormulation from
licit compressi
limiting. As

free surface flo

midt
rest
on

zle,
nds
een

ree

ver
h a
ion

to
 ρ).
in

99)
ion
ace
m a
ion
an

ow

A n
bodies
with a
solver.
flow fi
differen
mesh d

In t
discreti
support
ODE s
float
motion
float
solver c
on pres

For
two com
compon
while t
surface
feature
turbom
in the
solver.

Fig. 3 S
surface

natural extensi
in free surface
6 Degree of
Forces acting
eld and fed to
ntial equations

deformation on
terms of imple
isation for the
t for moving m
solver availab
tingBody ob

on the hull pa
tingBodyFvM
calculates poin

scribed motion
r cases of comp
mponents, cou
nent undergoes
the external pa
es are coupled

(Beaudoin and
machinery appli

dynamic mesh

Simulation of
e flow solver.

ion of the VOF
e flows, combi

Freedom (6-D
on a solid bod

o the 6-DOF s
s, (ODE) of s
the surface of

ementation, the
flow equations

mesh and topol
ble in the lib
bject, calculati
atch. A list of f
Mesh, where a
nt motion for t
on individual
plete capsize,

upled with a sl
s translation an
art undergoes

using a Gene
d Jasak, 2008)
ications. This i
h class, witho

6-DOF floatin

F solver involv
ning the VOF
DOF) solid bo
dy are calculat
solver. In retur
solid body mo
the body.

e VOF solver u
s as described
logical change
brary is used
ing the flow
floating bodies
an automatic m
the complete m
boundaries.
the mesh can b
liding interface
nd rotation wit
only translatio
eral Grid Inter
), originally de
s completely e
ut impact at t

ng bodies with

 93

ves floating
flow solver

ody motion
ted from the
rn, ordinary
otion define

uses the FV
above, with
s. A 6-DOF
d within a
forces and

s is held in a
mesh motion
mesh, based

be split into
e. The inner
th the body,
on. The two
rface (GGI)
eveloped for
encapsulated
the toplevel

a VOF free

94 Inter J Nav Archit Oc Engng (2009) 1: 89~94

The separation of tasks between the solver and dynamic
mesh class shows the power of object orientation. On one
side, flow solver handles the solution of volumetric equations,
accounting for a possibility of mesh motion and topological
changes. On the other side, a floating body dynamic mesh
class executes the motion based on the external forces: in this
case, calculated from the free surface flow field. The two are
independent from each other: such separation of tasks (flow
solver vs. dynamic mesh instance) leads to a clear interface
and code re-use.

SUMMARY

This paper describes design principles and basic class

layout of OpenFOAM, an object-oriented package for
numerical simulation in Continuum Mechanics in C++. On
the software engineering side, its advantage over monolithic
functional approach is in its modularity and flexibility.

Object orientation breaks the complexity by building
individual software components (classes) which group data
and functions together and protect the data from accidental
corruption.

Components are built in families and hierarchies where
simpler classes are used to build more complex ones. A
toolkit approach implemented in OpenFOAM allows the user
to easily and reliably tackle complex physical models in
software.

BIBLIOGRAPHY

Schmidt, D. Gopalakrishnan, S. and Jasak, H., (in review)

Multidimensional simulation of thermal non equilibrium
channel flow. Journal of Multiphase Flow.

Ubbink, O. and Issa, R.I., 1999. A method for capturing
sharp fluid interfaces on arbitrary meshes. Journal of
Comp. Physics, 153, pp.26–50.

Rusche, H., 2003. Computational fluid dynamics of dispersed
two-phase flows at high phase fractions. Ph.D. Imperial
College, University of London.

Beaudoin, M. and Jasak, H., 2008. Development of a
generalized grid interface for turbomachinery
simulations with OpenFOAM. In: open Source CFD
International Conference. Berlin, Germany 4-5
December 2008.

	OpenFOAM: Open source CFD in research and industry
	INTRODUCTION
	OBJECT ORIENTATION AND EQUATION MIMICKING
	FIVE BASIC CLASSES
	Space and Time
	Field Variable
	Matrix, Linear System and Linear Solver
	Discretisation Method
	Physical Modelling Library
	Physics Solver

	OpenFOAM IN USE
	Flash-Boiling Model
	Floating Body Simulation: 6-DOF,MovingMesh and Free Surface Flows

	SUMMARY
	BIBLIOGRAPHY

