
  
 
 

 

 

AB
Co
re
fle
eq
Co
ph
in
m

KE
 
 
 
IN

Co
nu
ra
Cu
au
En
su
va
m
H
an
co

im
aim
cu
de
ex
ex
in

ea

 
 

C
e

           

 

BSTRACT: T
omputer-Aided

esearch aims to
exibility and co
quation mimick
omputational 
hysical models 
 library form.
odeling withou

EY WORDS: C

NTRODUCTI
 
Leading s

ontinuum Mec
umerics, comp
ange of physica
urrent simulati
utomation of 
ngineering (CA
urface and vol
ariants of bou

model settings a
ere, dynamic 

nd a wide ran
onsidered as sta

In research, 
mplementation 
med to exten

urrent enginee
esign for “res
xperiment with
xperimental da
ndustrial proble

Two sets of
ase of impleme

Corresponding
e-mail: h.jasak

            

 OpenF

1Wikki 

The current focu
d product deve
o extend the bo
ode integration
king is propos
Continuum M
is achieved by
 Open Source 

ut the sacrifice 

CFD; Open So

ION 

simulation s
chanics (CCM)
plex geometry
al models in a u
ion challenges

simulation t
AE), including
lume meshing,
undary condit
as well as sensi

mesh handlin
nge of pre-imp
andard. 
the focus is s
of complex a

nd numerical 
ering practice
search use” is
h new physical
ata and exami
ems. 
f requirements
entation of new

g author: Hrvoj
k@wikki.co.uk 

           

FOAM: O

Ltd. London

us of developm
elopment, geo

oundaries of pr
n are contradi
sed as a way 

Mechanics (CCM
y mimicking th

deployment a
of complex ge

ource; Finite vo

software in 
) combines acc
y support and
user-friendly u
s are related to
tools in a C
g automatic ge
, scripted code
tions, material
itivity and opti

ng, parallel co
plemented phy

shifted to effic
and coupled p
modeling cap
. The objecti
s to allow th
l models, valid
ine their perfo

s are sometim
w models doe

je Jasak 
and hrvoje.jas

            

Open sourc

Hrv

, United King

ment in industri
ometrical optim
ractical enginee
ictory: a chang
forward. This

CM) developed
e form of parti

and developme
eometry suppor

olume; Object-

Computation
curate and robu
d an impressi
user environme
o integration a
Computer Aid
eometry retriev
e execution w
l properties a
imisation studi

omputing supp
ysical models 

cient and reliab
physical mode
pabilities beyo
ive of softwa
he researcher 
date them again
ormance on r

es contradicto
s not necessar

sak@fsb.hr

           

ce CFD in
 
 

voje Jasak1,2

 
 

gdom, 2FSB, U
 
 

ial Computatio
misation, robu
ering use in “n
ge of coding p
s paper descri
d by the autho
ial differential 
ent model allow
rt and executio

 
Oriented; C++

nal 
ust 
ive 

ent. 
and 
ded 
val, 

with 
and 
ies. 

port 
is 

ble 
els, 
ond 
are 
to 

nst 
real 

ory: 
rily 

go hand
an ide
framew
using th

Thi
object-o
Mechan
monolit
OpenFO
linear s
physica
a numb
physica
partial 
from p
dynami
bringin

 
 
 

OBJEC
MIMIC

 
Com

its dat
operate
interact
introdu

            

Inter

n research 

 

University of

onal Fluid Dyn
ust design and
non-traditional
aradigm, with 
ibes OpenFOA
or. Efficient an
equation in sof
ws the user to
n efficiency. 

+; Equation mim

d in hand with
eal world, tra
work to industr
he same softwa
is paper desc
oriented libr
nics designed 
thic software 
OAM impleme
system and sol
al models in lib
ber of top-lev
al models follo

differential e
pre-processing,
ic mesh hand

ng it to the leve

CT ORIENTA
CKING 

mplexity of mo
ta organisation
ed on by a set 
ts with all o

ucing new defe

           

r J Nav Archit O
http://dx.doi.org/10.2478/IJNAOE-2013-0011

and indus

f Zagreb, Croa

namics (CFD) 
d similar. On 
l” areas. Requ
object orienta

AM, a C++ ob
nd flexible im

oftware, with co
o achieve desir

micking. 

h the needs of i
ansition from
rial application
are and validat
cribes the des
ary for Co
in pursuit of
design and “

ents the comp
ver support, di
brary form, wh
el solvers. Im
ows the idea o
quations in s
, mesh manip
dling etc. are
el expected by i

ATION AND

onolithic funct
n model: glo
of functions. 

other parts o
ects (bugs) – 

           

Oc Engng (200

stry 

atia 

is integration o
the other han
irements of com

ation, library c
bject oriented

mplementation 
ode functional
red versatility 

industrial envi
m a model d

n should be se
tion data. 
sign of Open
omputational 
f the above. I
“user coding” 
onents of mes
iscretisation op
here they are r

mplementation 
of mimicking 
oftware. Auxi

pulation, data 
e built into t
industrial CFD

D EQUATION

tional software
obally accessib

Here, each ad
of the code, 
with the grow

            

09) 1:89~94 

of CFD into 
nd, in CFD 
mputational 
components, 

library for 
of complex 

lity provided 
in physical 

ironment. In 
development 
eamless: re-

nFOAM, an 
Continuum 

In place of 
extensions, 

sh handling, 
perators and 
re-used over 
of complex 
the form of 
iliary tools, 
acquisition, 

the system, 
D tools. 

N 

 stems from 
ble data is 
dded feature 

potentially 
wing size of 

        

Copyright © 2009 Society of Naval Architects of Korea. Production and hosting by ELSEVIER B.V. This is an open access article under the CC BY-NC 3.0 license
( http://creativecommons.org/licenses/by-nc/3.0/ ). 

http://creativecommons.org/licenses/by-nc/3.0


90                                                               Inter J Nav Archit Oc Engng (2009) 1: 89~94 
 
 

 

software, the data management and code validation problem 
necessarily grows out of control.  

Object orientation attempts to resolve the complexity in a 
“divide and conquer” approach. The idea is to recognise self-
contained objects in the problem and place parts of 
implementation into self contained types (classes) to be used 
in building the complexity. In C++, a class (object) consists 
of: 

 
• A public interface, providing the capability to the user; 
• Private data, needed to provide functionality and 
 managed by the public interface. 
 
 
As an example, consider a sparse matrix class. It will 

store matrix coefficients in its preferred manner (private data) 
and provide manipulation functions, e.g. matrix transpose, 
matrix algebra (addition, subtraction, multiplication by a 
scalar etc.). Each of these operates on private data in a 
controlled manner but its internal implementation details are 
formally independent of its interface.  

Classes introduce new user-defined types into problem 
description, allowing the programmer to create a “look and 
feel” of the high-level code, ideally as close to the problem as 
possible.  

In the arena of CCM, one can state that a natural 
language for physical model development already exists: it is 
a partial differential equation. Attempting to represent 
differential equations in their natural language in software as 
closely as possible is our stated goal. 

Looking at the example of a turbulence kinetic energy 
equation in Reynolds Averaged Navier-Stokes (RANS) 
models: 

 
 

( )

( )

( )

21 0
2 0

T

k k t k
t

kt k

ν ν

ν

∂
+ ∇ ⋅ − ∇ ⋅ + ∇ =⎡ ⎤⎣ ⎦∂

∈⎡ ⎤∇ + ∇ −⎢ ⎥⎣ ⎦

u

u u

         (1)  

     
 
we shall follow the path to its encoded version in 

OpenFOAM: 
 
 

solve 

( 

fvm::ddt(k) 

+ fvm::div(phi, k) 

- fvm::laplacian(nu() + nut, k) 

== nut*magSqr(symm(fvc::grad(U))) 

- fvm::Sp(epsilon/k, k) 

); 

Correspondence between Eqn. (1) and the code is clear, 
even with limited programming knowledge and without 
reference to object-orientation or C++. 
 
 
 
FIVE BASIC CLASSES 

 
The main objects used in code snippet above are listed 

below. Some basic types, like scalar, vector, 
tensor, List, word etc. underpin the system and will 
not be reviewed in detail.  

 
Space and Time 

 
In computational terms, the temporal dimension is split 

into a finite number of time-steps. Formally, it is sufficient to 
track the time step count and time increment ∆ݐ. A set of 
database operations associated with time-marching finds its 
natural home in the Time class, including simulation data 
output every ݊ time-steps or ݔ seconds of computational 
time and general time-related data handling, e.g. book-
keeping for old-time level field data handling needed in 
temporal discretisation operators. 

OpenFOAM implements polyhedral mesh handling, 
where a cell is described as a list of faces closing its volume, 
a face is an ordered list of point labels and points are gathered 
into an ordered list of (ݔ, ,ݕ  .locations, stored as vectors (ݖ
Lowlevel implementation is discretisation-independent, 
where the polyMesh class provides the addressing and 
mesh metrics (cell volumes, face areas, cell and face centres 
etc.). For convenient use with discretisation, basic mesh 
information is wrapped for convenience of use. fvMesh, for 
example, supports the Finite Volume Method (FVM), while 
tetFemMesh supports the Finite Element (FE) solver. In 
both cases, basic mesh structure and functionality is shared: a 
single mesh can simultaneously support the FVM and FEM 
solver without duplication of data and functionality. 

 
Field Variable 

 
Continuum mechanics operates on field variables, each of 

which is approximated as a list of typed values at pre-defined 
locations of the mesh. Thus, a vectorField class consists 
a list of vectors (three floating point numbers) and vector 
field operations: addition, subtraction, scalar multiplication, 
magnitude, dot- and cross-products etc. Arbitrary rank tensor 
fields are defined in the same manner. 

Boundary conditions, encoded as patch fields carry 
behaviour in addition to its values. For example, a 
fixedValue field carries its values but shall not change on 
assignment: its value is fixed. Some other cases, like a 
fixedGradient field class can “evaluate” boundary 
values, given the internal field and a surface-normal gradient. 
This constitutes a family of related classes: each calculates its 
boundary value based on behaviour, but does the job in its 
own specific way.  
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Grouping the field data with its spatial dependence 
(reference to a mesh), boundary conditions and a dimension 
set creates a self contained Geometric Field object. Examples 
are the volScalarField k or volVectorField U in 
the code snippet above. 

 
Matrix, Linear System and Linear Solver 
 

A sparse matrix ሾܣሿ  and linear system ሾܣሿሾݔሿ ൌ ሾܾሿ 
hold the result of discretisation and provide the machinery for 
its solution. It suffices to say that code organisation as 
presented above allows the FEM and FVM to share sparse 
matrix implementation and solver technology, resulting in 
considerable code re-use.  

 
Discretisation Method 

 
 Discretisation operators assemble an implicit or explicit 

representation of operators, and are implemented in three 
levels.  

 
Interpolation evaluates the field variable between 

computational points, based on prescribed spatial and 
temporal variation (shape function).  

 
Differentiation, where calculus operations are performed 

on fields to create new fields. For example, the following 
code: 

 
volVectorField gradP = fvc::grad(p); 
 
creates a new FVM vector field of pressure gradient 

given a pressure field p. Calculus operator above carry the 
fvc:: prefix. 

 
Discretisation operates on differential operators (rate of 

change, convection, diffusion), and creates a discrete 
counterpart of the operator in sparse matrix form. 
Discretisation operators in software carry the fvm:: prefix. 

 
Physical Modelling Library 

 
Taking object orientation further, one can recognise 

object families at the physics modelling level. For example, 
all RANS turbulence models in effect provide the same 
functionality: evaluating the Reynolds stress term uԢu′തതതതത in the 
momentum equation. Grouping them together guarantees 
inter-changeability and decouples their implementation from 
the rest of the flow solver. In such situation, the momentum 
equation communicates with a turbulence model through a 
pre-defined interface. A turbulence model contributes a 
discretisation matrix to the momentum equation, usually 
consisting of a diffusion term and explicit correction and no 
special knowledge of a particular turbulence model is needed. 

 
Physics Solver 

 
The components described so far act as a numerical tool-

kit used to assemble various physics solvers. Each flow 

solver is a standalone tool, and handles only a narrow set of 
physics, eg. turbulent flow with LES, or partially premixed 
combustion. Capability of such solvers is underpinned by a 
combination of complex geometry support and parallelisation.  

List of top-level solvers available in OpenFOAM closely 
mimics the capabilities of commercial CFD, with room for 
further vertical integration and customisation by the user. 

 
 
 
OpenFOAM IN USE 

 
In what follows, we shall illustrate the performance of 

top-level OpenFOAM solvers whose functionality is 
assembled from library components.  

 
Flash-Boiling Model 

 
 In the spectrum of the flow with pressure-driven phase 

change, flash-boiling indicates the situation where the effect 
of inter-phase heat transfer plays a considerable role. At the 
cold end of the spectrum, cavitating flow models rely on the 
fact that low density of the cavitating vapour requires a small 
amount of energy transfer, allowing the use of equilibrium 
assumptions. In flash boiling, energy transfer is a limiting 
factor, and the phase equilibrium assumption no longer 
applies. 

Under such conditions, the role of equation of state is 
replaced by a Homogeneous Relaxation Model (HRM), 
where the quality (mass fraction) ݔ relaxes to equilibrium ݔҧ 
over a time-scale Θ, obtained from empirical relations: 
 

,Dx x x
Dt

−
=

Θ
                                    (2) 

 
0.54 1.76

0 φ−
∈Θ = Θ                                 (3) 

 
 

Other equations defining the system include conservation 
of mass: 

 
( ) 0

t ν
ρ φ ρ∂
+∇⋅ =

∂
                  (4) 

 
  

and conservation of momentum:  
 

0
0 0( ) ( ) ( ).nU U p U

t
ρ φ μ∂

+∇⋅ = −∇ +∇⋅ ∇
∂

           (5) 

 
 
Absence of the equation of state complicates the 

numerical implementation of this model. In recent work 
(Schmidt et al., 2009), Gopalakrishnan and Schmidt, of 
University of Massachusetts, Amherst develop a novel 
formulation of the pressure equation, encompassing the 
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The separation of tasks between the solver and dynamic 
mesh class shows the power of object orientation. On one 
side, flow solver handles the solution of volumetric equations, 
accounting for a possibility of mesh motion and topological 
changes. On the other side, a floating body dynamic mesh 
class executes the motion based on the external forces: in this 
case, calculated from the free surface flow field. The two are 
independent from each other: such separation of tasks (flow 
solver vs. dynamic mesh instance) leads to a clear interface 
and code re-use. 
 
 
 
SUMMARY 

 
This paper describes design principles and basic class 

layout of OpenFOAM, an object-oriented package for 
numerical simulation in Continuum Mechanics in C++. On 
the software engineering side, its advantage over monolithic 
functional approach is in its modularity and flexibility. 

Object orientation breaks the complexity by building 
individual software components (classes) which group data 
and functions together and protect the data from accidental 
corruption.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Components are built in families and hierarchies where 
simpler classes are used to build more complex ones. A 
toolkit approach implemented in OpenFOAM allows the user 
to easily and reliably tackle complex physical models in 
software. 
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