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Abstract. Continuous time random walks have random waiting times between particle jumps. We define
the correlated continuous time random walks (CTRWs) that converge to fractional Pearson diffusions
(fPDs). The jumps in these CTRWs are obtained from Markov chains through the Bernoulli urn-scheme
model and Wright-Fisher model. The jumps are correlated so that the limiting processes are not Lévy but
diffusion processes with non-independent increments. The waiting times are selected from the domain of
attraction of a stable law.
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1 Introduction

Continuous time random walks (CTRWs) have random waiting times between particle jumps. When
jumps and waiting times are independent, the CTRW is called decoupled, and only decoupled CTRWs
will be considered throughout this paper. For more information and applications of coupled and uncoupled
CTRW we refer to [6, 16].

When particle jumps Y1, . . . , Yn, . . . are independent and identically distributed (iid), the random
walk Sn = Y1 + . . . + Yn converges to either the Brownian motion or a stable Lévy process [19, Chapter
4]. When jumps are separated by the iid waiting times G1, . . . Gn from the domain of attraction of a
positively skewed stable law with stability index 0 < β < 1, the process S(Nt), where Tn = G1 + . . .+Gn,
Nt = max{n ≥ 0: Tn ≤ t}, gives the location of a particle at time t ≥ 0 and is known as the CTRW. By
applying the continuous mapping theorem (see [19], Theorem 4.19) it follows that, with proper scaling,
S(N(⌊ct⌋)) converges as c → ∞, to A(Et), where A is either the Brownian motion or a stable Lévy process,
and Et is the inverse (or a hitting time) of a standard β-stable subordinator {D(t), t ≥ 0}. Meerschaert
and colleagues have shown the convergence to hold in M1 and J1 Skorokhod topology ([17, 21]), and
have obtained other Lévy processes as the outer process in the limit by employing triangular arrays [18].
The case of correlated jumps given by the stationary linear process was considered in [15], where the
outer process in the limit was either a stable Lévy process or a linear fractional stable motion, depending
on the strength of the dependence in the particle jump sequence. In this paper, we define a different
sequence of correlated particle jumps defined based on urn schemes that would result in weak convergence
of the corresponding random walk to a Pearson diffusion. Pearson diffusions have stationary distributions
of Pearson type. They include Ornstein-Uhlenbeck (OU), Cox-Ingersoll-Ross (CIR), Jacobi, Reciprocal
Gamma, Fisher-Snedecor and Student diffusions ([1, 2]), and in this paper we consider the first three
with non-heavy tailed stationary distributions. Then we separate jumps by the waiting times to obtain
the CTRWs converging to fractional Pearson diffusions (fPDs).

Another approach to the limiting behaviour of CTRW is given in the recent paper [10] and book
[11] by Kolokoltsov, where the spatially non-homogeneous case is treated, i.e. the case in which the
jump distribution depends on current particle position. To study the limiting behavior of such CTRWs,
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Kolokoltsov develops the theory of subordination of Markov processes by the hitting-time process, showing
that this procedure leads to generalized fractional evolutions. Regarding the connection between scaling
limits of CTRWs and Kolmogorov backward and forward equations we refer to [3].

The paper is organized as follows. We begin with a historical note on the subject of urn-scheme models
based on a historically important paper [14] and a recent survey paper [7] (heavily referring to [12]), and a
classical book [9]. Section 3 gives the short overview of the general theory on Pearson diffusions, followed
by Section 4 on fractional Pearson diffusions, focusing on the non-heavy tailed cases. Finally, Section
5 is dedicated to generalizations of results from [7] and [9] and constructing the CTRWs converging to
fractional Ornstein-Uhlenbeck, Cox-Ingersoll-Ross or Jacobi diffusions using the following steps:

1. Obtaining the non-fractional Pearson diffusion (Xt, t ≥ 0) as the scaling limit of a suitably chosen
or constructed discrete time Markov chain.

2. Defining the corresponding CTRW process by taking the composition of the Markov chain defined
in step 1 and the process Nt = max{n ≥ 0: Tn ≤ t}, modeling the number of jumps up to time
t ≥ 0.

3. Proving that the composition converges to the corresponding fPD (X(Et), t ≥ 0), a composition
of non-fractional Pearson diffusion with the inverse (Et, t ≥ 0) of the β-stable subordinator with
β ∈ (0, 1).

2 Historical roots

Many processes observed in science can be mathematically described by the urn-scheme models, where
a discrete time Markov chain moves from one state to another. One of the most famous urn-scheme
models is the Wright-Fisher model for gene mutations in a population under various assumptions. A
rich class of the limiting processes could be obtained from it. One of the simplest urn-scheme models is
the Bernoulli-Laplace urn model, named after D. Bernoulli and P. S. Laplace, the pioneers of probability
theory, and later studied in depth by [14]. This model considers two urns, urn A containing j balls
and urn B containing k balls. Of the total j + k balls in two urns, suppose that r balls are white, and
(j + k − r) are black. At time n ∈ N one ball is drawn randomly from urn A and another from urn B.
The ball drawn from urn A is placed into urn B, the ball drawn from urn B is placed into urn A. Let
Xn be the number of white balls in urn B at time n ∈ N. Then (k − Xn) is the number of black balls in
urn B, (r − Xn) is the number of white balls in urn A and (j − r + Xn) is the number of black balls in
urn A at time n ∈ N. Therefore, (Xn, n ∈ N) is a homogeneous discrete time Markov chain with state
space S = {max {0, r − j}, . . . , min {k, r}} and the following transition probabilities:

P (Xn+1 = y|Xn = x) = px,y =



































(r − x)(k − x)
jk

, y = x + 1

(r − x)x + (j − r + x)(k − x)
jk

, y = x

(j − r + x)x
jk

, y = x − 1

0 , otherwise.

In his book [12], Laplace worked with a particular case of this model, in which each urn contains n
balls and also n out of total 2n balls are black. In this setting he defined a discrete time Markov chain
(

Z
(n)
r , r ≥ 0

)

with the state space {0, 1, 2, . . . , n}, where n is the number of balls in urn A and r is the

number of draws, with transition probabilities

px,x+1 =
(

1 − x

n

)2

, px,x = 2
x

n

(

1 − x

n

)

, px,x−1 =
(x

n

)2

and 0 otherwise.

Laplace was interested in finding the limiting distribution of this irreducible, aperiodic, reversible and
ergodic Markov chain with stationary/ergodic distribution

π = {π0, · · · , πn}, πi =

(

n
i

)(

n
n−i

)

(

2n
n

) .

By denoting zx, r the probability that there are x white balls in urn A after r draws, he deduced the
following partial second-order difference equation:

zx, r+1 =

(

x + 1
n

)2

zx+1, r + 2
x

n

(

1 − x

n

)

zx, r +

(

1 − x − 1
n

)

zx−1, r. (2.1)

2



After that, instead of determining the generating function for z, he approximated the solution of
the equation (2.1) by introducing the new space variable µ and new time variable r′ and obtained the
following relation:

x =
1
2

(n + µ
√

n), r = nr′.

Then, he introduced the function
U(µ, r′) := zx, r

of space and time and heuristically deduced the following relations describing the changes of state in the
transformed Markov chain:

zx+1, r = zx, r +
∂zx, r

∂x
+

1
2

∂2zx, r

∂x2

zx−1, r = zx, r − ∂zx, r

∂x
+

1
2

∂2zx, r

∂x2

zx, r+1 = zx, r +
∂zx, r

∂r
.

By another purely heuristic argument, he claimed that function U(µ, r′) satisfies the second-order
differential equation

∂U

∂r′ = − ∂

∂µ
(−2µU) +

1
2

∂2

∂µ2
(2U) = 2U + 2µ

∂U

∂µ
+

∂2U

∂µ2
, (2.2)

which is a special case of the Fokker-Planck or Kolmogorov forward equation defining the OU diffusion:

∂p(x, t)
∂t

= − ∂

∂x
(µ(x)p(x, t)) +

1
2

∂2

∂x2

(

σ2(x)p(x, t)
)

.

In particular, equation (2.2) is the governing equation for the OU diffusion with infinitesimal mean
µ(x) = −2x and infinitesimal variance σ2(x) = 2. While rigorous proofs were not provided, this work
had the first mention of the forward equation for the OU diffusion.

A century later, Markov [14] considered a more general model. In his scheme there are also two urns,
urn A containing n balls and urn B containing n1 balls. Out of total (n + n1) balls, there are (n + n1)p
white and (n + n1)q black balls (0 < p < 1, q = 1 − p). Similar to the Laplace’s scheme, by denoting
probability that there are x white balls in the urn A after r draws by zx, r, Markov obtained the following
difference equation:

zx, r+1 =
x + 1

n
· n1q − np + x + 1

n1
· zx+1, r +

n − x + 1
n

· (n + n1)p − x + 1
n1

· zx−1, r

+

(

x

n
· (n + n1)p − x

n1
+

n − x

n
· n1q − np + x

n1

)

· zx, r. (2.3)

Next, Markov introduced new space variable µ and new time variable ρ and obtained the following
relation:

x = np + µ
1

∆µ
, r

(

1
n

+
1
n1

)

= 2ρ, where ∆µ =

√

n + n1

2pqnn1
,

demanding that the ratio of number of balls in urn A and urn B remains constant at all times, i.e.
n1α = n for some α > 0. Obviously, for α = 1 and p = q = 1

2 this model reduces to the previously
described Laplace’s urn scheme.

Finally, the difference equation (2.3) was, again by pure heuristics, approximated by the corresponding
Fokker-Planck equation. In order to do so, Markov defined the space and time dependent function
U(µ, ρ) := zx,r, smooth enough for obtaining approximations

zx+1, r = U(µ + ∆µ, ρ) ≈ U + ∆µ
∂U

∂µ
+

1
2

(∆µ)2 ∂2U

∂µ2

zx−1, r = U(µ − ∆µ, ρ) ≈ U − ∆µ
∂U

∂µ
+

1
2

(∆µ)2 ∂2U

∂µ2

zx, r+1 = U(µ, ρ +
1 + α

2n
) ≈ U +

1 + α

2n

∂U

∂ρ
,

precise up to the order o(n−1).
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By combining these approximations with the new space and time transformations and putting it into
(2.3), Markov obtained the second order differential equation

∂U

∂ρ
= 2U + 2µ

∂U

∂µ
+

∂2U

∂µ2
,

the Fokker-Planck equation for the OU diffusion with infinitesimal mean µ(x) = −2x and infinitesimal
variance σ2(x) = 2, completely coinciding with Laplace’s result.

We now briefly discuss the Wright-Fisher urn scheme, named after S. Wright and R. Fisher. Wright-
Fisher urn scheme is a model that describes gene mutations (in some genetic pool) over time, strongly
influencing selection and sampling forces in the corresponding population. There are several different
versions of this model, and we use the scheme described in [9].

Suppose that in a population of size n each individual is either of type A or type a. Let i be the
number of A-types in the population. Therefore, the remaining (n − i) population members are a-types.
The next generation of a population is produced depending on the influence of mutation, selection and
sampling forces. Once born, individual of A-type can mutate in a-type with probability α and individual
of a-type can mutate in A-type with probability β. Taking into account parental population comprised
of i A-types and (n − i) a-types, the expected fraction of A-types after mutation is

i

n
(1 − α) +

(

1 − i

n

)

β,

while the expected fraction of a-types is

i

n
α +

(

1 − i

n

)

(1 − β) .

Survival ability of each type is modeled by parameter s so that the ratio of A-types over a-types
is equal to 1 + s, meaning that A-type is selectively superior to a-type. Then the expected fraction of
mature A-types before reproduction is

pi =
(1 + s) [i (1 − α) + (n − i) β]

(1 + s) [i (1 − α) + (n − i) β] + [iα + (n − i) (1 − β)]
. (2.4)

The last assumption of this model is that the composition of the next generation is determined through
n binomial trials, where the probability of producing an A-type in each trial is pi. This model, tracking
the number of A-types in population over time, can be described by the discrete-time Markov chain
(Gn

r , r ∈ N0) with the state space {0, 1, 2, . . . , n} and transition probabilities

pij =

(

n

j

)

pj
i (1 − pi)n−j . (2.5)

This model is parametrized by α, β, and s ∈ [0, 1]. Depending on their values, different limiting
diffusions could be obtained. In Section 7 of this paper, we present two different settings that lead to
generally parametrized Jacobi and CIR diffusions. The procedures of constructing these diffusions as
limits of some suitably selected discrete-time Markov chain (urn scheme) are based on examples given in
[9, p. 176-183], where only heuristic arguments are given for only special cases of the limiting Jacobi and
CIR diffusions.

From this review of history, we see that the connection between discrete-time Markov chains in
urn-scheme models and some limiting continuous time stochastic processes has been brought up in the
literature. Today, the conjectures of Laplace and Markov could be rigorously proved by modern tech-
niques of analysis and probability theory, involving the convergence of evolution operators of discrete
time Markov chains. In this paper we derive such connections between several urn-scheme models and
the corresponding diffusions. More precisely, for appropriately chosen discrete time Markov chains we
derive the corresponding limiting diffusions, then define the CTRWs and their fractional non-heavy tailed
Pearson diffusion limits.

3 Pearson diffusions

In 1931 Kolmogorov observed that the differential equation for the invariant density m(x), x ∈ R, of the
classical Markovian diffusions satisfying

m
′(x)/m(x) = [a(x) − b′(x)]/[b(x)] = [(a1 − 2b2)x + (a0 − b1)]/[b2x2 + b1x + b0],
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in case of a linear drift a(x) = a1x + a0 = −θ(x − µ) and the quadratic squared diffusion coefficient
σ2(x) = 2θb(x), becomes the famous Pearson equation introduced by Pearson in 1914 to unify important
families of distributions (see [20]). The family of Pearson distributions is categorized into six well known
and widely applied parametric subfamilies: normal, gamma, beta, Fisher-Snedecor, reciprocal gamma
and Student distributions. The latter three distributions are heavy-tailed, while the former three are not.
Pearson diffusion is defined as the unique strong solution of the following stochastic differential equation
(SDE):

dXt = −θ(Xt − µ)dt +
√

2θ(b2X2
t + b1Xt + b0)dWt, t ≥ 0,

where µ ∈ R is the stationary mean, θ > 0 is the scaling of time determining the speed of the mean
reversion, and b0, b1 and b2 must be such that the square root is well defined when Xt is in the state
space (l, L).

Pearson diffusions could be categorized into six subfamilies (see [13]), according to the degree of the
polynomial σ2(x) and, in the quadratic case, according to the sign of its leading coefficient b2 and the
sign of its discriminant ∆ = b2

1 − 4b0b2. The six types are:

• constant b(x) - Ornstein-Uhlenbeck (OU) process, characterized by a normal stationary distribution,

• linear b(x) - Cox-Ingersol-Ross (CIR) process, characterized by a gamma stationary distribution,

• quadratic b(x) with b2 < 0 - Jacobi (JC) diffusion, characterized by a beta stationary distribution,

• quadratic b(x) with b2 > 0 and ∆(b) > 0 - Fisher-Snedecor (FS) diffusion, characterized by Fisher-
Snedecor stationary distribution,

• quadratic b(x) with b2 > 0 and ∆(b) = 0 - reciprocal gamma (RG) diffusion, characterized by
reciprocal gamma stationary distribution,

• quadratic b(x) with b2 > 0 and ∆(b) < 0 - Student (ST) diffusion, characterized by Student
stationary distribution.

More details on the first three types of Pearson diffusions with non-heavy tailed stationary distribu-
tions are found in the classical book [9].

Time evolution of the diffusion is described by the Kolmogorov forward (Fokker-Planck) and backward
partial differential equations (PDEs) for the transition density p(x, t; y, s) = d

dxP(Xt ≤ x|Xs = y). We
consider only time-homogeneous diffusions for which p(x, t; y, s) = p(x, t − s; y, 0) for t > s and thus
we write p(x, t; y) = d

dxP(Xt ≤ x|X0 = y). The transition density p(x, t; y) solves the following Cauchy
problem with space-varying polynomial coefficients:

∂p(x, t; y)
∂t

= Gp(x, t; y), p(x, 0; y) = g(y)

with the point-source initial condition, where Gg(y) =
(

µ(y) ∂
∂y + σ2(y)

2
∂2

∂y2

)

g(y) is the infinitesimal

generator of the diffusion, playing a key role in its analytical properties. The generators of non-heavy
tailed OU, CIR, and Jacobi diffusions considered in this paper have purely discrete spectra, consisting
of infinitely many simple eigenvalues (λn, n ∈ N) (see [13]). Corresponding orthonormal eigenfunctions
(Qn(x), n ∈ N) are classical systems of orthogonal polynomials: Hermite polynomials for the OU process,
Laguerre polynomials for the CIR process and Jacobi polynomials for the Jacobi diffusion.

4 Fractional Pearson diffusions (fPDs)

Let (X1(t), t ≥ 0) be a Pearson diffusion. The fPD (Xβ(t), t ≥ 0) is defined via a non-Markovian
time-change E(t) independent of X1(t):

Xβ(t) := X1(Et), t ≥ 0,

where Et = inf{x > 0 : Dx > t} is the inverse of the standard β-stable Lévy subordinator (Dt, t ≥ 0),
0 < β < 1, with the Laplace transform E [e−sDt ] = exp{−tsβ}, s ≥ 0. Since Et rests for periods of time
with non-exponential distribution, the process (Xβ(t), t ≥ 0) is not a Markov process.

We say that the non-Markovian process Xβ(t) has a transition density pβ(x, t; y) if

P(Xβ(t) ∈ B|Xβ(0) = y) =
∫

B

pβ(x, t; y)dx
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for any Borel subset B of (l, L).
The governing equations for the fPDs are time-fractional forward and backward Kolmogorov equations,

with the time-fractional derivative (regularized non-local operator) defined in the Caputo sense (see [19]):

∂βu

∂tβ
=

{

∂u
∂t (t, x) , if β = 1

1
Γ(1−β)

∂
∂t

∫ t

0 (t − τ)−β
u (τ, x) dτ − u(0,x)

tβ , if β ∈ (0, 1).

Using spectral methods, the representations for the transition densities of the non-heavy-tailed fPDs
(OU, CIR, Jacobi) were obtained in [13]. Namely, it has been shown that the series

pβ(x, t; y) = m(x)
∞
∑

n=0

Eβ

(

−λntβ
)

Qn(y)Qn(x) (4.1)

converges for fixed t > 0, x, y ∈ (l, L), where Eβ(−z) =
∞
∑

j=0

(−z)j/Γ(1 + βj), z ≥ 0, is the Mittag-Leffler

function. The series (4.1) satisfies pβ(x, 0; y) = δ(x−y). These spectral representations were then used to
obtain the explicit strong solutions of the corresponding fractional Cauchy problems for both backward
and forward equations. The solutions were given as series that converge and satisfy the fractional partial
differential equations pointwise. The results obtained in this paper can be used to implement another
method of obtaining the solutions for the fractional Cauchy problems with space-varying polynomial
coefficients appearing in the generator. Namely, by simulating the Markov chains and waiting times,
particle tracking method can provide the means for numerically evaluating the strong solutions.

5 Transition operators of the discrete time Markov chains

To implement the diffusion approximation of discrete-time Markov chains, we will use transition kernels
and transition operators. Let µ be an arbitrary probability kernel on a measurable space (S, S). The
associated transition operator T is defined as

T f(x) = (T f)(x) =
∫

µ(x, dy)f(y), x ∈ S, (5.1)

where f : S → R is assumed to be measurable and either bounded or nonnegative. From the approxi-
mation of f by simple functions and the monotone convergence argument, it follows that T f is again a
measurable function on S. Furthermore, T is a positive contraction operator: 0 ≤ f ≤ 1 implies that
0 ≤ T f ≤ 1. For more details on transition operators and their importance to the study of Markov
processes, we refer to [8], Chapter 19.

Theorems 19.25 and 19.28 from [8] are crucial for the technique used for obtaining the non-fractional
Pearson diffusion as the scaling limit of a suitably chosen Markov chain with known transition operator.
Markov chain will be defined in terms of its state space and transition probabilities (the integral in (5.1)
then becomes a sum). A few additional definitions are given for clarity before the statement of the
theorem.

By D(S) we denote the space of right continuous functions with left limits defined on R
+ with values

in S endowed with Skorokhod J1 topology. Consider the Banach space of bounded continuous functions
on space S, where S = R in the OU case, S = [0, 1] in the Jacobi case and S = [0, +∞) in the CIR case,
with the supremum norm. For a closed operator A with domain D, a core for A is a linear subspace
D ⊂ D such that the restriction A|D has closure A. In that case, A is clearly uniquely determined by its
restriction A|D.

Theorems 1.6 and 2.1 from [5, Section 8] give sufficient conditions for C∞
c (S) being a core of the

diffusion infinitesimal generator. In particular, Jacobi diffusion satisfies conditions of Theorem 1.6, while
other Pearson diffusions satisfy conditions of Theorem 2.1, which means C∞

c (S) is a core for Pearson
diffusions. Therefore C3

c (S), as a broader space, can be referred to as the core as well.

Theorem 5.1. Let (Y (n), n ∈ N) be a sequence of discrete-time Markov chains on S with transition
operators (Un, n ∈ N). Consider a Feller process X on S with semigroup Tt and generator A. Fix a core
D for the generator A, and assume that (hn, n ∈ N) is the sequence of positive reals tending to zero as
n → ∞. Let

An = h−1
n (Un − I), Tn,t = U ⌊t/hn⌋

n , Xn
t = Y n

⌊t/hn⌋.

Then the following statements are equivalent:
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a) If f ∈ D, there exist some fn ∈ Dom(An) with fn → f and Anfn → Af as n → ∞

b) Tn,t → Tt strongly for each t > 0

c) Tn,tfn → Ttf for each f ∈ C0, uniformly for bounded t > 0

d) if X
(n)
0 ⇒ X0 in S, then Xn ⇒ X in the Skorokhod space D(S) with the J1 topology.

The proof could be found in [8, Theorem 19.28, page 387].

6 Correlated CTRW for the OU process based on the Laplace-

Bernoulli urn scheme

In this section, we define the Bernoulli-Laplace urn-scheme model, but compared to early ideas of Laplace
and Markov summarized in Section 2, with crucial changes in space and time transformations in order
to obtain more general limiting process, i.e. the OU diffusion with general parameters. The urn scheme
consists of two urns, A and B, each containing n balls. Furthermore, n out of total 2n balls are black.
At each step one ball is randomly chosen from each urn. The ball drawn from urn A is then placed into
urn B and the ball drawn from urn B is placed into urn A. We are interested in the number of white
balls in the urn A after r ∈ N draws.

Let for each n ∈ N, (Z(n)
r , r ∈ N0) be the Markov chain with the state space {0, 1, 2, . . . , n}, where n

is the number of balls in urn A, r is the number of draws and Z
(n)
r is the number of white balls in the

urn A after r draws. The transition probabilities for this Markov chain are as follows:

pi,i+1 =

(

1 − i

n

)2

, pi,i = 2
i

n

(

1 − i

n

)

, pi,i−1 =

(

i

n

)2

, 0 otherwise. (6.1)

We assume that the initial state of the chain is given by Z
(n)
0 = ⌊ 1

2 (n + (ax + b)
√

n)⌋, where a 6= 0
and b are fixed parameters with values in R and x ∈ R. Now we introduce the space variable (i.e., state)
transformation

i′ =
1

a
√

n

(

2i − n − b
√

n
)

, i ∈ {0, 1, 2, . . . , n},

to obtain a new Markov chain (H(n)
r , r ∈ N0), where

H(n)
r =

1
a
√

n

(

2Z(n)
r − n − b

√
n
)

. (6.2)

Let us denote xn = ⌊ 1
2 (n + (ax + b)

√
n)⌋ and x′

n = 1
a

√
n

(2xn − n − b
√

n). Since our starting Markov

chain (Z(n)
r , r ∈ N0) is homogenous, using (6.1) we obtain the transition operator of the Markov chain

(H(n)
r , r ∈ N0):

Tnf(x′
n) =

(

1 − 1
2

(

1 +
ax′

n + b√
n

))2

f

(

x′
n +

2
a
√

n

)

+

(

1 +
ax′

n + b√
n

)(

1 − 1
2

(

1 +
ax′

n + b√
n

))

f(x′
n)

+

(

1
2

(

1 +
ax′

n + b√
n

))2

f

(

x′
n − 2

a
√

n

)

=
(

1 − xn

n

)2

f

(

1
a
√

n

(

2(xn + 1) − n − b
√

n
)

)

+ 2
xn

n

(

1 − xn

n

)

f

(

1
a
√

n

(

2xn − n − b
√

n
)

)

+
(xn

n

)2

f

(

1
a
√

n

(

2(xn − 1) − n − b
√

n
)

)

. (6.3)

For the application of Theorem 5.1, operators An are defined as follows:

An :=
θ

2
n(Tn − I), θ > 0, fn ∈ Dom(An), fn(x) := f(x′

n). (6.4)

where f ∈ C3
c (R).

The continuous-time process (X(n)
t , t ≥ 0) is obtained by the following scaling of time in (H(n)

r , r ∈ N0),
for each n ∈ N:

X
(n)
t := H

(n)

⌊ θ
2

nt⌋, θ > 0. (6.5)

7



Let X = (Xt, t ≥ 0) be the OU diffusion, i.e., the solution of the SDE

dXt = µ(Xt)dt + σ(Xt)dW (t), t ≥ 0,

where (W (t), t ≥ 0) is the standard Brownian motion. The drift µ(x) and diffusion parameter σ2(x) are
given by

µ(x) = −τ (x − µ) , σ(x) =
√

2τσ2, τ > 0, µ ∈ R, σ ∈ R,

and the infinitesimal generator is defined by the following expression:

Af(x) =

[

µ(x)
∂

∂x
+

σ2(x)
2

∂2

∂x2

]

f(x) =

[

−τ (x − µ)
∂

∂x
+ τσ2 ∂2

∂x2

]

f(x), f ∈ C3
c (R). (6.6)

The next theorem established that the OU diffusion is the limiting process of the sequence of rescaled
discrete time Markov chains given by (6.2).

Theorem 6.1. Let (H(n)
r , r ∈ N0) for each n ∈ N, be the Markov chain defined by (6.2) with transition

operator (6.3). Let (X(n)
t , t ≥ 0) for each n ∈ N, be the time-changed process corresponding to the Markov

chain (H(n)
r , r ∈ N0), with the time-change (6.5). Let operators (An, n ∈ N) be defined by (6.4). Then

Xn ⇒ X in D(R),

where X = (Xt, t ≥ 0) is the Ornstein-Uhlenbeck diffusion with infinitesimal generator A given by (6.6)
and parameters τ = θ, µ = − b

a and σ = 1
a

√
2
.

Proof. In the setup of the Theorem 5.1, we will first prove that statement a) of this theorem is valid for
An defined by (6.4) and A defined by (6.6). Then we will use the equivalence of statements a) and d) to
obtain convergence Xn ⇒ X in D(R) under assumption X

(n)
0 ⇒ X0, n → ∞.

Therefore, first we prove the validity of the statement a) from Theorem 5.1 in our setting:

||fn − f ||∞ = sup
x∈R

|fn(x) − f(x)| = sup
x∈R

|f(x′
n) − f(x)|

and since by the definition of function ⌊·⌋

ax′
n ≤ ax ≤ ax′

n +
2√
n

we have
x′

n → x, n → ∞,

so using this we obtain
||fn − f ||∞ → 0, n → ∞

and
||Anfn − Af ||∞ = sup

x∈R

|Anfn(x) − Af(x)| = sup
x∈R

|Anf(x′
n) − Af(x)|.

By the triangle inequality we have

||Anfn − Af ||∞ ≤ sup
x∈R

|Anf(x′
n) − Anf(x)| + sup

x∈R

|Anf(x) − Af(x)|. (6.7)
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Now it follows that

Anf(x) =
θ

2
n (Tnf(x) − f(x))

=
θ

2
n

(

1 − 1
2

(

1 +
ax + b√

n

))2

f

(

x +
2

a
√

n

)

+
θ

2
n

(

1 +
ax + b√

n

)(

1 − 1
2

(

1 +
ax + b√

n

))

f (x)

+
θ

2
n

(

1
2

(

1 +
ax + b√

n

))2

f

(

x − 2
a
√

n

)

− θ

2
nf (x)

=
θ

2
n

(

f

(

x +
2

a
√

n

)

− f (x)

)

− θ

2
n

(

1 +
ax + b√

n

)(

f

(

x +
2

a
√

n

)

− f (x)

)

+
θn

8

((

1 +
ax + b√

n

))2(

f

(

x +
2

a
√

n

)

− 2f (x) + f

(

x − 2
a
√

n

))

= −θ

(

x +
b

a

)

(

f
(

x + 2
a

√
n

)

− f (x)
)

2
a

√
n

+
θ

2a2

((

1 +
ax + b√

n

))2

(

f
(

x + 2
a

√
n

)

− 2f (x) + f
(

x − 2
a

√
n

))

(

2
a

√
n

)2

−→ −θ

(

x +
b

a

)

f ′ (x) +
1
2

θ

a2
f ′′ (x) , n → ∞.

Comparing the above limit with (6.6) we see that

Anf(x) −→ Af(x), n → ∞ (6.8)

with τ = θ, µ = − b
a and σ = 1

a
√

2
.

Since the function f is in the space C3
c (R), the above convergence holds uniformly. Furthermore

x′
n → x, n → ∞,

so we have
sup
x∈R

|Anf(x′
n) − Anf(x)| → 0, n → ∞.

Using the above together with (6.8) in (6.7) we finally obtain

||Anfn − Af ||∞ → 0, n → ∞,

and since
X

(n)
0 ⇒ X0, n → ∞ ⇐⇒ x′

n → x, n → ∞,

by Theorem 5.1 we obtain Xn ⇒ X in D(R), where X is the generally parametrized OU diffusion.

7 Correlated CTRWs for non-heavy-tailed Pearson diffusions

based on the Wright-Fisher model

In this section we present two different versions of the Wright-Fisher model that lead to generally
parametrized Jacobi and CIR diffusions.

7.1 Jacobi diffusion

Jacobi diffusion Y = (Yt, t ≥ 0) is defined as the solution of the SDE

dYt = −γ(Yt − µ)dt +
√

2γδYt(1 − Yt)dWt, t ≥ 0, µ ∈ (0, 1), γ, δ > 0,

with the infinitesimal generator

Af(y) = −γ(y − µ)f ′(y) +
1
2

(2γδ)y(1 − y)f ′′(y), f ∈ C3
c ([0, 1]). (7.1)

In this case we assume that there are no survival abilities and that probability of mutation of each
type (A to a and a to A) is proportional to the size of the population, i.e.

α =
a

n
, β =

b

n
, s = 0, a, b > 0.
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Therefore, the expected fraction of mature A-types (2.4) becomes

pi =
i

n

(

1 − a

n

)

+

(

1 − i

n

)

b

n
. (7.2)

For each n ∈ N we define a new Markov chain (H(n)
r , r ∈ N0) as follows:

H(n)
r =

1
n

G(n)
r . (7.3)

The state space of this new Markov chain is {0, 1
n , 2

n , . . . , 1} and we assume that the initial state of the

original chain (G(n)
r , r ∈ N0) is given by

i(y) = i = Gn
0 = ⌊ny⌋, y ∈ [0, 1].

We emphasize that the initial state is a function of y, but we will use the notation i for simplicity. The
transition operator Tn of the Markov chain (H(n)

r , r ∈ N0) is defined as follows:

Tnf

(

i

n

)

=
n
∑

j=0

pijf

(

j

n

)

, (7.4)

where pij is defined in (2.5) and pi in (7.2).
Define the operator

An := θn(Tn − I), θ > 0, fn ∈ Dom(An), fn(y) := f

(⌊ny⌋
n

)

= f

(

i

n

)

, (7.5)

where f ∈ C3
c ([0, 1]).

Now by the following scaling of time in (H(n)
r , r ∈ N0), for each n ∈ N we obtain the corresponding

continuous-time process (Y (n)
t , t ≥ 0):

Y
(n)

t := H
(n)
⌊θnt⌋, θ > 0. (7.6)

The next theorem states that the Jacobi diffusion could be obtained as the limiting process of the
previously time-changed processes (Y (n)

t , t ≥ 0).

Theorem 7.1. Let (H(n)
r , r ∈ N0), for each n ∈ N, be the Markov chain defined by (7.3) with the

transition operator (7.4). Let Y n = (Y (n)
t , t ≥ 0), for each n ∈ N, be its corresponding time-changed

process with the time-change (7.6). Let the operators (An, n ∈ N) be defined by (7.5). Then

Y n ⇒ Y in D([0, 1]),

where Y = (Yt, t ≥ 0) is the Jacobi diffusion with the infinitesimal generator A given by (7.1), and

δ =
1

2(a + b)
, γ = θ(a + b), µ =

b

a + b
.

Proof. Once again, we are in the setting of the Theorem 5.1 and follow the same procedure as in the
Theorem 6.1. We first prove that statement a) of Theorem 5.1 is valid for An defined by (7.5) and
A defined by (7.1). Then we use the equivalence of statements a) and d) from Theorem 5.1 to obtain
convergence Y n ⇒ Y in D([0, 1]) under assumption Y

(n)
0 ⇒ Y0, n → ∞.

First, we prove the statement a) from Theorem 5.1 in our setting:

||fn − f ||∞ = sup
y∈[0,1]

|fn (y) − f (y) | = sup
y∈[0,1]

|f (i/n) − f (y) |.

According to the well-known property ⌊ny⌋ ≤ ny < ⌊ny⌋ + 1 of the function ⌊·⌋, it follows that

i

n
≤ y <

i

n
+

1
n

and therefore

lim
n→∞

i

n
= y.
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From this we obtain
||fn − f ||∞ → 0, n → ∞

and
||Anfn − Af ||∞ = sup

y∈[0,1]

|Anfn(y) − Af(y)| = sup
y∈[0,1]

|Anf(i/n) − Af(y)|.

According to (7.5) it follows that

Anf

(

i

n

)

= θn





n
∑

j=0

pijf

(

j

n

)

− f

(

i

n

)



 = θn

n
∑

j=0

pij

(

f

(

j

n

)

− f

(

i

n

))

.

By the Taylor formula for function f around i
n with the mean-value form of the remainder we obtain

Anf

(

i

n

)

= θ

n
∑

j=0

pij (j − i) f ′
(

i

n

)

+ θ

n
∑

j=0

pij
(j − i)2

2n
f ′′
(

i

n

)

+ θ

n
∑

j=0

pij
(j − i)3

6n2
f ′′′ (ζ) , (7.7)

where ζ is a real number such that |ζ − i
n | < | j

n − i
n |.

Next, denote

µ(y) := lim
n→∞

n
∑

j=0

pij (j − i) , σ2(y) := lim
n→∞

n
∑

j=0

pij
(j − i)2

n
, Rn(y) := θ

n
∑

j=0

pij
(j − i)3

6n2
f ′′′ (ζ) .

Taking into account (7.7), we obtain

lim
n→∞

Anf

(

i

n

)

= θµ(y)f ′ (y) +
θ

2
σ2(y)f ′′ (y) + lim

n→∞
Rn(y). (7.8)

From the time-homogeneity of the observed Markov chains and the fact that f ∈ C3
c ([0, 1]), it follows

that

µ(y) = lim
n→∞

n
∑

j=0

pij (j − i) = lim
n→∞

E[Gn
1 − Gn

0 |Gn
0 = i]

= lim
n→∞

(npi − i) = lim
n→∞

(

i
(

1 − a

n

)

+

(

1 − i

n

)

b − i

)

= −(a + b) lim
n→∞

(

i

n

)

+ b = −(a + b)y + b, (7.9)

σ2(y) = lim
n→∞

n
∑

j=0

pij
(j − i)2

n
= lim

n→∞
1
n

E[(Gn
1 − Gn

0 )2 |Gn
0 = i]

= lim
n→∞

1
n

(

npi(1 − pi) + n2p2
i − 2nipi + i2

)

= lim
n→∞

(

pi − p2
i +

(npi − i)2

n

)

= y − y2 = y(1 − y), (7.10)

lim
n→∞

|Rn(y)| ≤ K

∣

∣

∣

∣

θ lim
n→∞

n
∑

j=0

pij
(j − i)3

6n2

∣

∣

∣

∣

= K

∣

∣

∣

∣

θ lim
n→∞

1
n2

E[(Gn
1 − Gn

0 )3 |Gn
0 = i]

∣

∣

∣

∣

= K

∣

∣

∣

∣

θ lim
n→∞

1
n2

(

npi(1 − 3pi + 2p2
i ) + 3npi(npi − i)(1 − pi) + (npi − i)3

)

∣

∣

∣

∣

= K

∣

∣

∣

∣

θ lim
n→∞

(

pi(1 − 3pi + 2p2
i )

n
+

3pi(npi − i)(1 − pi)
n

+
(npi − i)3

n2

)∣

∣

∣

∣

= 0,

(7.11)

where K is a constant such that |f ′′′(ζ)| ≤ K and

lim
n→∞

pi = y and lim
n→∞

(npi − i)2

n
= 0.
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Finally, by substituting (7.9), (7.10) and (7.11) in (7.8), we obtain

lim
n→∞

Anf

(

i

n

)

= θ(−y(a + b) + b)f ′(y) +
1
2

θy(1 − y)f ′′(y).

Now by re-parametrizing

δ =
1

2(a + b)
, γ = θ(a + b), µ =

b

a + b
,

the last limit becomes

lim
n→∞

Anf

(

i

n

)

= −γ(y − µ)f ′(y) +
1
2

(2γδ)y(1 − y)f ′′(y),

which is precisely the infinitesimal generator of the Jacobi diffusion. In the space C3
c ([0, 1]) all above

limits hold uniformly, therefore we obtain

||Anfn − Af ||∞ → 0, n → ∞,

and since
Y

(n)
0 ⇒ Y0, n → ∞ ⇐⇒ i/n → y, n → ∞,

by Theorem 5.1 we obtain Y n ⇒ Y in D([0, 1]), where Y is the generally parametrized Jacobi diffusion.

7.2 CIR process

The CIR diffusion Z = (Zt, t ≥ 0) is defined as the solution of the SDE

dZt = −θ

(

Zt − b

a

)

dt +

√

θ

a
ZtdWt, t ≥ 0, θ > 0, a > 0, b > 0,

with the infinitesimal generator

Af(z) = −θ

(

z − b

a

)

f ′(z) +
1
2

θ

a
zf ′′(z), f ∈ C3

c ([0, ∞)). (7.12)

In this case, we assume there is only mutation of the order

α =
a

nd
, β =

b

n
, 0 < d < 1, 0 < a, b < ∞, s = 0,

so that expected fraction of A-types (2.4) becomes

pi =
i

n

(

1 − a

nd

)

+

(

1 − i

n

)

b

n
. (7.13)

For each n ∈ N, we define the new Markov chain (H(n)
r , r ∈ N) with the state space {0, 1

nd , . . . , 1
nd−1 }

H(n)
r =

G
(n)
r

nd
. (7.14)

We assume that the initial state space of the starting Markov chain (G(n)
r , r ∈ N0) is

i(z) = i = Gn
0 = ⌊ndz⌋, z ∈ [0, ∞).

We assume that n is always large enough so that i(z) is in the state space of Markov chain (G(n)
r , r ∈ N0).

We emphasize that the initial state is a function of z, but we will use notation i for simplicity. The
transition operator Tn of the Markov chain (H(n)

r , n ∈ N) is given by

Tnf

(

i

n

)

=
n
∑

j=0

pijf

(

j

n

)

, (7.15)
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where pij is defined in (2.5) and pi in (7.13). Now we define operator

An :=
θ

a
n(Tn − I), θ > 0, fn ∈ Dom(An), fn(z) := f

(⌊ndz⌋
nd

)

= f

(

i

nd

)

(7.16)

where f ∈ C3
c ([0, ∞)) and by the following scaling of time in (H(n)

r , r ∈ N0), for each n ∈ N we obtain
the corresponding continuous-time process (Z(n)

t , t ≥ 0):

Z
(n)
t := H

(n)

⌊ θ
a

ndt⌋, θ > 0. (7.17)

The next theorem states that the CIR diffusion could be obtained as the limiting process of the time-
changed processes (Z(n)

t , t ≥ 0).

Theorem 7.2. Let (H(n)
r , r ∈ N0), for each n ∈ N, be the Markov chain defined by (7.14) with the

transition operator (7.15). Let Zn = (Z(n)
t , t ≥ 0), for each n ∈ N, be its corresponding time-changed

process, with the time-change (7.17). Let the operators (An, n ∈ N) be defined by (7.16). Then

Zn ⇒ Z in D(R+),

where Z = (Zt, t ≥ 0) is the CIR diffusion with the infinitesimal generator A given by (7.12).

Proof. We first prove that statement a) of the Theorem 5.1 is valid for An defined by (7.16) and A
defined by (7.12) and then we use the equivalence of statements a) and d) from Theorem 5.1 to obtain
convergence Zn ⇒ Z in D(R+) under assumption Z

(n)
0 ⇒ Z0, n → ∞.

We first prove the statement a) from Theorem 5.1 in our setting:

||fn − f ||∞ = sup
z∈R+

|fn (z) − f (z) | = sup
z∈R+

|f
(

i/nd
)

− f (z) |.

By definition of the function ⌊·⌋ we have

⌊ndz⌋ ≤ ndz < ⌊ndz⌋ + 1

so it follows
i

nd
≤ z <

i

nd
+

1
nd

and therefore

lim
n→∞

i

nd
= z.

so using this we obtain
||fn − f ||∞ → 0, n → ∞

and
||Anfn − Af ||∞ = sup

z∈R+

|Anfn(z) − Af(z)| = sup
z∈R+

|Anf(i/nd) − Af(z)|.

According to (7.16) it follows

Anf

(

i

nd

)

=
θ

a
nd





n
∑

j=0

pijf

(

j

nd

)

− f

(

i

nd

)



 =
θ

a
nd

n
∑

j=0

pij

(

f

(

j

nd

)

− f

(

i

nd

))

.

Now by the Taylor formula for function f around i
nd with mean-value form of the remainder we obtain

Anf

(

i

nn

)

=
θ

a

n
∑

j=0

pij (j − i) f ′
(

i

nd

)

+
θ

2a

n
∑

j=0

pij
(j − i)2

nd
f ′′
(

i

nd

)

+
θ

6a

n
∑

j=0

pij
(j − i)3

n2d
f ′′′ (ζ) (7.18)

where ζ is a real number such that |ζ − i
nd | < | j

nd − i
nd |.

Let us denote

µ(z) := lim
n→∞

n
∑

j=0

pij (j − i) , σ2(z) := lim
n→∞

n
∑

j=0

pij
(j − i)2

nd
, Rn(z) :=

θ

6a

n
∑

j=0

pij
(j − i)3

n2d
f ′′′ (ζ) .
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Together with (7.18) we obtain

lim
n→∞

Anf

(

i

nd

)

=
θ

a
µ(z)f ′ (z) +

θ

2a
σ2(z)f ′′ (z) + lim

n→∞
Rn(z). (7.19)

From the time-homogeneity of the Markov chains, it follows that

µ(z) = lim
n→∞

n
∑

j=0

pij (j − i) = lim
n→∞

E[Gn
1 − Gn

0 |Gn
0 = i]

= lim
n→∞

(npi − i) = lim
n→∞

(

i
(

1 − a

nd

)

+

(

1 − i

n

)

b − i

)

= −a lim
n→∞

(

i

nd

)

− lim
n→∞

(

i

n

)

b + b = −az + b, (7.20)

σ2(z) = lim
n→∞

n
∑

j=0

pij
(j − i)2

nd
= lim

n→∞
1
nd

E[(Gn
1 − Gn

0 )2 |Gn
0 = i]

= lim
n→∞

1
nd

(

npi(1 − pi) + n2p2
i − 2nipi + i2

)

= lim
n→∞

1
nd

(

npi(1 − pi) + (npi − i)2
)

= z, (7.21)

lim
n→∞

|Rn(z)| ≤ K

∣

∣

∣

∣

θ

6a
lim

n→∞

n
∑

j=0

pij
(j − i)3

n2d

∣

∣

∣

∣

= K

∣

∣

∣

∣

θ

6a
lim

n→∞
1

n2d
E[(Gn

1 − Gn
0 )3 |Gn

0 = i]

∣

∣

∣

∣

= K

∣

∣

∣

∣

θ

6a
lim

n→∞
1

n2d

(

npi(1 − 3pi + 2p2
i ) + 3npi(npi − i)(1 − pi) + (npi − i)3

)

∣

∣

∣

∣

= K

∣

∣

∣

∣

θ

6a
lim

n→∞

(

npi

nd

(1 − 3pi + 2p2
i )

nd
+

3npi

nd

(npi − i)(1 − pi)
nd

+
(npi − i)3

n2d

) ∣

∣

∣

∣

= 0,

(7.22)

where K is a constant such that |f ′′′(ζ)| ≤ K and

npi

nd
→ z pi → 0,

(npi − i)2

nd
→ 0, n → ∞.

Finally, substituting (7.20), (7.21) and (7.22) in (7.19) we obtain

lim
n→∞

Anf

(

i

nd

)

=
θ

a
(−az + b) f ′(z) +

θ

2a
zf ′′(z)

= −θ

(

z − b

a

)

f ′(z) +
1
2

θ

a
zf ′′(z).

Comparing the obtained limit with (7.12) we see that the limit coincides with the generator of the
CIR diffusion. Since f ∈ C3

c ([0, ∞)), all above limits hold uniformly, i.e., we obtain

||Anfn − Af ||∞ → 0, n → ∞,

and since
Z

(n)
0 ⇒ Z0, n → ∞ ⇐⇒ i/nd → z, n → ∞,

by Theorem 5.1 we obtain Zn ⇒ Z in D(R+), where Z is the generally parametrized CIR diffusion.
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8 Fractional OU, Jacobi and CIR diffusions as the correlated

CTRWs limits

Suppose that (Tr, r ∈ N0), where T0 = 0, Tr = G1 + . . . + Gr, is the random walk where Gr ≥ 0 are
iid waiting times between particle jumps that are independent of the Markov chain (H(n)

r , r ∈ N0). We
assume G1 is in the domain of attraction of the β-stable distribution with index 0 < β < 1, and that the
waiting time of the Markov chain until its r-th move is described by Gr. Let

Nt = max{r ≥ 0: Tr ≤ t} (8.1)

be the number of jumps up to time t ≥ 0. Then the continuous time stochastic process
(

H(n)(Nt), t ≥ 0
)

,

where H(n)(Nt) is the state of the Markov chain at time t ≥ 0, is the correlated CTRW process. We now
state the main result of this section by defining the correlated CTRWs that converge to the fractional
OU, CIR, and Jacobi diffusions.

Theorem 8.1. Let (H(n)
r , r ∈ N0) be the Markov chain defined by (6.2) in the case of OU diffusion,

by (7.3) in the case of Jacobi diffusion and by (7.14) in the case of CIR diffusion. Let (X(n)(t), t ≥
0), (Y (n)(t), t ≥ 0) and (Z(n)(t), t ≥ 0) be the corresponding rescaled Markov chains given by (6.5),
(7.6) and (7.17) respectively. Let (N(t), t ≥ 0) be the renewal process defined in (8.1), and (Et, t ≥ 0) be
the inverse of the standard β-stable subordinator (D(t), t ≥ 0) with 0 < β < 1. Then

X(n)(n−1N(n
1
β t)) ⇒ X(Et), n → ∞,

Y (n)(n−1N(n
1
β t)) ⇒ Y (Et), n → ∞,

Z(n)(n−1N(n
1
β t)) ⇒ Z(Et), n → ∞,

in the Skorokhod space D(S) with J1 topology, where (X(t), t ≥ 0) is Ornstein-Uhlenbeck diffusion with
generator (6.6), (Y (t), t ≥ 0) is Jacobi diffusion with generator (7.1) and (Z(t), t ≥ 0) is CIR diffusion
with generator (7.12).

Proof. From [19, Section 4.4]
n− 1

β T (⌈nt⌉) ⇒ Dt, n → ∞
in the sense of finite dimensional distributions, where (Dt, t ≥ 0) is β-stable subordinator. Since β-stable
subordinator Dt is a Lévy process, it follows that Dt is continuous in probability. Since the sample paths
of the process T (⌈nt⌉) are monotone non-decreasing, [4, Theorem 3] yields

n− 1
β T (⌈nt⌉) ⇒ Dt, n → ∞ (8.2)

in the Skorokhod space D(R+) with J1 topology. From (8.2) and Theorems 6.1, 7.1 and 7.2 we obtain
the joint convergence

(

X(n)(t), n− 1
β T (⌈nt⌉)

)

⇒ (Xt, Dt) , n → ∞, (8.3)
(

Y (n)(t), n− 1
β T (⌈nt⌉)

)

⇒ (Yt, Dt) , n → ∞, (8.4)
(

Z(n)(t), n− 1
β T (⌈nt⌉)

)

⇒ (Zt, Dt) , n → ∞, (8.5)

in the product space D(S × R
+) with J1 topology, where S = R in Ornstein-Uhlenbeck diffusion case,

S = [0, 1] in Jacobi diffusion case and S = R
+ in CIR diffusion case. Following the notation from [21] let

α = (β, σ) ∈ D(S × R
+), β ∈ D(S), σ ∈ D(R+),

and Du, D↑ and D↑↑ be sets of all such α which have unbounded, non-decreasing and increasing σ,
respectively. As shown in [21] sets

D↑,u = D↑ ∩ Du, D↑↑,u = D↑↑ ∩ Du

are Borel measurable.

15



Introduce the function
Ψ : D↑,u 7→ D(S × R

+), Ψ(α) = β ◦ σ−1.

From [21, Proposition 2.3] function Ψ is continuous in D↑↑,u.

Note that
(

X(n)(t), n− 1
β T (⌈nt⌉)

)

, (Xt, Dt) are in the domain of function Ψ, i.e.

(

X(n)(t), n− 1
β T (⌈nt⌉)

)

, (Xt, Dt) ∈ D↑,u.

Also, since the standard β-stable subordinator (Dt, t ≥ 0) is strictly increasing, it follows

(Xt, Dt) ∈ D↑↑,u. (8.6)

Observe that for the generalized inverses we have

(n− 1
β T (⌈nt⌉))−1 = n−1N(n

1
β t), (Dt)−1 = Et.

Since the function Ψ is continuous at D↑↑,u,

Ψ
(

X(n)(t), n− 1
β T (⌈nt⌉)

)

= X(n)(n−1N(n
1
β t))

and
Ψ (X(t), D(t)) = X(Et),

using (8.3) and (8.6) it follows
X(n)(n−1N(n

1
β t)) ⇒ X(Et)

in the space D(R) with J1 topology. The proofs for convergence of the respective CTRWs to fractional
CIR or Jacobi diffusion are the same as in the case of convergence to fractional OU diffusion.

Remark 8.2. The proof of Theorem 8.1 uses the approach from the proof of [21, Theorem 3.6] but in our
case the first component is Markov chain, rather then a random walk.

Remark 8.3. Note that

X(n)(n−1N(n
1
β t)) = H(n)

(

⌊2−1θN(n
1
β t)⌋

)

,

Y (n)(n−1N(n
1
β t)) = H(n)

(

⌊θN(n
1
β t)⌋

)

,

Z(n)(n−1N(n
1
β t)) = H(n)

(

⌊a−1θnd−1N(n
1
β t)⌋

)

,

where (H(n)
r , r ∈ N0) is corresponding Markov chain given by (6.2) for the OU, (7.3) for Jacobi and by

(7.14) for CIR case.
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