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We present a framework which unifies a large class of noncommutative spacetimes that can be described 
in terms of a deformed Heisenberg algebra. The commutation relations between spacetime coordinates 
are up to linear order in the coordinates, with structure constants depending on the momenta plus terms 
depending only on the momenta. The possible implementations of the action of Lorentz transformations 
on these deformed phase spaces are considered, together with the consistency requirements they 
introduce. It is found that Lorentz transformations in general act nontrivially on tensor products of 
momenta. In particular the Lorentz group element which acts on the left and on the right of a 
composition of two momenta is different, and depends on the momenta involved in the process. We 
conclude with two representative examples, which illustrate the mentioned effect.

© 2017 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction

The framework of Quantum Field Theory1 (QFT) has been 
extremely successful in predicting new phenomena and reach-
ing great accuracy in the description of known phenomena. This 
framework, however, is based on a fixed kinematic structure given 
by the background spacetime on which the matter fields propa-
gate. In the most successful applications of QFT this background 
is assumed to be Minkowski space M1,3. Such a structure is un-
tenable if we want our description of physics to be valid up to 
energies of the order of the Planck scale E p ∼ 1028 eV. At these 
energies gravitational effects become important, and a naive effec-
tive description involving quantum fluctuations of the gravitational 
field around a Minkowski background turns out not to be renor-
malizable [1], signaling that the theory needs an unknown ultravi-
olet completion.

A possible insight towards progress comes from 2 + 1 dimen-
sional Quantum Gravity, which is a topological theory without lo-
cal, propagating degrees of freedom. If this theory is coupled to a 
scalar field, and the topological degrees of freedom of the metric 
are integrated away, one ends up with an effective theory for the 
scalar field on a background which is not Minkowski space [2,3]. 
The background geometry is noncommutative, in the sense that 
the algebra of functions over this background is not Abelian.2
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1 Or rather Effective Field Theory.
2 For the meaning of noncommutative spacetimes, read [4].
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This opens up the possibility that the sought-after UV comple-
tion of Quantum Gravity might not be found by simply changing 
the field content or the symmetries within the traditional scheme 
of QFT on a classical background. It may be necessary to general-
ize QFT to Noncommutative QFT (NCQFT), in which the kinematical 
structure is not simply given by a spacetime background, but it is 
encoded in some nontrivial commutation relations.

It becomes then necessary to understand the types of non-
commutative spaces that are the candidates to play the role of 
background for NCQFT, the kinematic structures they encode, and 
their symmetries. Usually a noncommutative spacetime is defined 
by specifying the commutation relations for a coordinate basis, 
x̂μ , μ = 0, ..., 3. The three most popular types of commutation 
relations considered in the literature are (i) Lie-algebra type [5], 
(ii) Moyal type [6,7] and (iii) Snyder type [8]:

(i) [x̂μ, x̂ν ] = ix̂αCμν
α, Cμν

α ∈R

(ii) [x̂μ, x̂ν ] = i�μν, �μν ∈R

(iii) [x̂μ, x̂ν ] = isMμν, s ∈R

(1)

where Mμν is the generator of Lorentz transformations.
In this paper we introduce a framework which includes all the 

cases of Eq. (1) as sub-cases, and is capable of describing much 
more general cases. This framework is based on the idea that any 
noncommutative algebra can be obtained as a particular nonlinear 
realization of the Heisenberg algebra.
 under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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2. Deformed phase space

We start with the Heisenberg algebra H, which is a unital alge-
bra generated by the eight generators xμ , pν , μ, ν = 0, 1, 2, 3. The 
commutation relations are [xμ, xν ] = 0, [pμ, pν ] = 0, [pμ, xν ] =
−iημν , where η = diag(−1, 1, 1, 1).

A nonlinear change of basis allows us to define a set of generi-
cally noncommutative coordinates:

x̂μ = xαϕα
μ

( p
M

) + 1
M χμ

( p
M

)
, (2)

where M is a constant with the dimensions of a mass which 
parametrizes the magnitude of spacetime noncommutativity (and 
is expected to be of the order of the Planck mass). Assuming 
that at large distances (or low energies) the effects of noncom-
mutativity become irrelevant, and the generators (2) coincide with 
xμ , we can impose the ‘boundary conditions’ ϕα

μ (0) = δα
μ and 

χμ (0) = 0. If we assume ϕα
μ to be an invertible matrix, the in-

verse relations to (2) exist: xμ = (
x̂α − χα

)
(ϕ−1)αμ .

Changing base from xμ to x̂μ leads to the deformed Heisenberg 
algebra Ĥ:

[x̂μ, x̂ν ] = i

M
x̂αCμν

α
( p

M

)
+ i

M2
�μν

( p

M

)
,

[pμ, x̂ν ] = −iϕμν

( p

M

)
, [pμ, pν ] = 0,

(3)

where Cμν
α = (ϕ−1)αβ

(
ϕγ

μ∂γ ϕβ
ν − ϕγ

ν∂γ ϕβ
μ

)
and �μν =

−χα(ϕ−1)αβ

(
ϕγ

μ∂γ ϕβ
ν − ϕγ

ν∂γ ϕβ
μ

) − ϕγ
μ∂γ χν + ϕγ

ν∂γ χμ , 
where ∂γ = M ∂

∂ pγ . The generalized Jacobi relations are satisfied 
by construction. The commutators (3) of x̂μ unify into a single 
formalism the three kinds of noncommutative spaces which have 
been considered in the literature, listed in Eq. (1).

From now on we will work in units in which M = 1.
We can define the subalgebra A ∈ H of commutative coordi-

nates as A = span(xμ). We can define a left-action of � : H ⊗
A →A with the following axioms [9]:

f (x) � g(x) = f (x)g(x),

pμ � f (x) = [pμ, f (x)] � 1,

pμ � 1 = 0,

(4)

for all f (x), g(x) ∈ A. This left-action corresponds to an action by 
multiplication of coordinates: xμ � f (x) = xμ f (x), and an action 
of momenta by left-derivative: pμ � f (x) = −i ∂ f

∂xμ . The action � is 
an left algebra homomorphism, which means that it respects the 
product of H so that (ab) � f = a � (b � f ). So any product of pμ ’s 
and xμ ’s in a particular order will act on f by applying derivatives 
and left-multiplications in the corresponding order.

It can be proven explicitly [9–11] that

eik·x̂ � 1 = eiK (k)·x+ig(k), (5)

where k ∈ M1,3 and K : M1,3 → M1,3 is an invertible map 
Kμ(K −1(k)) = kμ and g :M1,3 → R.

For any function f (x) ∈ A that can be Fourier-transformed 
f = ∫

d4k f̃ (k)eik·x we can define, using relation (5), an element 
f̂ ∈ H such that f̂ � 1 = f (x). This allows us to introduce a non-
commutative star-product � : A ⊗A →A:

f (x) � g(x) =
(

f̂ ĝ
)

� 1 = f̂ � g(x). (6)

The �-product between exponentials is [12]

eik·x � eiq·x = eiK −1(k)·x̂ � eiq·x. (7)

This is used to determine the composition law of momenta, which 
is physically relevant as it determines how particle momenta are 
conserved in vertices.
3. Deformed composition of momenta

With an explicit calculation, one can prove the following rela-
tion (see [10,11])

eik·x̂ � eiq·x = eiP(k,q)·x+i Q (k,q), (8)

where, from Eq. (5), we see that Kμ(k) = Pμ(k, 0) and g(k) =
Q (k, 0). Using the homomorphism property of � we can deduce 
the following relation:

e−iλk·x̂ pμeiλk·x̂ � eiq·x = Pμ(λk,q)eiq·x, (9)

where λ ∈R. Differentiating such a relation with respect to λ leads 
to

dPμ(λk,q)

dλ
= ϕμ

α (P(λk,q))kα, (10)

notice that Pμ only depends on ϕμ
α . We can determine Q by 

differentiating wrt λ the following modification of relation (9):

e−iλk·(xαϕα
μ(p)

)
pμeiλk·x̂ � eiq·x

= Pμ(λk,q)eiq·x+i Q (λk,q),
(11)

and using (10), one gets

dQ (λk,q)

dλ
= kαχα (P (λk,q)) . (12)

We can see how Q does depend on χμ , and it is zero if χμ = 0.
The differential equations (10) and (12) determine Pμ and Q , 

if supplemented with the boundary conditions Pμ(k, 0) = Kμ(k), 
Pμ(0, q) = qμ , Q (k, 0) = g(k), Q (0, q) = 0, Kμ(0) = 0, g(0) = 0. 
Using Eqs. (5) and (8), we conclude that the star-product between 
two plane waves is

eik·x � eiq·x = eiK −1(k)·x̂−ig
(

K −1(k)
)
� eiq·x

= eiP
(

K −1(k),q
)·x+i Q

(
K −1(k),q

)−i Q
(

K −1(k),0
)
.

(13)

The generalized addition rule for plane wave momenta is then

(k ⊕ q)μ = Dμ(k,q) = Pμ

(
K −1(k),q

)
, (14)

where Dμ(k, 0) = kμ and Dμ(0, q) = qμ .

4. Coproduct, twist and star product

Let us introduce the coproduct of momenta [9]

�pμ = Dμ (p ⊗ 1,1 ⊗ p) , (15)

and the twist element [13,14]

F−1 =: ei
(
1⊗xμ

)
(�−�0)pμ+iG(p⊗1,1⊗p) :

=: ei
(
1⊗xμ

)
(�−�0)pμ : eiG(p⊗1,1⊗p),

(16)

where �0 pμ = pμ ⊗ 1 + 1 ⊗ pμ is the undeformed coproduct, 
G(k, q) = Q (K −1(k), q) − Q (K −1(k), 0), and : _: denotes a normal 
ordering prescription in which the coordinates xμ stand at the left 
of the momenta pμ . The twist F−1 is determined up to the right 
ideal I0 defined by [14,15]

m (I0(� ⊗ �)( f ⊗ g)) = 0 ∀ f , g ∈ A (17)

where m :H×H →H is the multiplication map of the algebra H.
The star-product is then defined as

( f � g) (x) = m
[
F−1 (� ⊗ �) ( f ⊗ g)

]
. (18)
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Note that if [x̂μ, ̂xν ] = 0, equation (3), then the star product is 
commutative and associative but generally nonlocal. If Cμν

α
( p

M

)
or �μν

( p
M

)
depend on momenta, then the star product is nonas-

sociative.
The following identities hold:

x̂μ = m
[
F−1 (� ⊗ 1)

(
xμ ⊗ 1

)]
, (19)

and

f̂ = m
[
F−1 (� ⊗ 1) ( f ⊗ 1)

]
, f̂ � 1 = f , (20)

where f ∈A. Then consistency requirements impose

�pμ = F(�0 pμ)F−1 = Dμ(p ⊗ 1,1 ⊗ p), (21)

in accordance to Eq. (15).
The undeformed phase space generated by xμ , pμ has the 

structure of a Hopf algebroid [14,16], while the appropriate struc-
ture of the deformed phase space generated by x̂μ , pμ is that of 
a twisted Hopf algebroid, defined by the twist element F in equa-
tion (16) [14,15,17] This is a generalization of the structures of 
Hopf algebras. [18].

5. Lorentz symmetry

The deformed phase space structures introduced above are not 
necessarily Lorentz-invariant in a naive way. The introduction of 
the energy scale M into the structure of space time/phase space 
is incompatible with standard Lorentz symmetry, but, as is well-
known after a few decades of studies of noncommutative space-
times, this does not imply that the relativistic equivalence be-
tween inertial frames is lost. In many cases, a ‘deformed’ action of 
the Lorentz group allows to restore relativistic invariance [19–21]
(another type of noncommutativity involving spin, not considered 
here, allows to leave Lorentz symmetry undeformed [22–24]. In 
the present paper we are only concerned with the orbital part of 
the Lorentz group). A common assumption in this framework is 
that the Lorentz group itself (i.e. the commutation relations be-
tween the Mμν generators) is not deformed (this is justified by 
the fact that a dimensionful parameter like M−1 cannot enter the 
algebraic structure of the Lorentz group). What is deformed is the 
action of the group on noncommutative coordinates x̂μ and mo-
menta pμ , and on composed momenta (see below). Typically, there 
are several possible realizations of the action of the Lorentz group 
on our deformed phase space [25], and we want to ‘parametrize 
our ignorance’ by writing the most generic one and then con-
straining its free parameters. To this end, we employ the trick 
of introducing a nonlinear realization of Heisenberg’s algebra by 
performing a momentum-dependent similarity transformation on 
H3:

Pμ = �μ(p), Xμ = xα�α
μ(p) + hμ(p), (22)

if the functions �μ(p) and �α
μ(p) are constrained by

∂�μ

∂ pα
�α

ν = ημν,

�γμ
∂�β

ν

∂ pγ
− �γν

∂�β
μ

∂ pγ
= 0,

(23)

in order that the basis (Pμ, Xν) generates an undeformed Heisen-
berg algebra, [Pμ, Pν ] = [Xμ, Xν ] = 0, [Pμ, Xν ] = −iημν .

3 This trick has been recently employed in the perturbative analysis of [21], which 
concentrated on the possible deformed kinematical structures, independently of the 
underlying noncommutative space.
Because the new basis satisfies undeformed commutation rela-
tions, we can introduce a generator of infinitesimal Lorentz trans-
formations as

Mμν = Xμ Pν − Xν Pμ, (24)

and we will be ensured that the commutation relations between 
Mμν and itself will close an so(3, 1) algebra, and their action on 
Xμ and Pμ will be undeformed. However, the action of Mμν on 
x̂μ and pμ is given by:

[Mμν, pρ ] = pα�α
μνρ(p),

[Mμν, x̂ρ ] = i
(
x̂α�α

μνρ(p) + �μνρ(p)
)
,

(25)

where �α
μνρ(p), �α

μνρ(p) and �μνρ can be expressed in terms 
of �μ(p), �α

μ , hμ(p), ϕα
μ(p) and χμ(p).

The Casimir operator is of course C = Pμ Pμ = �2(p). The co-
product of the Lorentz generator is

�Mμν = F
(
�0Mμν

)
F−1, (26)

where �0Mμν = Mμν(�0x, �0 p), which is not necessarily a prim-
itive coproduct (because Mμν depends in a complicated way on xμ

and pμ).
If we use the inverse relations of (22) and express the genera-

tors x̂μ in terms of Xμ , �ν , we call x̂μ(X, P ) the ‘natural realiza-
tion’.

6. Constraints on the Lorentz sector

κ-Poincaré is a Hopf algebra first introduced in [26], and 
it is the most-studied Hopf-algebra deformation of relativistic 
symmetries. This algebra fits within our general framework (see 
our second example below). κ-Poincaré possesses a so-called ‘bi-
crossproduct structure’ [27], meaning that both the algebra and the 
coalgebra are a semidirect product of a momentum sector with 
the Lorentz algebra, and this structure implies the existence of 
a co-action (or ‘backreaction’) of the momentum sector on the 
Lorentz part, which is a novelty of the model. The discovery of 
the bicrossproduct structure was instrumental in identifying the 
noncommutative spacetime this Hopf algebra acts covariantly on, 
the so-called κ-Minkowski spacetime [27]. Later the phenomenon 
of ‘backreaction’ was given a physical interpretation [28]: it is the 
fact that, to boost in a covariant way a set of particles participat-
ing in a vertex, one needs to transform each particle momentum 
with a different rapidity. Each rapidity will depend on the mo-
menta involved in the vertex, with some rules defined by the 
co-action of κ-Poincaré. It was later realized [20] that a similar 
momentum-dependence of Lorentz transformations is a general 
feature of deformed relativistic kinematics, and is not limited to 
the Hopf-algebraic framework of [26–28]. In fact there is a phys-
ical reason why such an effect is a necessity, which has to do 
with the fact that in our deformed kinematics both the composi-
tion law of momenta, ⊕, and the Lorentz transformation rule (25)
are nonlinear in the momenta. Consider an infinitesimal Lorentz 
transformation (or rotation) of a particle momentum with rapidity 
parameters ωμν (these are just infinitesimal antisymmetric matri-
ces). We can calculate its explicit form, at first order in ωμν , by 
using the fact that the generators Pμ transform classically:

P ′
μ = Pμ + 1

2
ωρσ [Mρσ , Pμ] = Pμ + ωμ

σ Pσ , (27)

then we know what the action on pμ is:

p′
α = �−1

α

[
�μ(p) + ωμ

σ �σ (p)
]
, (28)

which is in general a nonlinear function of pμ . Expanding this 
function at first order in ωμν :
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p′
α = pα + ωρβ�β(p)∂ρ�−1

α (p) = �α(ωμν, p). (29)

The relation above can be found explicitly, at first order in M−1

and all orders in the rapidity parameter, see [29]. By introducing 
the function � we are seeing the infinitesimal Lorentz transforma-
tion as a map from the rapidity parameters ω and the momenta p
to the momenta p′ . In general, such a transformation rule will not 
leave the generalized addition law of momenta invariant:

�(ω,k ⊕ q) �= �(ω,k) ⊕ �(ω,q). (30)

As observed first in [28], this is physically inconsistent,4 but can 
be fixed by observing that Eq. (30) is implicitly assuming that the 
three momenta k, q and k ⊕ q all transform with the same rapidity 
ω. We can cure this pathology, by assuming that the rapidity, with 
which each momentum in Eq. (30) (i.e. k, q and k ⊕ q) transforms, 
depends on the momenta involved in the vertex:

�(ω,k ⊕ q) = �(ω(1)(k,q),k) ⊕ �(ω(2)(k,q),q). (31)

The equations above impose a series of constraints on the func-
tions ω(1)

μ
ν(k, q), ω(2)

μ
ν(k, q), Dμ(k, q) and �μ(ω, q). In [20]

these constraints were calculated in a perturbative setting (at first 
order in M−1 and assuming undeformed rotational symmetry). The 
constraints found were enough to completely fix ω(1)

μ
ν(k, q) and 

ω(2)
μ

ν(k, q), and to establish a few relationships between the pa-
rameters of Dμ(k, q) and �μ(ω, q).5

7. Examples

For Snyder-type spaces [30,31]

x̂μ = xμϕ1(p2) + (x · p)pμϕ2(p2) + pμχ(p2), (32)

the relativistic addition of momenta is covariant under stan-
dard Lorentz transformations with no momentum dependence of 
Lorentz transformations: ω(1) = ω(2) = ω.

For general uμ vector-like deformations of Minkowski space at 
first order in M−1, the realization is given by:

x̂μ = xμ + c1xμ(u · p) + c2uμ(x · p)

+ c3uμ(u · x)(u · p) + c4(u · x)pμ +O(M−2).
(33)

where u2 ∈ {−1, 0, 1}.
The commutator of coordinates is of the form

[x̂μ, x̂ν ] = i(aμ x̂ν − aν x̂μ) +O(M−2) (34)

where aμ = (c1 − c2)uμ .
The basis Xμ , Pμ is given by

Xμ = xμ − d1xμ(u · p) − d1uμ(x · p)

− 2d3uμ(u · x)(u · p) − 2d4(u · x)pμ

+O(M−2)

(35)

Pμ = pμ + d1(u · p)pμ + d2uμp2

+ d3(u · p)2uμ +O(M−2)
(36)

In 1 + 1 dimensions, the rapidities ω(1)(k, q) and ω(2)(k, q) are

4 e.g., it would imply that processes that are kinematically forbidden in one ref-
erence frame can become allowed in another frame, which amounts to a severe 
breakdown of the principle of relativity.

5 Alternatively, these constraints could be interpreted as fixing completely the pa-
rameters of �μ(ω, q) as functions of the parameters of Dμ(k, q), ω(1)

μ
ν (k, q) and 

ω(2)
μ

ν (k, q).
ω(1)(k,q) = [1 − (c2 + d1)u · q]ω,

ω(2)(k,q) = [1 − (c1 + d1)u · k]ω.
(37)

(there is only one possible infinitesimal Lorentz transformation in 
1 + 1 dimensions, it is the boost in the 1-direction, and there-
fore the rapidity parameter has no indices). To further clarify the 
physical meaning of these expressions, Eq. (37) gives the rapidity 
ω(1)(k, q) with which the momentum k transform, and the rapidity 
ω(2)(k, q) with which momentum q transform, given the rapidity ω
with which the composed momentum k ⊕ q transform, if k, q and 
k ⊕ q participate in a trivalent vertex, according to formula (31).

In the κ-Poincaré case, the d’s are given in terms of the c’s by

d1 = −c2, d2 = − c1 − c2 + c4

2
, d3 = − c3

2
. (38)

The rapidities ω(1)(k, q) and ω(2)(k, q) then simplify to (again in 
1 + 1 dimensions)

ω(1)(k,q) = ω,

ω(2)(k,q) = (1 − a · k)ω,
(39)

which coincides with the results found in [28] and related refer-
ences.

8. Outlook and discussion

By using general nonlinear redefinitions of the basis of the 
Heisenberg algebra (with the only assumption of being up-to-
linear order in the coordinates xμ), we were able to encompass 
within a unified framework a large class of noncommutative space-
times. Within this framework, we have a prescription to uniquely 
determine the effect of combining two plane waves, which gives 
a composition rule for momenta that deforms the momentum 
conservation laws of special relativity into a nonlinear operation. 
Moreover, in our framework, we have unique prescriptions that 
characterize the momenta and determine the Hopf algebroid struc-
ture. These algebraic structures have been recognized to be the 
suitable framework to describe the symmetries of noncommutative 
spacetimes. Finally, we studied how to introduce Lorentz symmetry 
in our framework: this cannot be done uniquely, as it introduces 
a certain degree of arbitrariness (in a perturbative approach this 
amounts to a few free parameters). However, this arbitrariness is 
constrained by the requirement of relativistic invariance of the mo-
mentum composition law. The recently-discovered phenomenon of 
momentum-dependence of Lorentz transformations [28] (i.e. the 
rapidity with which momenta participating to a vertex transform 
depends on the momenta) was found to constrain the form of 
the acceptable Lorentz transformations. To show the applicability 
of the framework we presented, we concluded this Letter with 
two examples: one is a class of noncommutative spacetimes which 
generalizes that introduced by Snyder in 1947 [8]. This example 
leads to no momentum-dependence effect and no deformation of 
the Lorentz group action. The second one is a generalization of 
the so-called κ-Minkowski spacetime, which is the first one for 
which the momentum-dependence effect was discovered. The phe-
nomenon of momentum-dependence of Lorentz transformations 
could have interesting phenomenological consequences. For exam-
ple, in astrophysical settings one can have high-energy particles 
emitted from high-redshift sources. This is a situation in which 
both the momenta involved in a process and the rapidity identify-
ing the reference frame are appreciably large (in Planck units), and 
the momentum-dependence effect might become manifest.
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