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Abstract
In this paper, we propose a simple generalization of the locally r-symmetric 
Jordanian twist, resulting in the one-parameter family of Jordanian twists. 
All the proposed twists differ by the coboundary twists and produce the same 
Jordanian deformation of the corresponding Lie algebra. They all provide 
the κ-Minkowski spacetime commutation relations. Constructions from 
noncommutative coordinates to the star product and coproduct, and from the 
star product to the coproduct and the twist are presented. The corresponding 
twist in the Hopf algebroid approach is given. Our results are presented 
symbolically by a diagram relating all of the possible constructions.

Keywords: Jordanian twist, κ-Minkowski spacetime, star-product, 
realizations

1. Introduction

In the Hopf algebras framework it is known that the given Hopf algebra H (µ,∆, ε, S) can be 
deformed by using the (Drinfeld) twist F ∈ H ⊗H [1] which allows to deform the coproduct 
and an antipode map in such a way that the compatibility conditions are still satisfied and 
one gets a new Hopf algebra with deformed maps. One special example of such twist is the 
so-called Jordanian twist F0 = exp (ln (1 + αE)⊗ H) with α as the deformation parameter3.  
It was firstly constructed by O. Ogievetsky in [2] while studying the moduli space of Hopf 
structures on the Borel subalgebra of sl(2) � {H, E| [H, E] = E}. This twist provides the 

S Meljanac et al

Remarks on simple interpolation between Jordanian twists

Printed in the UK

265201

JPHAC5

© 2017 IOP Publishing Ltd

50

J. Phys. A: Math. Theor.

JPA

1751-8121

10.1088/1751-8121/aa72d7

Paper

26

1

11

Journal of Physics A: Mathematical and Theoretical

IOP

3 To distinguish different Jordanian twists we introduce a notation with sub-indices 0,1, or 1/2 which will become 
clear in section 2.

2017

1751-8121/17/265201+11$33.00 © 2017 IOP Publishing Ltd Printed in the UK

J. Phys. A: Math. Theor. 50 (2017) 265201 (11pp) https://doi.org/10.1088/1751-8121/aa72d7

mailto:meljanac@irb.hr
mailto:Daniel.Meljanac@irb.hr
mailto:a.pachol@qmul.ac.uk
mailto:dpikutic@irb.hr
http://crossmark.crossref.org/dialog/?doi=10.1088/1751-8121/aa72d7&domain=pdf&date_stamp=2017-06-02
publisher-id
doi
https://doi.org/10.1088/1751-8121/aa72d7


2

simplest example of the triangular deformation of sl(2) algebra with the quantum R-matrix 

given by R = F̃F−1 = 1 ⊗ 1 + r +O
(
α2

)
, where F̃ = τ ◦ F  is the flipped twist (with the 

flip map: τ : c ⊗ d → d ⊗ c) and r is denoting the classical r-matrix.
One can notice that F0 is not r-symmetric [3] in the sense that the term of the expansion 

in the deformation parameter α, at the first order, is not given by the full classical r-matrix r,  
i.e. is not of the form: F = 1 ⊗ 1 + 1

2 r +O
(
α2

)
. However it can be symmetrized by the so 

called coboundary twist Fω = ω−1 ⊗ ω−1∆(ω) as:

F (ω)
r := ω−1 ⊗ ω−1F0∆(ω) ,

where ω =
√
µ[(1 ⊗ S)F0]. The change of the twist by the coboundary twist Fω does not 

provide a new Hopf algebra. It provides a new presentation in the co-algebraic sector only, i.e. 
new form of the coproduct ∆̃ = Fω∆F−1

ω .
One of the symmetrized versions (i.e. ‘locally r-symmetric’) of the Jordanian twist 

F̃ = τ ◦ F0 known in the literature is due to Tolstoy [3] which appeared in the context of 
studying quantum deformations of relativistic symmetries. The locally r-symmetric version of 
the Jordanian twist calculated therein has the form:

F1/2 = e
α
2 (HE⊗1+1⊗HE) eH⊗ln(1+αE)e−

α
2 (HE⊗1+H⊗E+E⊗H+1⊗HE). (1)

Here ω = exp( 1
2αHE) was used to construct the coboundary twist. There exists another ver-

sion of symmetrized F0 and it is due to Giaquinto and Zhang [4], but it will not be the object 
of our study here.

The Jordanian twist investigated, firstly in [2] and then in [3], reappeared in the context of 
the so-called κ-Minkowski noncommutative spacetime [5–7], which is an algebra of coordinate 
functions equipped in the noncommutative star-product leading to the following commutation 
relations [x̂µ, x̂ν ] = i

κ (v
µx̂ν − vν x̂µ) where the deformation parameter is 1

κ and vµ is the vec-
tor on Minkowski spacetime M1,n−1 in n-dimensions such that v2 ∈ {−1, 0, 1}. In physical 
applications κ is usually interpreted as the Planck mass or Quantum Gravity scale. The natural 
quantum symmetry of this noncommutative spacetime is the κ-Poincaré quantum group [8] and 
it constitutes one of the examples of deformed relativistic spacetime symmetries. In this paper 
we are interested in the relation with the symmetry of the κ-Minkowski spacetime therefore 
we shall work with the generators of relativistic symmetries: dilatation D and momenta pα 
(instead of the generators H and E of the sl(2) algebra) satisfying the same commutation rela-
tion, i.e. [ pα, D] = pα4. The dilatation generator D is included in the minimal extension of the 
relativistic spacetime symmetry, the so-called Poincaré–Weyl symmetry: {Mµν , pµ, D} as well 
as in the conformal algebra {Mµν , pµ, D, Kµ}, therefore the Jordanian twists have the support 
in both of these algebras and can be used in their deformations [5, 9], respectively. However for 
the presentation of our results it is enough to consider the Lie algebra g generated only by the 
dilatation and momenta operators satisfying [pα, D] = pα and [ pµ, pν ] = 0. Recently Jordanian 
twists also have been considered in application to gravitational theory. For example, in [11], 
the Jordanian twist was used to construct the noncommutative differential calculus providing 
metrics as the solutions of non-vacuum Einstein equations, including cosmological constant or 
spatial curvature cases. Additionally, it can be shown [10] that the star product, reproducing the 
κ-Minkowski Lie algebra, obtained by suitably reducing the so-called Wick–Voros star prod-
uct, is in fact the star product from the Jordanian twist F0. Jordanian deformations also have 
become popular in the context of applications in AdS/CFT correspondence [12].

4 The correspondence with the generators of sl(2) algebra is H → −D and E → pα.
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In this paper we are interested in the generalization of the symmetrized version of Jordanian 
twist F1/2  from [3]. We introduce the real parameter characterizing a whole family of Jordanian 
twists interpolating between the original Jordanian twist F0 = exp (− ln (1 − aαpα)⊗ D) 
and Jordanian twist F1 = τ ◦ F0|−aα = exp (−D ⊗ ln (1 + aαpα)), where aα = 1

κvα (in  
section 2). They both lead to the κ-Minkowski spacetime commutation relations. The aim of 
this paper is to present different methods to obtain the same family of twists5, developed in the 
framework of noncommutative spacetimes.

In section 2, a generalization of the r-symmetric twist from [3] is given. Corresponding 
deformed Hopf algebra symmetry, star products and differential realizations for noncommuta-
tive coordinates are presented. This family of Jordanian twists is also constructed as one expo-
nential formula. However, in general, the twist might not always be known (e.g. in examples 
coming from deformation quantization framework).

In section 3, we provide an example of a method used to construct the twist. Starting from 
realizations of noncommutative coordinates, obtained in section 2, we construct the corre-
sponding star product and coproduct. Also, from the star product and the coproduct, presented 
in section 2 (and coinciding with those in section 3), inverses of corresponding twists are 
obtained. They differ from the ones presented in section 2 by the right ideal, but indeed give 
the same deformed Hopf algebra, star product and realization of noncommutative coordinates. 
At the end of section 3, twists in Hopf algebroid approach, in terms of momenta and noncom-
mutative coordinates, are given, showing that the used techniques appear within this more 
general framework. In section 4, concluding remarks are presented.

1.1. Notation and formalism

Here we will present the notation and recall some standard formulas related to the twist for-
malism which will be necessary for the following sections of the paper.

The Lie algebra g generated by the dilatation and momenta operators is defined by the 
commutation relations:

[pµ, D] = pµ, [pµ, pν ] = 0.

The differential representation of the generators is the following: D = xα∂α = x · ∂  and 
pµ = −i∂µ. We will also use the short notation for the momenta pµ contracted6 with the vec-
tor aν  as A = iaν∂ν = −aνpν = −a · p. We do not specify signature of the metric, therefore 
the metric may be of any signature.

The generator D can be also rewritten in Heisenberg realization as D = ixαpα = ix · p, in 
terms of Heisenberg algebra H, i.e.

[xµ, xν ] = 0, [ pµ, xν ] = −iδνµ, [ pµ, pν ] = 0. (2)

The deformation of the Hopf algebra U(g) (µ,∆0, ε, S0) of the universal envelop-
ing algebra of g = { pα, D : [pα, D] = pα, [pµ, pν ] = 0} given by the twist element  
F ∈ U(g)

[[ 1
κ

]]
⊗ U(g)

[[ 1
κ

]]
 into UF (g) (µ,∆, ε, S) is provided by the deformation  

of the coproduct and antipode maps as follows: ∆h = F∆0hF−1, S(h) = 
[µ ((1 ⊗ S)F)]S0(h)[µ

(
(S ⊗ 1)F−1

)
], where h ∈ g.

The algebra of coordinates A with multiplication map m : A⊗A → A , i.e. the space-
time algebra is the Hopf module algebra with the action U(g)⊗A → A of the Hopf algebra 

5 Up to the right ideal.
6 Note that here we are using the relativistic notation: aνbν = a · b (summation over ν  index is assumed).
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U(g) on the module algebra A �f , g such that h � (m( f ⊗ g)) = m [∆h(�⊗ �)( f ⊗ g)], where 
h ∈ g and the action � is defined by

pµ � f (x) = −i∂µ � f (x) = −i
∂f (x)
∂xµ

and D � f (x) = xα
∂f (x)
∂xα

 (3)

and the module acts on itself as xµ � f (x) = xµf (x).
The algebra of functions A becomes noncommutative during the twist deformation once 

the usual multiplication is replaced by the star-product between the functions i.e.

f � g = m� (f ⊗ g) = m[F−1(�⊗ �)( f ⊗ g)] (4)

for f , g ∈ A. The star product is associative (due to the fact that the twist F  satisfies cocycle 
condition).

2. Simple one-parameter family of Jordanian twists

Let us introduce the following one-parameter family of twists Fu ∈ U(g)[[ 1
κ ]]⊗ U(g)[[ 1

κ ]]:

Fu = exp (−u(DA ⊗ 1 + 1 ⊗ DA)) exp (− ln(1 + A)⊗ D) exp (∆0(uDA)) , u ∈ R.
 

(5)

The twists Fu can be obtained from F0 by the transformation with the coboundary twist with 
the element ω = euDA. Note that the deformation parameter 1/κ is included in A for the pur-
pose of simplified notation. The twists Fu are Drinfeld twists [1] ∀u ∈ R, they satisfy normali-
zation and cocycle condition7 and generalize the construction by V. N. Tolstoy [3], (see (1)). 
The correspondence of this family of the Jordanian twists (5) and the r-symmetric twist F1/2  
is given by taking u = 1

2 in (5). For u  =  0, twist (5) simplifies to F0 = exp (− ln(1 + A)⊗ D) 
and for u  =  1, simplifies to the twist F1 = τ ◦ F0|−a = τF0|−aτ = exp (−D ⊗ ln(1 − A)).

The inverse of the above family of twists is

F−1
u = exp (−∆0(uDA)) exp (ln(1 + A)⊗ D) exp (u(DA ⊗ 1 + 1 ⊗ DA)) , u ∈ R.

 
(6)

Now we can use the standard formulae (from section 1.1) for describing the deformation 
of the Hopf algebra maps of UF (g) (µ,∆, ε, S). The coproducts, star products and realiza-
tions in the rest of the paper depend on the parameter u, but for the sake of simplicity, the 
u-dependence will be omitted.

2.1. Deformed Hopf algebra

Coproducts ∆pµ, corresponding to the above twist, for any parameter u ∈ R are

∆pµ = Fu∆0pµF−1
u =

pµ ⊗ (1 − uA) + (1 + (1 − u)A)⊗ pµ
1 ⊗ 1 + u(1 − u)A ⊗ A (7)

∆D = Fu∆0DF−1
u =

(
D ⊗ 1

1 − uA
+

1
1 + (1 − u)A

⊗ D
)
(1 ⊗ 1 + u(1 − u)A ⊗ A).

 

(8)

7 It is based on the fact that the change of the twist by the coboundary twist Fω influences the change of the  
coproduct by ∆̃ = Fω∆F−1

ω  which is isomorphic to the coproduct ∆. Also adding the real valued parameter u will 
not influence the cocyclicity.

S Meljanac et alJ. Phys. A: Math. Theor. 50 (2017) 265201
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The coproduct is coassociative. The corresponding antipode is given by

S( pµ) =
−pµ

1 + (1 − 2u)A (9)

S(D) = −D − (1 − u)AD + uDA − u(1 − u)2A2

(1 + (1 − u)A)(1 − uA)
. (10)

The antipode is antihomomorphism. The corresponding counit is trivial, i.e. ε( pµ) = 0, ε(D) 
=  0 and ε(1) = 1.

Interesting special cases are u  =  0 (see [10]) and u  =  1 (see [5]).

 • For u  =  0 we get:

∆pµ = pµ ⊗ 1 + (1 + A)⊗ pµ (11)

∆D = D ⊗ 1 +
1

1 + A
⊗ D (12)

S( pµ) =
−pµ

1 + A (13)

S(D) = −(1 + A)D. (14)

 • For u  =  1:

∆pµ = pµ ⊗ (1 − A) + 1 ⊗ pµ (15)

∆D = D ⊗ 1
1 − A

+ 1 ⊗ D (16)

S( pµ) =
−pµ

1 − A (17)

S(D) = −D(1 − A). (18)

2.2. Star product

The inverse of the twist F−1
u  also provides the star product between the functions, as indicated 

in equation (4). This star product is associative (due to the fact that the twist Fu (5) satisfies 
cocycle condition).

When we choose our functions to be exponential functions eik·x  and eiq·x, then we define 
new function Dµ(k, q):

eik·x � eiq·x = m
[
F−1(�⊗ �)(eik·x ⊗ eiq·x)

]
= eiDµ(k,q)xµ , (19)

where k, q ∈ M1,n−1—n-dimensional Minkowski spacetime.
One can calculate explicitly that in the case of twist Fu (5) the function Dµ(k, q) is given by

Dµ(k, q) =
kµ(1 + u(a · q)) + (1 − (1 − u)(a · k))qµ

1 + u(1 − u)(a · k)(a · q)
. (20)

S Meljanac et alJ. Phys. A: Math. Theor. 50 (2017) 265201
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Note that the function Dµ(k, q) can be seen as rewriting the coproduct ∆pµ without using the 
tensor product notation (denoting left and right leg by k and q respectively). Therefore the 
relation between the coproduct ∆pµ and the function Dµ(k, q) is given by

∆pµ = Dµ( p ⊗ 1, 1 ⊗ p), (21)

hence ∆pµ uniquely determines Dµ(k, q). In the case u  =  0, Dµ(k, q) = kµ + (1 − a · k)qµ, 
while in the case u  =  1, Dµ(k, q) = kµ(1 + a · q) + qµ. Deformed addition of momenta is 
given by (k ⊕ q)µ = Dµ(k, q).

2.3. Coordinates

Noncommutative coordinates x̂µ, corresponding to the twist Fu (5), are given by

x̂µ = m
[
F−1

u (�⊗ 1)(xµ ⊗ 1)
]
= xµ(1 − uA) + iaµ(1 − u)D(1 − uA)

= (xµ + iaµ(1 − u)D)(1 − uA).
 

(22)

Alternatively, we notice that they can also be obtained from the coproducts8

x̂µ = xµ + ixαm [(∆−∆0) pα(�⊗ 1)(xµ ⊗ 1)]
= (xµ + iaµ(1 − u)D)(1 − uA).

 
(23)

The noncommutative coordinates x̂µ satisfy

[x̂µ, x̂ν ] = i(aµx̂ν−aν x̂µ),
[ pµ, x̂ν ] = (−iδνµ + iaν(1 − u) pµ)(1 − uA). 

(24)

In the case u  =  0, x̂µ = xµ + iaµD, while in the case u  =  1, x̂µ = xµ(1 − A).
Note that we can define another set of the noncommutative coordinates ŷµ coming from the 

flipped version of (5) as

ŷµ = m
[
F̃−1

u (�⊗ 1)(xµ ⊗ 1)
]

= xµ + ixαm
[
(∆̃−∆0) pα(�⊗ 1)(xµ ⊗ 1)

]

= (xµ − iaµuD)(1 + (1 − u)A),

 

(25)

where F̃u = τ ◦ Fu = τFuτ  and ∆̃ = τ ◦∆ = τ∆τ . Generators ŷµ define a dual coordinate 
algebra in the sense:

[ŷµ, ŷν ] = −i(aµŷν − aν ŷµ) and [x̂µ, ŷν ] = 0 (26)

i.e. they obey κ-Minkowski commutation relations with aµ → −aµ. The commutation rela-
tion [ pµ, ŷν ] follows from the realization (25). In the case u  =  0, ŷµ = xµ(1 + A), while in the 
case u  =  1, ŷµ = xµ − iaµD.

2.4. One exponent formula for a family of Jordanian twists (5)

Above family of twists Fu given by (5) can be written as

Fu = exp
(
(D ⊗ uA)θ − ((1 − u)A ⊗ D)θ̃|(−a)

)
, (27)

8 Later on we introduce (43) from which this relation follows naturaly.
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where

θ =

∞∑
n=0

n∑
k,l=0

k+l=n

ck,lAk ⊗ Al ×



(1 − u)kul for u ∈ R \ {0, 1}
δl0 for u = 0
δk0 for u = 1

 (28)

θ̃ = τ ◦ θ = τθτ , (29)

where ck,l ∈ R  and c0,0  =  1. The first three terms in the above expansion in 1
κ are:

(lnFu)1 = D ⊗ uA − (1 − u)A ⊗ D, (30)

(lnFu)2 =
1
2
[D ⊗ uA + (1 − u)A ⊗ D] [1 ⊗ uA + (1 − u)A ⊗ 1] , (31)

(lnFu)3 = D ⊗ uA
[

1
3
(1 ⊗ u2A2) +

1
6
(1 − u)A ⊗ uA − 1

6
(1 − u)2A2 ⊗ 1

]

− (1 − u)A ⊗ D
[

1
3
(1 − u)2A2 ⊗ 1 +

1
6
(1 − u)A ⊗ uA − 1

6
(1 ⊗ u2A2)

]
.

 

(32)

In special cases u  =  0 and u  =  1, Fu reduces to

F0 = e− ln(1+A)⊗D, F1 = e−D⊗ln(1−A), (33)

respectively.
The corresponding quantum R-matrix is R = F̃uF−1

u = 1 ⊗ 1 + r +O
( 1
κ2

)
, where 

r = A ⊗ D − D ⊗ A, ∀u ∈ R.

3. From realization to star product and twist

Realizations of noncommutative coordinates x̂µ can be generally expressed in terms of 
Heisenberg algebra H (2), generated by xµ and pµ. If x̂µ generate a Lie algebra, there exists 
universal formula for x̂µ, related to Weyl ordering [17]9. Starting from the realization (22)  
(see for example [18])

x̂µ = xαϕα
µ( p) = (xµ + iaµ(1 − u)D)(1 − uA), (34)

one can reconstruct the star product using the following method. Recalling the action intro-
duced in section 2 (3) we can explain how the exponent function of the noncommutative coor-
dinates acts on the usual exponential function, via the realization (22) of x̂.

eik·̂x � eiq·x= eik·xαϕα
µ( p) � eiq·x = eiP(k,q)·x. (35)

Here we introduced another set of functions, denoted by Pµ(k, q) which satisfy the following 
differential equations [19–22]

dPµ(λk, q)
dλ

= ϕµ
α(P(λk, q))kα. (36)

Note that the equation involves the same function ϕµ
α( p) from the realization of the noncom-

mutative coordinates. The boundary conditions are Pµ(0, q) = qµ. The solution is

9 For a more general case, see [22].
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Pµ(k, q) =
Kµ(k)(1 + u(a · q)) + (1 − (1 − u)(a · K(k)))qµ

1 + u(1 − u)(a · K(k))(a · q)
, (37)

where

Kµ(k) = Pµ(k, 0) = kµ
ea·k − 1

a · k
1

(1 − u)ea·k + u
. (38)

The inverse function of Kµ(k), defined as Kµ(K−1(k)) = K−1
µ (K(k)) = kµ, is given by

K−1
µ (k) = kµ

1
a · k

ln

(
1 + u(a · k)

1 − (1 − u)a · k

)
. (39)

There exists a relation between the function Pµ(k, q) and introduced before function Dµ(k, q) 
as D(k, q) = P(K−1(k), q). Thanks to this, we can rewrite the corresponding star product of 
exponential functions as

eik·x � eiq·x = eiK−1(k)·̂x � eiq·x = eiP(K−1(k),q)·x = eiD(k,q)·x. (40)

The function Dµ(k, q) from equation (40) coincides with equation (20).
From the function Dµ(k, q), the coproduct ∆pµ can be recovered using (21) and antipodes 

S( pµ) follow analogously. Alternatively, it is possible to find the coproduct ∆pµ as

∆pµ = eiK−1
α ( p)⊗ad̂xα (1 ⊗ pµ), (41)

3.1. From star product and coproduct to twist

From equations (21) and (40) it follows [13, 14, 21]:

eik·x � eiq·x = lim
y→x
z→x

(
eix·[D(−i∂y,−i∂z)+∂y+∂z](eik·yeiq·z)

)

= m
[
: ei((1−t)⊗xα+txα⊗1)(∆−∆0) pα : (�⊗ �)(eik·x ⊗ eiq·x)

]
, ∀t ∈ R.

 

(42)

Note that on the right hand side of the above equation the terms multiplied by t cancel each 
other due to the normal ordering and the multiplication map m.

From this identity and equations (4) and (19), it follows:

F−1 =: ei((1−t)⊗xα+txα⊗1)(∆−∆0) pα : +I0, (43)

where I0 ⊂ H ⊗ H  is the right ideal of the coordinate algebra A, defined by

m [I0(�⊗ �)(A⊗A)] = 0. (44)

For the case u  =  0, with t  =  0, twist F−1
0  is given by

F−1
0 =: eA⊗D := eln(1+A)⊗D, (45)

while for the case u  =  1, with t  =  1, twist F−1
1  is given by

F−1
1 =: e−D⊗A := eD⊗ln(1−A). (46)

Calculation of F−1 in equation (43) in the form F−1 = e−f  for linear realizations of x̂µ is 
presented in [21] and for Abelian twists in [13].
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3.2. Twist in the Hopf algebroid approach

Deformed phase spaces of Lie algebra type are presented and studied in [15, 23, 26, 27]. 
Twists in Hopf algebroid approach were studied and constructed in [14, 16, 24, 25].

Generally, in Hopf algebroid approach, the twist is given by

F−1 = e−ipα⊗xαeiK−1
γ ( p)⊗x̂β + I0 = e−ipα⊗xαeiK−1

γ ( p)⊗xβϕβ
γ( p) + I0. (47)

This is a generalization of the result presented in [16]. The full Hopf algebroid analysis will 
be presented elsewhere.

4. Concluding remarks

Inspired by the recent interest in Jordanian deformations, in this paper we focused on the 
simple generalization of the locally r-symmetric Jordanian twist. By introduction of one real 
valued parameter u we obtained the family of Jordanian twists which provides interpola-
tion between the original Jordanian twist (for u  =  0) and its flipped version (for u  =  1, up to 
minus sign in the deformation parameter). All of the proposed twists provide the κ-Minkowski 
spacetime and have the support in the Poincaré–Weyl or conformal algebras as deformed 
symmetries of this noncommutative spacetime. Another important issue considered here was 
the presentation of different methods relating the twist, deformed coproducts with the star-
product and the realizations for the noncommutative coordinates.

It is important to note that we can present our results symbolically by the following diagram:

In section 2, starting from the twist (5), we have found deformed Hopf algebra symmetry 
(7)–(10), star products (19) and (20) and corresponding realizations for noncommutative coor-
dinates (22). Relation between coproduct ∆pµ and star products eik·x � eiq·x (19) and (20) are 
given in (21). Noncommutative coordinates x̂µ are also obtained from the coproduct ∆pµ in 
equation (23) and also from the related star product eik·x � eiq·x = eiD(k,q)·x . In section 3, start-
ing from realizetions of noncommutative coordinates (34), we have constructed corre sponding 
star products (20) and (40) and coproducts. Alternatively, coproduct ∆pµ is obtained from 
noncommutative coordinates (41). Also, from the star product and the coproduct in section 2, 
see also equations (40) and (42), inverses of the corresponding twist (43) are obtained. Twists 
in the Hopf algebroid approach, in terms of momenta and noncommutative coordinates, are 
given in equation (47). Note that the inverse twist F−1 is not uniquely determined from the 
star product, coproduct ∆pµ and noncommutative coordinates x̂µ and it is determined up to a 
right ideal I0.

More general realizations are of the type x̂µ = xαϕα
µ( p) + χµ( p), but we restricted our 

considerations to the case χµ( p) = 0 and the above diagram corresponds to χµ( p) = 0. We 
point out that all our results are exact. There are few possible extensions of these results, 
leading to new insights of the deformation quantization. However, they require an extension 
to the Hopf algebroid framework. Drinfeld twists can be lifted to Hopf algebroids [28] from 
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the Hopf algebra, but it is worth to note that not all the twists obtained from the coproduct are 
the Hopf algebra twists. The issues of the twist reconstruction within Hopf algebroids and the 
generalization of the other version of symmetrized Jordanian twist presented in [4] will be 
thoroughly discussed in another paper.
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