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Abstract. We give a complete functional theoretic characteriza-
tion of tempered exponential dichotomies in terms of the invertibil-
ity of certain linear operators acting on a suitable Frechét space.
In sharp contrast to previous results, we consider noninvertible lin-
ear cocycles acting on infinite-dimensional spaces. The principal
advantage of our results is that they avoid the use of Lyapunov
norms.

1. Introduction

The problem of characterizing hyperbolic behaviour of dynamical
systems in terms of the spectral properties of certain linear operators
has a long history that goes back to the pioneering works of Perron [29]
and Li [22]. More precisely, Perron [29] established a complete charac-
terization of the exponential stability of a linear differential equation

x′ = A(t)x

in Rn in terms of the solvability (in x) of the nonlinear equation

x′ = A(t)x+ f(t), (1)

where f and x belong to suitable function spaces. Similar results for the
discrete time dynamics were obtained by Li. The condition that (1)
has a (unique) solution x in some space Y1 for any choice of f that
belongs to some (possibly different) space Y2 is commonly referred to
as admissibility condition. Clearly, this requirement can be formulated
in terms of the linear operator

(Lx)(t) = x′ − A(t)x

acting between suitable function spaces.
The major contribution to this line of the research is due to Massera

and Schäffer [24]. Indeed, in a constrast to the work of Perron, they
have established complete characterization (in terms of admissibility)
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of the notion of (uniform) exponential dichotomy which includes the no-
tion of exponential stability as a particular case. More precisely, rather
then considering only the dynamics that exhibits stable behaviour, they
have considered the case of dynamics with the property that the phase
space splits into two complementary directions, where in one direction
dynamics exhibits stable behaviour while in the complementary direc-
tion it possesses an unstable (chaotic) behaviour. In addition, they
have developed an axiomatic approach to the problem of constructing
all possible pairs (Y1, Y2) of function spaces with the property that the
corresponding admissibility condition is equivalent to the existence of
exponential dichotomy.

To the best of our knowledge, the first results in this direction that
deal with the infinite-dimensional dynamics are due to Dalec′kĭı and
Krĕın [14]. For more recent results devoted to continuous and discrete
evolution families, we refer to [1, 18, 19, 21, 27, 32, 35, 36, 37, 39, 41] for
those dealing with uniform exponential behaviour and to [3, 6, 26, 34,
43] for those that consider various concepts of nonuniform exponential
behaviour.

In the context of smooth dynamical systems, first results are due to
Mather [25] who proved that a smooth diffeomorphisms f of a compact
Riemannian manifold M is Anosov if and only if the operator Γ defined
by

(Γv)(x) = Df(f−1(x))v(f−1(x)),

on the space of all continuous vector fields v on M is hyperbolic (see [12]
for related results in the case of flows). Subsequent related results
consider the general case of linear cocycles (or the so-called linear skew
product flows) acting on Banach spaces. We refer to [11, 13, 20, 31,
33, 38, 40] and references therein. We stress that all of those works
consider only uniform hyperbolic behaviour.

In the paper [42] devoted to the roughness property of nonuniform
hyperbolicity (the so-called tempered dichotomy) for linear cocycles on
Banach spaces, the authors posed a questions on whether it is possible
to give functional theoretic characterization of nonuniform behaviour.
It turns out that the answer to this question is positive and such char-
acterization was developed in [4] (see also [5]) and applied to the above
mentioned roughness property of tempered dichotomies. However, the
approach developed in [4] is far from satisfactory since the construction
of appropriate spaces on which the Mather type of operator acts is given
in terms of the so-called Lyapunov norms which transform nonuniform
behaviour into the uniform. Thus, in order to use this charaterization
to detect nonuniform behaviour, one would first need to construct ap-
propriate Lyapunov norms. Hence, the results in [4] are unfortunately
only of limited applicability.

In the present paper, we propose an alternative functional theoretic
characterization of tempered exponential dichotomies. More precisely,
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we show that the existence of tempered exponential dichotomy (under
the assumptions of the multiplicative ergodic theorem) is equivalent to
the invertibility of Mather-type operators acting on a certain Frechét
space. Although dealing with Frechét instead of Banach spaces is in
principle harder, we feel that nevertheless our results have an advan-
tage over those in [4]. The reason for this is that our Frechét space
is build in terms of the original norm and not in terms of Lyapunov
norms. We stress that our approach is close in spirit to that devel-
oped in [16] for Lyapunov regular trajectories in the finite-dimensional
setting, associated to a smooth diffeomorphism.

In order to formulate an explicit result, let (Ω,F ,P, σ) be an invert-
ible and ergodic measure preserving dynamical system. Moreover, let
A be a linear cocycle over this system which takes values in a family
of compact and injective operators on some Banach space. We will
construct a Frechét space Y as well as family of continuous operators
Mω : Y → Y , ω ∈ Ω such that the following result (which is a combi-
nation of Theorems 9 and 10) is valid.

Theorem 1. The cocycle A admits a tempered dichotomy if and only
if Id −Mω is an invertible operator on Y for P-a.e. ω ∈ Ω, where Id
denotes the identity operator on Y .

We hope that our results will be applicable to the study of nonuni-
formly hyperbolic dynamical systems. We emphasize that since the
landmark works of Oseledets [28] and in particulary Pesin [30] this
theory has become one of the central themes of the modern dynamical
systems theory (see [8] for a detailed exposition). We refer to [7, 10, 23]
and references therein for the discussions regarding the various exten-
sions of this theory to the infinite-dimensional setting.

2. Preliminaries

In this section we recall some notions and collect previous auxiliary
results that will be used in the following section.

2.1. Linear cocycles and tempered exponential dichotomy. Con-
sider a probability space (Ω,F ,P) and assume that σ : Ω → Ω is an
invertible, P-preserving transformation which is ergodic. Furthermore,
let X be a separable Banach space and denote by B(X) the space of
all bounded linear operators on X. Finally, let N0 = {0, 1, 2, . . .}.

We say that a map A : Ω×N0 → B(X) is a linear cocycle over σ if:

1. A(ω, 0) = Id for ω ∈ Ω;
2. A(ω, n+m) = A(σm(ω), n)A(ω,m) for ω ∈ Ω and n,m ∈ N0;
3. ∫

Ω

log+‖A(ω)‖ dP(ω) <∞, (2)

where
A(ω) = A(ω, 1), for ω ∈ Ω; (3)
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4. ω 7→ A(ω)x is a measurable map from Ω to X for each x ∈ X.

We recall that the map A given by (3) is called the generator of a
cocycle A.

We also introduce the notion of a tempered random variable. We say
that a measurable map K : Ω→ (0,∞) is a tempered random variable
if

lim
n→±∞

1

n
logK(σn(ω)) = 0, for P-a.e. ω ∈ Ω.

The following well-known result (see [2] for example) will be useful in
our arguments.

Proposition 2. Assume that K : Ω → (0,∞) is a tempered random
variable. Then, for ε > 0 there exists a measurable map C : Ω→ (0,∞)
such that:

1. for P-a.e. ω ∈ Ω,

K(ω) ≤ C(ω); (4)

2. for P-a.e. ω ∈ Ω and every n ∈ Z, we have that

C(σn(ω)) ≤ C(ω)eε|n|. (5)

Finally, we recall the notion of a tempered exponential dichotomy [4,
42]. We say that the cocycle A with generator A as in (3) admits
a tempered exponential dichotomy if there exist λ > 0, a tempered
random variable K : Ω → (0,∞) and a family of projections P (ω) ∈
B(X), ω ∈ Ω such that:

1. ω 7→ P (ω)x is a measurable map for each x ∈ X;
2. for P-a.e. ω ∈ Ω,

A(ω)P (ω) = P (σ(ω))A(ω)

and the map

A(ω)|KerP (ω) : KerP (ω)→ KerP (σ(ω))

is invertible;
3. for P-a.e. ω ∈ Ω and every n ∈ N,

‖A(ω, n)P (ω)‖ ≤ K(ω)e−λn (6)

and

‖A(ω,−n)(Id− P (ω))‖ ≤ K(ω)e−λn, (7)

where

A(ω,−n) := (A(σ−n(ω), n)|KerP (σ−n(ω)))−1

is a well-defined linear map from KerP (ω) to KerP (σ−n(ω)).
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2.2. Multiplicative ergodic theorem. We now recall the version of
the multiplicative ergodic theorem established by Lian and Lu [23].
For the sake of simplicity, we will restrict our attention to the case of
compact cocycles.

Theorem 3. Assume that A is a linear cocyle such that A(ω) is a
compact and injective operator for P-a.e. ω ∈ Ω, where A(ω) is given
by (3). Then either:

1. There is a finite sequence of numbers

λ1 > λ2 > · · · > λk > λ∞ = −∞
and a decomposition

X = E1(ω)⊕ · · · ⊕ Ek(ω)⊕ E∞(ω)

such that for P-a.e. ω ∈ Ω,

A(ω)Ei(ω) = Ei(σ(ω)), i = 1, . . . , k and A(ω)E∞(ω) ⊂ E∞(σ(ω)),

lim
|n|→∞

1

n
log‖A(ω, n)x‖ = λi for x ∈ Ei(ω) \ {0} and i ∈ {1, . . . k}

and

lim
n→∞

1

n
log‖A(ω, n)x‖ = λ∞ for x ∈ E∞(ω).

Moreover, each Ei(ω), i = 1, . . . , k is a finite-dimensional sub-
space of X.

2. There exists an infinite sequence of numbers

λ1 > λ2 > · · · > λk > . . . > λ∞ = −∞
and for each k ∈ N a decomposition

X = E1(ω)⊕ · · · ⊕ Ek(ω)⊕ Fk(ω)

such that for P-a.e. ω ∈ Ω,

A(ω)Ei(ω) = Ei(σ(ω)), i = 1, . . . , k and A(ω)Fk(ω) ⊂ Fk(σ(ω)),

lim
|n|→∞

1

n
log‖A(ω, n)x‖ = λi, for x ∈ Ei(ω) \ {0} and i = 1, . . . , k

and

lim sup
n→∞

1

n
log‖A(ω, n)x‖ ≤ λi+1, for x ∈ Fk(ω).

Moreover, each Ei(ω), i 6=∞ is a finite-dimensional subspace of
X.

We note that the numbers λi are called Lyapunov exponents of the
cocycle A. In addition, subspaces Ei(ω) are called Oseledets subspaces.
Now we are in position to state sufficient conditions for the existence of
tempered exponential dichotomy. The following result was established
by Lian and Lu [23].
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Theorem 4. Assume that A is a linear cocycle satisfying assumptions
of Theorem 3. If all Lyapunov exponents of A are nonzero, then A

admits a tempered exponential dichotomy.

2.3. Frechét space. We now introduce our Frechét space that will
play a central role in our arguments. Set

Y =

{
x = (xn)n∈Z ⊂ X : lim sup

|n|→∞

1

|n|
log‖xn‖ ≤ 0

}
.

It is easy to verify that Y is a vector space. Furthermore, for each
k ∈ N set

Yk =

{
x = (xn)n∈Z ⊂ X : ‖x‖k <∞

}
,

where

‖x‖k = sup
n∈Z

(‖xn‖e−|n|/k).

It is straightforward to show that:

• (Yk, ‖·‖k) is a Banach space for each k ∈ N;
•

Y =
⋂
k∈N

Yk; (8)

• for each k ∈ N
Yk+1 ⊂ Yk; (9)

• ‖x‖k ≤ ‖x‖k+1 for every x ∈ Y and k ∈ N.

It follows from the above properties that we can equip Y with the struc-
ture of the graded Frechét space by saying that the sequence (xl)l∈N ⊂ Y
converges to x ∈ Y if and only if (xl)l∈N converges to x in Yk for each
k ∈ N.

2.4. Mather-type operator. The other crucial ingredient in our char-
acterization is the construction of appropriate linear operators. Let A

be a linear cocycle and consider its generator A given by (3). For
ω ∈ Ω, we define

(Mωx)n = A(σn−1(ω))xn−1, for n ∈ Z and x = (xn)n∈Z ⊂ X.

Obviously, Mω is a linear map. Let us now establish several auxiliary
results.

Lemma 1. For P-a.e. ω ∈ Ω,

Mω : Yk+1 → Yk

is a well-defined and bounded linear operator for each k ∈ N.

Proof. It follows from (2) that there exist a > 0 and a tempered random
variable K : Ω→ (0,∞) such that

‖A(ω, n)‖ ≤ K(ω)ean, (10)
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for P-a.e. ω ∈ Ω and every n ∈ N. Fix now k ∈ N and choose ε > 0
such that ε < 1

k
− 1

k+1
. Furthermore, let C be given by Proposition 2

and let Ω′k ⊂ Ω be such that P(Ω′k) = 1 and that (4), (5) and (10) hold
for each ω ∈ Ω′k. It follows that

e−|n|/k‖(Mωx)n‖ = e−|n|/k‖A(σn−1(ω))xn−1‖
≤ e−|n|/kK(σn−1(ω))ea‖xn−1‖
≤ e−|n|/kC(σn−1(ω))ea‖xn−1‖
≤ C(ω)ea−|n|/k+ε|n−1|‖xn−1‖
≤ C(ω)ea+1/ke(ε−1/k)|n−1|‖xn−1‖
≤ C(ω)ea+1/ke−|n−1|/(k+1)‖xn−1‖
≤ C(ω)ea+1/k‖x‖k+1,

for each n ∈ Z, x = (xn)n∈Z ∈ Yk+1 and ω ∈ Ω′k. We conclude that

‖Mωx‖k ≤ C(ω)ea+1/k‖x‖k+1, (11)

for every x ∈ Yk+1 and ω ∈ Ω′k. Set Ω′ = ∩∞k=1Ω′k. Then, P(Ω′) = 1
and it follows readily from (11) that Mω : Yk+1 → Yk is a well-defined
and bounded operator for each ω ∈ Ω′ and k ∈ N. �

As a direct consequence of Lemma 1, we obtain the following result.

Proposition 5. The operator Mω : Y → Y is a well-defined and con-
tinuous operator for P-a.e. ω ∈ Ω.

Proof. By Lemma 1, there exists a full-measure set Ω′ ⊂ Ω such that
Mω : Yk+1 → Yk is a well-defined and bounded linear operator for each
k ∈ N and ω ∈ Ω′.

We begin by noting that MωY ⊂ Y for each ω ∈ Ω′. Indeed, for
any x ∈ Y we have that x ∈ Yk+1 for each k ∈ N (see (8)). Hence,
Lemma 1 implies that Mωx ∈ Yk for every k ∈ N. We conclude that
Mωx ∈ Y .

Let us now establish the continuity of Mω. Take a sequence (xl)l
that converges to x in Y . This implies that (xl)l converges to x in Yk+1

for each k ∈ N. By (11), we have that (Mωx
l)l converges to Mωx in Yk

for every k ∈ N and therefore also in Y . The proof is completed. �

3. Main results

In this section we obtain the main results of this paper, i.e. we
establish the complete characterization of tempered exponential di-
chotomies in terms of the invertibility of operators Id − Mω on the
space Y . Before we establish several auxiliary lemmas, we will intro-
duce some additional notation. Assume that the cocycle A admits a
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tempered dichotomy and let P (ω), ω ∈ Ω be the associated family of
projections. For ω ∈ Ω, we define linear operators Γiω, i = 1, 2 by

(Γ1
ωx)n =

∞∑
m=0

A(σn−m(ω),m)P (σn−m(ω))xn−m (12)

and

(Γ2
ωx)n =

∞∑
m=1

A(σn+m(ω),−m)(Id− P (σn+m(ω)))xn+m, (13)

where x = (xn)n∈Z.

Lemma 2. Assume that the cocycle A admits a tempered dichotomy.
Then, Γ1

ω : Yk+1 → Yk given by (12) is a well-defined and bounded linear
operator for P-a.e. ω ∈ Ω and sufficiently large k ∈ N.

Proof. Take an arbitrary k ∈ N satisfying 1/k < λ and choose ε ∈
(0, 1

k
− 1

k+1
). Furthermore, let C be given by Proposition 2 (with respect

to K as in the notion of tempered dichotomy). It follows from (4), (5)
and (6) that

e−|n|/k‖(Γ1
ωx)n‖ ≤ e−|n|/k

∞∑
m=0

K(σn−m(ω))e−λm‖xn−m‖

≤ e−|n|/k
∞∑
m=0

C(σn−m(ω))e−λm‖xn−m‖

≤ C(ω)e−|n|/k
∞∑
m=0

eε|n−m|e−λm‖xn−m‖

≤ C(ω)
∞∑
m=0

e(ε−1/k)|n−m|e(1/k−λ)m‖xn−m‖

≤ C(ω)
∞∑
m=0

e−|n−m|/(k+1)e(1/k−λ)m‖xn−m‖

≤ C(ω)

1− e1/k−λ‖x‖k+1,

for P-a.e. ω ∈ Ω and every n ∈ Z and x = (xn)n∈Z ∈ Yk+1. Hence,

‖Γ1
ωx‖k ≤

C(ω)

1− e1/k−λ‖x‖k+1, (14)

for P-a.e. ω ∈ Ω and every x = (xn)n∈Z ∈ Yk+1. The proof of the
lemma is completed. �

The following result follows from Lemma 2 in a same way as Propo-
sition 5 follows from Lemma 1.
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Proposition 6. Assume that the cocycle A admits a tempered di-
chotomy. Then, the operator Γ1

ω : Y → Y given by (12) is a well-defined
and continuous operator for P-a.e. ω ∈ Ω.

Proof. By Lemma 2, there exists a full-measure set Ω′ ⊂ Ω such that
Γ1
ω : Yk+1 → Yk is a well-defined and bounded linear operator for each
k ∈ N sufficiently large and ω ∈ Ω′.

We begin by noting that Γ1
ωY ⊂ Y for each ω ∈ Ω′. Indeed, for any

x ∈ Y we have that x ∈ Yk+1 for each k ∈ N (see (8)). Hence, Lemma 2
implies that Γ1

ωx ∈ Yk for every k ∈ N sufficiently large. Hence, (8)
and (9) imply that Γ1

ωx ∈ Y .
We now prove that Γ1

ω is continuous. Take a sequence (xl)l that
converges to x in Y . This implies that (xl)l converges to x in Yk+1 for
each k ∈ N. By (14), we have that (Γ1

ωx
l)l converges to Γ1

ωx in Yk for
every k ∈ N sufficiently large. This implies that (Γ1

ωx
l)l converges to

Γ1
ωx in Y . �

Lemma 3. Assume that the cocycle A admits a tempered dichotomy.
Then, the operator Γ2

ω : Yk+1 → Yk given by (13) is a well-defined and
bounded for P-a.e. ω ∈ Ω and sufficiently large k ∈ N.

Proof. Using the same notation as in the proof of Lemma 2, it follows
from (4), (5) and (6) that

e−|n|/k‖(Γ2
ωx)n‖ ≤ e−|n|/k

∞∑
m=1

K(σn+m(ω))e−λm‖xn+m‖

≤ e−|n|/k
∞∑
m=1

C(σn+m(ω))e−λm‖xn+m‖

≤ C(ω)e−|n|/k
∞∑
m=1

eε|n+m|e−λm‖xn+m‖

≤ C(ω)
∞∑
m=1

e−|n+m|/(k+1)e(1/k−λ)m‖xn+m‖

≤ C(ω)
e1/k−λ

1− e1/k−λ‖x‖k+1,

for µ-a.e. ω ∈ Ω and every n ∈ Z and x = (xn)n∈Z ∈ Yk+1. Hence,

‖Γ2
ωx‖k ≤ C(ω)

e1/k−λ

1− e1/k−λ‖x‖k+1, (15)

for P-a.e. ω ∈ Ω and every x = (xn)n∈Z ∈ Yk+1. This immediately
yields the conclusion of the lemma. �

Lemma 3 implies the following result whose proof is analogous to the
proof of Proposition 6.
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Proposition 7. Assume that the cocycle A admits a tempered di-
chotomy.Then, the operator Γ2

ω : Y → Y given by (13) is a well-defined
and continuous operator for P-a.e. ω ∈ Ω.

Proposition 8. Assume that the cocycle A admits a tempered di-
chotomy. Then, we have the following:

1. the operator Γω := Γ1
ω − Γ2

ω : Yk+1 → Yk is a well-defined and
bounded for P-a.e. ω ∈ Ω and sufficiently large k ∈ N, where Γ1

ω

and Γ2
ω are given by (12) and (13) respectively;

2. the operator Γω : Y → Y is a well-defined and continuous opera-
tor for P-a.e. ω ∈ Ω.

Proof. The first assertion follows from Lemma 2 and Lemma 3, while
the second follows from Proposition 6 and Proposition 7. �

The connection between Γω and Mω is given by the following result.

Lemma 4. Assume that the cocycle A admits a tempered dichotomy.
Then,

(Γω(Id−Mω))x = x,

for P-a.e. ω ∈ Ω, k sufficiently large and every x ∈ Yk+1. In particular,

(Γω(Id−Mω))x = x for x ∈ Y .

Proof. Observe that (recall that A is given by (3))

((Γ1
ω(Id−Mω))x)n

=
∞∑
m=0

A(σn−m(ω),m)P (σn−m(ω))xn−m

−
∞∑
m=0

A(σn−m(ω),m)P (σn−m(ω))A(σn−m−1(ω))xn−m−1

=
∞∑
m=0

A(σn−m(ω),m)P (σn−m(ω))xn−m

−
∞∑
m=0

A(σn−m−1(ω),m+ 1)P (σn−m−1(ω))xn−m−1

= P (σn(ω))xn.

Similarly, we have that

((Γ2
ω(Id−Mω))x)n

=
∞∑
m=1

A(σn+m(ω),−m)(Id− P (σn+m(ω)))xn+m

−
∞∑
m=1

A(σn+m(ω),−m)(Id− P (σn+m(ω)))A(σn+m−1(ω))xn+m−1
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=
∞∑
m=1

A(σn+m(ω),−m)(Id− P (σn+m(ω)))xn+m

−
∞∑
m=1

A(σn+m−1(ω),−(m− 1))(Id− P (σn+m−1(ω)))xn+m−1

= −(Id− P (σn(ω)))xn.

Hence,

((Γω(Id−Mω))x)n = ((Γ1
ω(Id−Mω))x)n − ((Γ2

ω(Id−Mω))x)n

= P (σn(ω))xn + (Id− P (σn(ω)))xn

= xn,

which yields the first statement of the lemma. The second statement
is a direct consequence of the first. �

Theorem 9. Assume that the cocycle A admits a tempered dichotomy.
Then, Id − Mω is an invertible continuous operator on Y for P-a.e.
ω ∈ Ω.

Proof. By Lemma 4, we have that

Γω(Id−Mω) = Id on Y ,

for P-a.e. ω ∈ Ω. Let us now prove that

(Id−Mω)Γω = Id on Y , (16)

for P-a.e. ω ∈ Ω. Observe that (A is again as in (3))

(Γ1
ωx−MωΓ1

ωx)n

=
∞∑
m=0

A(σn−m(ω),m)P (σn−m(ω))xn−m

− A(σn−1(ω))
∞∑
m=0

A(σn−m−1(ω),m)P (σn−m−1(ω))xn−m−1

=
∞∑
m=0

A(σn−m(ω),m)P (σn−m(ω))xn−m

−
∞∑
m=0

A(σn−m−1(ω),m+ 1)P (σn−m−1(ω))xn−m−1

= P (σn(ω))xn,

and thus

(Γ1
ωx−MωΓ1

ωx)n = P (σn(ω))xn, (17)
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for P-a.e. ω ∈ Ω, every n ∈ Z and x = (xn)n∈Z ∈ Y . Similarly,

(−Γ2
ωx + MωΓ2

ωx)n

= −
∞∑
m=1

A(σn+m(ω),−m)(Id− P (σn+m(ω)))xn+m

+ A(σn−1(ω))
∞∑
m=1

A(σn+m−1(ω),−m)(Id− P (σn+m−1(ω)))xn+m−1

= −
∞∑
m=1

A(σn+m(ω),−m)(Id− P (σn+m(ω)))xn+m

+
∞∑
m=1

A(σn+m−1(ω),−(m− 1))(Id− P (σn+m−1(ω)))xn+m−1,

= (Id− P (σn(ω)))xn,

and therefore

(−Γ2
ωx + MωΓ2

ωx)n = (Id− P (σn(ω)))xn, (18)

for P-a.e. ω ∈ Ω, every n ∈ Z and x = (xn)n∈Z ∈ Y . Finally, we
observe that (17) and (18) readily imply (16). �

We now establish the converse of Theorem 9.

Theorem 10. Let A be a linear cocycle with generator A as in (3)
such that A(ω) is injective and compact operator for P-a.e. ω ∈ Ω.
Furthermore, assume that Id −Mω is an invertible operator on Y for
P-a.e. ω ∈ Ω. Then, the cocycle A admits a tempered dichotomy.

Proof. In a view of Theorem 4, it is sufficient to show that all Lya-
punov exponents of A nonzero. Assume the opposite, i.e. that zero
is a Lyapunov exponent of A and let E0(ω) denote the corresponding
Oseledets subspace. Then, Theorem 3 implies that

lim
n→±∞

1

n
log‖A(ω, n)v‖ = 0, for P-a.e. ω ∈ Ω and 0 6= v ∈ E0(ω).

(19)
Fix 0 6= v ∈ E0(ω) and consider a sequence x = (xn)n∈Z ⊂ X defined
by

xn = A(ω, n)v, n ∈ Z.
By (19), x ∈ Y . It is easy to verify that (Id−Mω)x = x. Since x 6= 0,
we obtain the contradiction with the invertibility of Id−Mω. �

We note that Theorem 1 follows directly from Theorems 9 and 10.

Remark 1. We remark that Theorems 3 and 4 are in fact valid under
weaker assumption that the cocycle A is quasicompact and that A(ω)
given by (3) is injective for P-a.e. ω ∈ Ω. Consequently, all the results
of this paper are also valid in this setting. We have decided to present
our results for the particular case of compact cocycles in order to focus
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on the novelties of the present paper and to avoid introducing back-
ground on quasicompact cocycles (which can be found in [9, 17, 23]).
We note that the notion of a quasicompact cocycle is not hard to in-
troduce but is quite challenging to verify in practice that the cocycle
possesses this property.

Furthermore, in principle, the assumption on the injectivity of op-
erators A(ω) could be eliminated. Indeed, the most recent versions of
the multiplicative ergodic theorem (see [9, 17]) require that the cocycle
A is quasicompact and there are no requirements on the injectivity of
operators A(ω). Regarding Theorem 4, it is known that in the finite-
dimensional setting it holds without injectivity assumptions (see [15,
Theorem 2]). We believe that those ideas, when combined with the
tools developed in [10], could be extended to the general case of quasi-
compact cocycles on Banach spaces. However, we refrain from doing so
since it would require many technical arguments that would completely
overshadow main results of our paper.

Acknowledgements

We would like to thank the referee for carefully reading our manu-
script and for his/her valuable comments.

References

1. B. Aulbach and N. Van Minh, The concept of spectral dichotomy for linear dif-
ference equations II, J. Differ. Equ. Appl. 2 (1996), 251–262.

2. L. Arnold, Random dynamical systems, Springer-Verlag (1998).
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for evolution families, Monatsh. Math., in press.

33. C. Preda, P. Preda and A. Craciunescu, Criterions for detecting the existence
of the exponential dichotomies in the asymptotic behavior of the solutions of
variational equations, J. Funct. Anal. 258 (2010), 729–757.

34. P. Preda and M. Megan, Nonuniform dichotomy of evolutionary processes in
Banach spaces, Bull. Austral. Math. Soc. 27 (1983), 31–52.



ON SPECTRAL CHARACTERIZATION OF NONUNIFORM HYPERBOLICITY15

35. P. Preda, A. Pogan and C. Preda, (Lp, Lq)-admissibility and exponential di-
chotomy of evolutionary processes on the half-line, Integral Equations Operator
Theory 49 (2004), 405–418.

36. P. Preda, A. Pogan and C. Preda, Schäffer spaces and exponential dichotomy
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