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Previous studies have reported promising differences in the quality of kernels from

farmers’ maize populations collected in a Portuguese region known to produce

maize-based bread. However, several limitations have been identified in the previous

characterizations of those populations, such as a limited set of quality traits accessed

and a missing accurate agronomic performance evaluation. The objectives of this

study were to perform a more detailed quality characterization of Portuguese farmers’

maize populations; to estimate their agronomic performance in a broader range of

environments; and to integrate quality, agronomic, and molecular data in the setting up

of decision-making tools for the establishment of a quality-oriented participatory maize

breeding program. Sixteen farmers’ maize populations, together with 10 other maize

populations chosen for comparison purposes, were multiplied in a common-garden

experiment for quality evaluation. Flour obtained from each population was used to study

kernel composition (protein, fat, fiber), flour’s pasting behavior, and bioactive compound

levels (carotenoids, tocopherols, phenolic compounds). These maize populations were

evaluated for grain yield and ear weight in nine locations across Portugal; the populations’

adaptability and stability were evaluated using additive main effects and multiplication

interaction (AMMI) model analysis. The phenotypic characterization of each population

was complemented with a molecular characterization, in which 30 individuals per

population were genotyped with 20 microsatellites. Almost all farmers’ populations were

clustered into the same quality-group characterized by high levels of protein and fiber, low

levels of carotenoids, volatile aldehydes, α- and δ-tocopherols, and breakdown viscosity.

Within this quality-group, variability on particular quality traits (color and some bioactive

compounds) could still be found. Regarding the agronomic performance, farmers’

maize populations had low, but considerably stable, grain yields across the tested

environments. As for their genetic diversity, each farmers’ population was genetically

heterogeneous; nonetheless, all farmers’ populations were distinct from each other’s. In
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conclusion, and taking into consideration different quality improvement objectives, the

integration of the data generated within this study allowed the outline and exploration

of alternative directions for future breeding activities. As a consequence, more informed

choices will optimize the use of the resources available and improve the efficiency of

participatory breeding activities.

Keywords: Zeamays L., open-pollinated varieties, yield, nutritional quality, organoleptic quality, processing quality,

genetic diversity, participatory plant breeding

INTRODUCTION

Maize (Zea mays L.) plays a major role in nutrition in many
countries, and is the basis for the production of several
foods, such as polenta, bread, tortillas, snacks, and cornflakes
(Fernandes et al., 2013). In some of countries such in Spain
or Portugal whole maize flour is used for bread production
(Rodríguez et al., 2013). The ethnic Portuguese maize-based
bread is known locally as broa. Broa is traditionally made with
more than 50% maize flour mixed with rye and/or wheat flour
in a mostly empirical process (Brites et al., 2010). As further
described by the same authors (Brites et al., 2010), this process
normally involves the mixing of sieved wholemeal maize flour
with hot water, rye, and/or wheat flour (in a variable proportion),
with yeast from leavened dough from earlier broa acting as
sourdough.

In the last few decades, consumers’ views on how foods
positively or negatively affect their health have changed and,
therefore, foods today are not only intended to satisfy hunger
and provide necessary nutrients; they are also used to prevent
nutrition-related diseases and improve physical and mental well-
being (reviewed in Siró et al., 2008). Given this rising awareness
in consumers, the consideration of the quality aspects of plant
breeding is now a commercially relevant issue. The health
benefits of consuming whole grains have been well documented,
and are often associated with those benefits conveyed by their
dietary fiber content (Ktenioudaki et al., 2015). Additionally,
whole grains are rich in bioactive phytochemicals such as
phenolic compounds, tocopherols, and carotenoids (Slavin et al.,
2000).

Additionally, the market demand for gluten-free formulations
has driven more research in the different steps leading from the
maize kernel to the maize bread quality (e.g., Moreira et al., 2015;
Garzón et al., 2017; Martínez and Gómez, 2017). In parallel, an
increased investment on the improvement of open-pollinated
maize populations has been driven by a renewed interest in
materials traditionally used for ethnic food commodities and for
their use in the context of more sustainable farming systems (e.g.,
Revilla et al., 2012, 2015; Samayoa et al., 2016).

Since the introduction of maize in Europe from the Americas
in the fifteenth century, diverse maize varieties have been selected
for adaptation to a wide range of environments and consumer
preferences (Tenaillon and Charcosset, 2011; Revilla et al., 2015).
Portugal, Spain, and Italy are considered primary centers of
maize introduction in Europe (Dubreuil et al., 2006). The
European maize populations although much less variable than
the Central and South American populations (Rebourg et al.,

2003), are a useful alternative because they were selected from
multiple origins in the Americas and have the advantage of
400 years of adaptation to temperate climates (Romay et al.,
2012), but lower yield than modern hybrids under conventional
agricultural conditions (Revilla et al., 2015).

In the twenty-first century, Portuguese traditional maize
populations can be still found under production as verified
in a collecting expedition that took place in the last decade
in the Northern Central region of Portugal (Vaz Patto et al.,
2007). This mission had as its main objective sampling the
enduring traditional maize populations’ variability in a particular
region of the country, where maize-based bread still plays an
important role in the local rural economy (Vaz Patto et al.,
2007). In this collecting expedition it was recorded that the
majority of the maize populations conserved were being used
primarily for bread production. As a consequence, the collected
populations were assumed to have the potential to be used
in broa production. The fact that flour produced from locally
grown maize populations has traditionally been used in the
formulation of broa has been pointed out by Vaz Patto et al.
(2007) as one of the reasons for the on-farm conservation of
the Portuguese maize populations. Brites et al. (2010), through
a sensory analysis on broa bread carried out by a trained
panel using open-pollinated maize populations, identified a
preference, due to texture, taste, and aroma, for maize bread
produced using open-pollinated populations, as opposed to
maize bread produced using commercial hybrid maize varieties.
In the same study, instrumental quality attributes of maize flour
from open-pollinated populations were measured and compared
to commercial hybrid maize varieties. The results from that
study showed that the flour from open-pollinated populations—
considered by the trained panel to produce better quality broa—
had higher values of protein, lower values of amylose, and
lower viscosities (maximum, minimum, final, and breakdown
viscosities) (Brites et al., 2010).

Besides the phenotypic characterization, a better
understanding of the genetic diversity present in the germplasm
available for breeding helps to structure germplasm, defining,
for example, heterotic pools; provides useful information for
selecting contrasting parental lines for new breeding populations;
and helps breeders to identify valuable new alleles for breeding
(Varshney et al., 2016).

Currently, only a limited number of Portuguese traditional
maize populations are integrated in a long-term participatory
maize breeding program that has been running since 1984 in the
northeast region of Portugal (Sousa Valley, Lousada; Vaz Patto
et al., 2013). One of the main advantages of on-farm participatory
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plant breeding is that it enables the constant adaptation of crops
to the environment and supports the involvement of farmers
since the selection criteria for the maize populations are defined
in accordance with farmers’ decisions. This breeding program
was set at the Sousa Valley region because this was a well-
known area in the country for maize production, with good
edaphic-climatic conditions, and because at the time of the
program implementation, it was initiated with the support of
the local community (reviewed in Vaz Patto et al., 2013). In
the Portuguese participatory maize breeding program, selection
was mainly focused on the improvement of grain yield and
other important agronomic traits, considering that quality was
safeguarded by the use of local traditional maize populations
(Moreira, 2006). Nevertheless, by the comparative evaluation
of different selection cycles of some of the participatory bred
maize populations, Alves et al. (2017) concluded that although
diversity was maintained under this program, quality evolved
erratically. This observation, together with the increasing market
importance given to quality aspects, set the stage for addressing
the need to develop appropriate decision-making tools to bring
about a quality-oriented maize population selection.

Although previous works (Vaz Patto et al., 2007, 2009; Brites
et al., 2010) improved our knowledge of the agronomic, quality,
and molecular aspects of traditional maize populations collected
from the central region of Portugal, some limitations remained.
Specifically, in terms of agronomic characterization, it is still
necessary to understand the eventual effect and interaction of
the different maize farming sites on those maize populations.
Moreover, the use of controlled pollinations in the previous
studies might have reduced production per plot, as described
in Vaz Patto et al. (2007); therefore, field trials, under real
productionmanagement over several locations, are still necessary
to correctly evaluate the potential grain yield and to study
how each traditional population behaves when grown in the
different areas where maize populations have traditionally been
produced in the country. In terms of quality characterization, it
is necessary to evaluate other health-promoting, nutritional, and
organoleptic compounds that can have an impact on consumers’
perception and acceptance of the final product. Finally, in terms
of molecular characterization, it is necessary to increase the
number of individual plants evaluated per population from the
original five. Maize is a naturally open-pollinated crop and,
therefore, a large number of individuals should be evaluated to
accurately estimate the number of alleles and their frequency per
population and, as a result, to assess the similarities and infer the
genetic structure between and within maize populations.

The maize populations that were surveyed in the collecting
mission that took place in the Central-Northern region of
Portugal (Vaz Patto et al., 2007) are not at this date involved in
any participatory maize breeding program. Given the previous
Portuguese experience with this type of breeding approach and
to promote the use of such distinct material, this work proposes
to produce relevant (phenotypic and molecular) information
on these materials, and to develop decision-making tools to
aid in the establishment of a quality-oriented participatory
breeding program. This breeding program should take into
consideration market-driven quality traits (traits related to

consumer acceptance, such as organoleptic and health-related
compounds), while also improving the agronomic performance
of the breeding materials. The characterization of these
populations will allow the identification of the most relevant ones
for each breeding objective and will result in a more efficient use
of those genetic resources in breeding programs.

Therefore, the objectives of this study are:

(1) To extend the maize populations quality characterization—
organoleptic, nutritional, and health-related traits—with the
quantification of aroma-related volatile compounds, and
health-related compounds, such as tocopherols, carotenoids,
and phenolic compounds, that might influence the quality of
maize-based food commodities;

(2) To accurately estimate the agronomic performance and
potential of the collected maize populations using multi-
location field trials (broader performance stability/specific
adaptability) across different farming sites, exploring new
locations for the establishment of a future quality-oriented
participatory maize breeding program;

(3) To build decision-making tools to enable an accurate
population selection within a quality-oriented participatory
breeding program, by complementing the precise agronomic
and quality description with a more thorough molecular
characterization.

MATERIALS AND METHODS

Plant Material
The materials evaluated in this study consisted of 16 enduring
traditional maize populations that were collected in the Central
Northern region of the country from small farms with low
input agricultural systems (Vaz Patto et al., 2007). These farmers’
populations were labeled in this work as broa-x (x corresponds to
the specific name given to each population).

For comparison purposes, nine open-pollinated populations
from the long-term Portuguese maize participatory breeding
program, identified in this work as participatory bred (PPB)
populations, and an international reference, the US open-
pollinated population BS22(R)C6, were also included in this
study. The populations under the Portuguese maize participatory
breeding program were selected and/or developed primarily to
improve their agronomic performance (reviewed in Vaz Patto
et al., 2013). BS22(R)C6 is a genetically broad-based synthetic
population developed primarily for improved grain yield and
root and stalk strength (Hallauer et al., 2000). More information
about each population can be found in Table S1.

Quality Evaluation
Quality traits related to flour’s pasting behavior (flour viscosity
parameters), nutritional value (protein, fat, and fiber content),
bioactive compounds (carotenoids, tocopherols, total phenolic
content, p-coumaric, and ferulic acid content), and aroma-
related compounds (volatile aldehydes content) were evaluated
in 26 maize populations. For that, a bulk of grain from each
maize population produced from a common-garden experiment
established in Coimbra in 2009 was used. Information about the
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site characterization can be found in Table S2. Each population
was overplanted by hand in two-row plots 6.4m long and with
0.75m border space between two planted rows. Each plot was
thinned at the seven-leaf stage to 48 plants per plot to achieve
a plant density of 50,000 plants.ha−1. Plots were irrigated as
needed and mechanically and/or hand weeded as necessary
following common agricultural practices for maize in the region.
Pollination was controlled within each plot. All the plots were
harvested by hand. After harvest, ears were dried at 30–35◦C in
an oven (MemmertModel UFE 800,Memmert GmbH+Co. KG,
Germany) until a ∼15% in moisture was reached. The ears were
then shelled and the kernel collected per plot basis, packed in a
paper bags and kept at 4◦C until further analysis.

Wholemeal maize flour was obtained after milling the kernel
through a Cyclone Falling number 3100 mill (Perten, Sweden)
with a 0.8mmmesh.

The pasting properties of maize flour were obtained with a
Rapid Viscosity Analyzer RVA-4 (Newport Scientific, Australia).
The viscosity profiles were obtained for each population
according to Almeida-Dominguez et al. (1997) at 15% solids,
using the following heating and cooling cycle settings: (1) holding
at 50◦C for 2min, (2) heating to 95◦C in 4.5min, (3) holding at
95◦C for 4.5min, (4) cooling to 50◦C in 4min, (5) holding at
50◦C for 10min. The RVA paddle speed was set at 960 rpm for
the first 10 s of the test, after which the speed was changed to 160
rpm. Peak (PV), minimum or trough (TV), and final viscosities
(FV) were recorded in cPoise and the breakdown viscosity (BD)
was calculated as PV–TV, and setback from trough viscosity (SB1)
was calculated as FV–TV.

Maize flour yellowness was determined on a 10–12 g sample in
an opaque recipient using aMinolta chromameter CR-2b and the
CIE tristimulus color parameters b∗ (yellow/blue index). Positive
b∗ values indicate that sample tends toward the yellow part of the
color spectra.

Flour protein (PR), fat (FT), and fiber (FI) content were
determined by a near-infrared spectroscopic method using
Inframatic 8620 equipment (Perten, Sweden), with calibrations
supplied by the manufacturer. Results were expressed in
percentages.

The total carotenoids content (TCC) was
spectrophotometrically measured at 450 nm according to
the AACCmethod 14-60.01 (AACC International, 2012). Results
were expressed in micrograms of lutein equivalent per gram of
sample, as the main carotenoid found in maize.

α-Tocopherol (AT), γ-tocopherol (GT), δ-tocopherol (DT)
were separated from the fat portion of the maize flours by high-
performance liquid chromatography (HPLC) and quantified
using an Agilent 1200 model with a fluorescence detector (FLD)
and a Diol column (LiChropher 100, 250 × 4mm) according
to the method ISO 9936 (2006). Tocopherols content were
expressed in µg/g fat basis.

For assessing the total free phenolic compounds content (PH)
of maize flour ethanolic extracts (EtOH:H2O 50:50, v/v) were
prepared according to Lopez-Martinez et al. (2009), with some
modifications. Briefly, 2 g ofmaize flour was extracted with 20mL
of EtOH:H2O (50:50, v/v) for 15min, using an Ultra Turrax T25
(Janke & Kunkel, IKA Labortechnik, Germany). Final extracts

were filtered using a Whatman filter paper (type42: retention
2.5µm, diameter 18.5 cm). Extracts were prepared in triplicate
and preserved at−20◦C until analysis.

Total free phenolic compounds content (PH) was assessed
using the Folin-Ciocalteau assay (Singleton et al., 1999) with a
Beckman DU-70 spectrophotometer, with slight modifications as
described in Silva et al. (2015), and expressed in mg of gallic acid
equivalents/100 g of dry weight (GAE/100 g DW).

p-Coumaric (CU) and ferulic acid (FE) were quantified by
HPLC coupled with a photodiode array detector (HPLC-PDA)
at 280 nm with a Thermo Finnigan Surveyor HPLC system
according to Silva et al. (2006). p-Coumaric (CU) and ferulic acid
content were expressed in mg/100 g of dry weight.

Solid phase micro-extraction (SPME) was used as sample
preparation methodology and the volatile fraction was analyzed
by gas chromatography—mass spectrometry (SPME-GC-MS).
Briefly, to 1 g of maize flour, 4.5mL of Milli-Q water was added
to a capped vial and were homogenized using a vortex. For
sample preparation a 2 cm−50/30µm DVB/Carboxen/PDMS
fiber (SUPELCO) and an exposure time of 60min, at 60◦C were
used.

Volatile compounds were analyzed in a GCMS-QP2010 Plus
Shimadzu equipment and compound were separated in a Varian
Factor Four column (30m × 0.25mm × 0.25µm). The injector
was at 250◦C and the column was at 35◦C for 5min, followed by
a gradual increase of 5◦C/min until a final temperature of 230◦C
was reached. Injection was performed using a splitless mode. The
interface and ion source on MS equipment were set at 250◦C.
Mass spectra were produced at 70 eV in a range of 29–299, using
a scanning velocity of 555 scans/s. Helium was used as mobile
phase at a flow rate of 2.1 mL/ min. The equipment was coupled
to an automatic sampler AOC-5000 (Shimadzu). GCMSsolution
Release 2.53SU1 software was applied for data acquisition and
treatment.

Volatile aldehydes content (AL) was taken as the sum of the
peak area of the main aldehydes identified [hexanal, heptenal,
2-heptanal (Z), 2-octenal (E), nonanal, 2-nonenal (E) and
decanal]. Identification of volatile compounds was performed by
a comparison of the experimental mass spectra with the ones
from the software’s spectra library (WILEY 229, NIST 27 and
147). A standard mixture of hydrocarbons C8-C20 (40 mg/L
each, in hexane) was used to determine linear retention indexes—
LRI (Kovats indexes)—in order to confirm identification. The
values of LRI determined for each compound were compared
with described LRI for the same type of column (El-Sayed, 2014,
http://www.pherobase.com).

Quality Data Analysis
All the calculations were performed in SAS Release 9.2 (SAS
Institute Inc., 2004). Pearson correlation coefficients were
calculated between the 14 maize quality traits in all maize
populations using PROC CORR procedure.

Principal component analysis (PCA) was performed using
the PROC PRINCOMP procedure on standardized data. The
number of principal components was determined by checking
eigenvalues of the principal components (Kaiser Criterion
that retains components with eigenvalues greater than one
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and SCREE plot) and the cumulative proportion of variance
explained.

The standardized principal component scores were multiplied
by the root of their eigenvalues to calculate pairwise Euclidean
distances between populations. The average linkage method (i.e.,
UPGMA) of PROC CLUSTER was applied in order to classify
maize populations into groups and to determine the optimal
number of clusters. Cubic Clustering Criterion (CCC) statistics
and Pseudo F (PSF) statistics were calculated and plotted. The
classification of maize populations into groups as obtained by
cluster analysis was evaluated by discriminant analysis (DA)
using 14 traits in PROC DISCRIM procedure in SAS. The
probabilities of classification success of the discriminant function
were estimated by cross-validation.

The univariate analysis of variance using PROC GLM was
conducted in order to test mean differences between quality-
groups for 14 traits. Means were separated using the least-squares
means procedure with Tukey’s control adjustment for multiple
comparisons.

Agronomic Evaluation
The agronomic performance of all maize populations was
compared in multi-location field trials. Field trials were
established during 2010 in nine different sites: Quinta da
Conraria, Montemor-o-Velho, S. Pedro do Sul, Lousada, Valada
do Ribatejo, Vouzela-1, Vouzela-2, Travassos, and Coimbra.

The different locations represent different areas where
maize open-pollinated populations traditionally are produced
in the country and the different agronomic production systems
normally associated with maize open-pollinated populations,
ranging from conventional (Montemor-o-Velho) to organic
(Quinta da Conraria and Valada do Ribatejo), and also
considering low-input production systems (all the other
locations). Information about the sites’ characterizations can be
found in Table S2.

During the 2010 growing season, a total of 26 maize
populations were evaluated in a randomized complete block
design, each population replicated within the three blocks set per
field trial (location). Each population was overplanted by hand
in two-row plots 6.4m long and with 0.75m between rows. Each
plot was thinned at the seven-leaf stage to 48 plants per plot to
achieve a plant density of 50,000 plants.ha−1. Plots were irrigated
as needed and mechanically and/or hand weeded as necessary.
All the plots were harvested by hand.

In each environment, a maximum of 144 plants (48 plants per
plot× 3 blocks) were evaluated for each population. Missing data
issues were identified for all the late cycle populations (Verdeal
da Aperrela, Castro Verde, Estica, Fisga, and Fandango) in
Travassos, Vouzela-1, and S. Pedro do Sul; all sites located at mid
altitude, where no data was obtained. The Pigarro population, a
participatory bred population, also suffered from poor adaptation
to the trial environments since data for Pigarro could only
be retrieved for three out of nine environments: Lousada (the
population’s site of origin), Valada do Ribatejo, and Vouzela-2,
the latter with data in only one block.

Grain yield and ear weight per population were recorded for
each block. Ear weight was taken as an indirect measurement of

ear size, the trait for which the majority of the collected maize
populations were being selected. The agronomic performance of
each population was evaluated according to Moreira et al. (2008)
as described in Table S3.

Agronomic Data Analysis
Pearson correlation coefficients between grain yield and ear
weight were calculated using PROC CORR procedure in SAS
Release 9.2 (SAS Institute Inc., 2004). Given the high correlation
between grain yield and ear weight further analysis on genotype
by environment interactions was reported for grain yield only.

The genotype-by-environment (G × E) interaction analysis
was carried out using Additive Main effects and Multiplication
Interaction (AMMI) models, a convenient tool for detecting
patterns and systemic trends that can usually have direct
ecological or biological interpretation (Gauch et al., 2011).
Previously described missing data issues required the model
fitting using the Expectation-Maximization (EM) algorithm, as
implemented in the so-called “EM-AMMI” model (Gauch and
Zobel, 1990).

The general form of AMMI models can be expressed as
(Gauch, 1992):

Yij = µ + gi + ej +

p∑

k=1

λkγikδjk + ρij + εij

where Yij is the mean response of the population i in the
environment j; µ is the overall mean; gi is the fixed effect of the
population i (i = 1, 2, . . . g); ej is the fixed effect of environment
j (j = 1, 2, . . . e); εij is the experimental error; the G × E
interaction is represented by the factors λk, a singular value of the
kth interaction principal component axis (IPCA) (k = 1, 2, . . . p,
where p is the number of axes to be retained in themodel), γik, the
population eigenvector for kth IPCA, and δjk, the environmental
eigenvector for kth IPCA; ρij is the residual comprised of the
discarded axes.

Selection of the optimal model (number of axes to be retained
in the model) was done by cross-validation, using two replicates
for model fitting and the remaining one for validation in 1,000
iterations. Both EM-AMMI modeling and cross-validation were
carried out using MATMODEL software (Gauch, 2007).

After selecting the optimal AMMImodel, the adaptability and
phenotypic stability of the maize populations were summarized
in a biplot. Since the optimal model was AMMI1, the biplot
depicts themain effects of population/genotype and environment
vs. the scores for first IPCA. The biplot was generated in
Microsoft Excel 2010 using the IPCA scores and trait means
retrieved fromMATMODEL software.

Molecular Evaluation
Thirty random individual plants from each maize population
were genotyped with 20 microsatellites (SSRs—simple sequence
repeats). SSRs were chosen based on their location in the maize
reference genome (1 SSR per chromosome arm), and repeat
motifs (≥ 3 base pairs) to facilitate allele scoring (Table S4).
Information about each SSR can be found at MaizeGDB
(Lawrence et al., 2008—www.maizegdb.org).
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Genomic DNA was isolated from the adult leaves of each
plant using the modified CTAB procedure as described in Saghai-
Maroof et al. (1984). Genotyping procedures were carried out
accordingly to Alves et al. (2017). A genotypic matrix of the
alleles’ scores per individual plant, in base pairs, was generated
and served as the basis for the molecular data analysis.

Molecular Data Analysis
The informativeness of each microsatellite marker was assessed
measuring their Polymorphism Information Content (PIC;
Botstein et al., 1980) and the number of alleles detected using
PowerMarker software (PowerMarker V3.23, Liu and Muse,
2005).

Genetic variability within each population was accessed by the
following parameters: the average number of alleles per locus
(Nav), the number of private alleles (Npr), using GENEPOP
software (GENEPOPV4.0, Raymond and Rousset, 1995), and the
allelic richness (Nar), as the measure of the number of alleles per
locus independent of sample size, using FSTAT software (FSTAT
V2.9.3.2, Goudet, 2002).

Also for each population the following parameters based on
the allelic frequencies were estimated: the observed (HO) and
expected heterozygosity (HE), and the inbreeding coefficient
(FIS), using GENEPOP software (GENEPOPV4.0, Raymond and
Rousset, 1995). The same software was also used to test if the
genotypic frequencies in each population were in conformance
to Hardy-Weinberg (HW) expectations. The probability test
for Hardy-Weinberg (HW) equilibrium was based on the
Markov chain method (Guo and Thompson, 1992; Raymond and
Rousset, 1995) followed by sequential Bonferroni adjustments
(Rice, 1989) to correct for the effect of multiple tests, using SAS
Release 9.2 (SAS Institute Inc., 2004).

For comparison purposes, the significance of differences
in average values of Nar, HO, HE, and FIS between farmers’
populations and participatory bred (PPB) populations were
tested using FSTAT software (FSTAT V2.9.3.2, Goudet, 2002).

The genetic differentiation between all pairs of populations
was measured with pairwise FST estimates. Pairwise FST values
and their respective P-values for significant differences from zero
were calculated with FSTAT software (FSTAT V2.9.3.2, Goudet,
2002).

To represent the genetic relationships between all maize
populations, pairwise Cavalli-Sforza–Edwards’ chord distances
(DCSE) (Cavalli-Sforza and Edwards, 1967) were calculated
and an unrooted phylogenetic tree was constructed using
Fitch-Margoliash algorithm (Fitch and Margoliash, 1967) with
1,000 bootstraps (Felsenstein, 1985) over microsatellite loci as
implemented in SEQBOOT, GENDIST, FITCH, and CONSENSE
programs of the PHYLIP software package (PHYLIP ver3.6b,
Felsenstein, 2004).

The analysis of molecular variance (AMOVA, Excoffier et al.,
1992) was used to partition the total microsatellite diversity
among all populations and within all populations. The same
analysis was also used to partition the total microsatellite
diversity detected among farmers’ PPB populations, within
farmers’ populations vs. participatory bred populations, and
within all populations. The variance components retrieved from

AMOVA analysis were used to calculate a series of statistics
called φ-statistics, which summarize the degree of differentiation
between population divisions and are analogous to Wright’s
F-statistics (Excoffier et al., 1992). The variance components
were tested statistically by non-parametric randomization tests
using 10,000 permutations in ARLEQUIN software (ARLEQUIN
ver3.0, Excoffier et al., 2005).

A model-based clustering method was applied on multilocus
microsatellite data to infer genetic structure and define the
number of gene pools in the dataset using the STRUCTURE
software (STRUCTURE V2.3.3, Pritchard et al., 2000). Given
a value for the number of gene pools, this method assigns
individual genotypes from the entire sample to gene pools in
a way that linkage disequilibrium (LD) is maximally explained.
Ten runs per each K were done by setting the number of gene
pools (K) from 1 to 10. Each run consisted of a burn-in period
of 200,000 steps followed by 106 MCMC (Monte Carlo Markov
Chain) replicates assuming an admixture model and correlated
allele frequencies. No prior information was used to define the
gene pools. The choice of the most likely number of gene pools
(K) was carried out by comparing the average estimates of the
likelihood of the data, ln[Pr(X|K)], for each value of K (Pritchard
et al., 2000), as well as by calculating an ad hoc statistic 1K,
based on the rate of change in the log probability of data between
successive K values as described by Evanno et al. (2005). The
program STRUCTURE HARVESTER was used to process the
STRUCTURE results files (STRUCTURE HARVESTER v0.6.92,
Earl, 2012).

RESULTS

Quality Evaluation
Correlations among quality traits can be found in Table S5.
The majority (∼70%) of the quality traits were not correlated
with each other, or had weaker correlations (46.34% of the
total significant correlations detected), with a Pearson correlation
coefficient |r| < 0.5. Protein (PR) content that was strongly
positively correlated with fiber (FI) content (r = 0.954, P <

0.001). In addition, both these traits (PR and FI) were negatively
correlated with the breakdown viscosity (BD) (r = −0.752 and
r = −0.711, respectively, P < 0.001), and with the α-tocopherol
(r = −0.764 and r = −0.786, respectively, P < 0.001) and δ-
tocopherol values (r = −0.693 and r = 0.719, respectively, P <

0.001). The TCC was strongly positively correlated with the flour
yellowness (r = 0.985, P < 0.001), measure as b∗ from the CIE
tristimulus color parameters.

Because the parameters describing the pasting properties
of maize flour were correlated among them, and because the
breakdown viscosity (BD) and setback from trough viscosity
(SB1) parameters were derived from the primary viscosity
parameters (FV, PV, and TV), only the BD and SB1 viscosity
parameters were chosen for further analyses.

A PCA on the standardized quality data was performed in
order to summarize multivariate similarities among the maize
populations analyzed.

The position of the maize populations along the first principal
component (x axis) in the PCA biplot, as shown in Figure 1,
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was mainly defined by their protein and fiber content, the
breakdown viscosity, the TCC, α- and δ-tocopherol content, and
volatile aldehydes content. As shown in Figure 1, the farmers’
populations (broa-x populations) were largely discriminated
from the non-broa-x maize populations along this principal
component. The position of the maize populations along the
second principal component (y axis) was set primarily according
to its flour yellowness (measured by b∗ color parameter), TCC,
p-coumaric acid, and ferulic acid content. The third principal
component was mainly influenced by setback from trough
viscosity values, and the fourth principal component was mainly
defined by the levels of total free phenolic compounds (Table S6).

To assess if the different maize populations under study would
group into different quality-based groups, a cluster analysis was
performed based on the first four principal components retrieved
from the PCA. The first four principal components were used
since we observed that only by considering the first four principal
components, retrieved in the PCA, was a stabilized accumulated
percentage of variance (77.94% of total variance) obtained, all
having eigenvalues greater than one (Table S6).

As a result of the cluster analysis, the highest values of
both Pseudo F (PSF) statistics and CCC were obtained when
considering three clusters. Therefore, it was decided that the
classification of maize populations in three quality-groups would
be the optimal solution. One of the clusters is composed
exclusively of one population, the Amiúdo population, and
was therefore excluded from further analyses. As for the other
two quality-groups identified, one was mainly composed of
farmers’ populations (broa-x populations), and was named
quality-group I; the second group identified was composed of the
remaining maize populations, and was named quality-group II
(Figure 1).

FIGURE 1 | Biplot of principal component analysis (PCA) based on 14 quality

traits measured in 26 maize populations; different colored circles correspond

to the different quality-based groups identified on cluster analysis:

quality-group I is depicted in black, quality-group II is depicted in white;

Amiúdo population is depicted in gray.

The groups retrieved from cluster analysis were then validated
by performing a discriminant analysis. The discriminant
function, based on 14 traits, correctly classified all the populations
into their respective quality-group (100% classification success)
when using the standard method, and 22 out of 25 populations
(88% classification success) when using the cross-validation
method. The groups obtained by cluster analysis were in
agreement with the populations’ positions in the PCA biplot
(Figure 1).

Quality-group I, where the majority of farmers’ populations
were clustered, was characterized by having a higher fiber and
protein content than the average value found in quality-group
II, and lower breakdown viscosity values, lower TCC, lower
levels of volatile aldehydes, and lower α-tocopherol and δ-
tocopherol content than the average values found in quality-
group II (Table 1).

Agronomic Evaluation
Grain yield was strongly and positively correlated with ear weight
(r = 0.81, P < 0.0001), therefore the following Genotype-
by-Environment interaction analysis on agronomic data was
reported only for grain yield.

The AMMI ANOVA (Table 2) shows that population,
environment, and the G × E interaction were significant
(P < 0.05) for grain yield. From the total variation expressed

TABLE 1 | Analysis of variance and comparison of mean values for the quality

traits among quality-group I and quality-group II, as defined by cluster analysis.

No. Trait Mean square P(F)a Quality-group

I II

1 Protein (PR) 31.89 *** 12.18 9.83

2 Fiber (FI) 0.87 *** 2.36 1.97

3 Fat (FT) 1.47 × 10−5 ns 4.97 4.97

4 Breakdown (BD) 2,537,542.80 *** 82.38 746.11

5 Setback1 (SB1) 933,091.60 ns 1,971.63 2,374.11

6 Yellow/blue index (b*) 211.46 ns 16.72 22.78

7 Total carotenoids (TCC) 2,307.99 * 15.86 35.88

8 α-tocopherol (AT) 20,068.17 *** 39.29 98.32

9 δ-tocopherol (DT) 627.43 *** 16.21 26.65

10 γ-tocopherol (GT) 8,490.42 ns 244.26 282.65

11 Total free phenolic

compounds (PH)

1,083.35 ns 159.64 145.92

12 p-coumaric acid (CU) 5.48 × 10−3 ns 0.35 0.38

13 Ferulic acid (FE) 4.48 × 10−4 ns 0.38 0.38

14 Volatile aldehydes (AL) 6.84 × 1014 *** 2,440,756.40 13,337,032.00

aP(F), Significance of the F-test for differences between quality groups; ns, non-
siginificant; *Significant at P < 0.05; ***Significant at P < 0.001.
Quality traits’ units: Protein (PR), fiber (FI) and fat (FT) expressed in percentage; Viscosity
parameters (BD and SB1) expressed in cPoise; Yellow/blue index (b*)—if b* is positive it
means that samples tend to the yellow part of the color spectra; Total carotenoids (TCC)
expressed in µg of lutein equivalent per gram of sample; Tocopherols (AT, DT, and GT)
expressed in µg/g fat basis; Total free phenolic compounds content (PH) expressed in
gallic acid equivalents/100 g of dry weight; p-coumaric acid (CU) and ferulic acid (FE)
expressed in mg/100 g of dry weight; Aldehydes (AL) taken as the chromatogram peak
area.
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as the sum of squares, the genotypes accounted for 28.12%,
and the G × E interaction accounted for a 16.96% variation.
The cross-validation identified AMMI1 as the optimal model;
therefore, G× E was further partitioned into a single interaction
principal component axis (IPCA) andmodel residual. The results
of AMMI1 fitting for grain yield (Mg/ha) are illustrated on
Figure 2. This biplot depicts both main effects for populations
(G) and environments (E), on x axis, and G × E interaction,
on y axis. Coordinates where the axes are crossing in the biplot
correspond to the overall grain yield mean (5.05 Mg/ha) (on
x axis) and no G × E interaction (on y axis). The vertical
axis separates lower-yielding populations and the environments
where the maize populations performed the worst on the left side

TABLE 2 | Additive Main effects and Multiplication Interaction (AMMI) analysis of

variance for maize populations’ grain yield tested in nine different environments.

Source Degrees of freedom Mean square P-value

Total 602 372.94

Treatment 233 733.75 <0.001

Population 25 2525.58 <0.001

Environment 8 8719.55 <0.001

G × E a 200 190.34 <0.05

IPCA1b 32* 486.70 <0.001**

Residual 168 133.89 0.723

Error 369 145.11

aG × E – Genotype-by-Environment interaction.
b IPCA1—first Interaction Principal Component Axis.
*Degrees of freedom assigned to IPCAs using Gollob’s method (Gauch, 1992).
**F ratio constructed using residual mean square as denominator.

from the higher-yielding populations and environments where
populations performed the best on the right side. The population
with the highest mean grain yield was Fandango, a participatory
(PPB) bred maize population, and the population with the lowest
mean grain yield was a farmers’ maize population—broa-142. The
horizontal axis separates all populations and environments into
two groups with opposite interaction effects, and the strength of
the interaction effects is depicted as the distance from the x axis to
each environment; therefore, the Coimbra site has the strongest
positive interaction effect on the populations’ performance and
the Montemor-o-Velho site the strongest negative interaction
effect on the populations’ performance. The positioning of a
population close to a certain environment indicates the specific
adaptation of those populations to those environments. Overall,
all farmers’ populations were low-yielding, with grain yield mean
of 4.49 Mg/ha, value below the overall grain yield mean (5.05
Mg/ha), and with positive interaction effects with the Valada do
Ribatejo, Travassos, and Coimbra sites; therefore, they are better
adapted to those environments. Participatory bred populations
with a long cycle until maturation (identified as late populations
in Table S2), such as Fandango, Estica, Fisga, and Verdeal da
Aperrela, had high grain yields (7.37 Mg/ha, 6.68 Mg/ha, 6.59
Mg/ha, and 5.85 Mg/ha, respectively) and performed better
at environments such as the Montemor-o-Velho and Lousada
sites.

Genetic Diversity Analysis
The molecular characterization of the populations was done
using 20 microsatellites markers distributed evenly across the 10
maize chromosomes. The level of information retrieved from the
markers used, calculated as the polymorphic information content

FIGURE 2 | Biplot of mean grain yield against first principal component scores (IPCA1) of the Interaction Principal Component Analysis for 26 maize populations and

nine tested environments. Legend: farmers’ populations are depicted in black circles; participatory bred (PPB) populations and the outer group (BS22(R)C6) are
depicted in white circles; tested environments are depicted in black crosses.
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(PIC), was, on average, 0.516. Overall the 20 microsatellites
detected 114 different alleles, with an average of 5.7 alleles
per marker (Table S4). Except for broa-142, from the farmers’
populations, and Verdeal da Aperrela, from the participatory
bred populations, both showing an excess of homozygous
individuals (FIS = 0.113 and FIS = 0.093, respectively), no
deviations from Hardy-Weinberg expectations were detected in
the remaining 24 maize populations (Table S7).

The results of the genetic variability assessment within each
population can be found in Table S7. When considering only
the farmers’ populations (broa-x populations), the lowest number
of alleles and the lowest genetic diversity (HE) were found in
population broa-CMSPH8 (Nar = 2.8; HE = 0.405), whereas the
highest values of both parameters were found in population broa-
113 (Nar = 3.5; HE = 0.549; Table S7). For comparison purposes,
it is worth noting that the US population (BS22(R)C6) always
showed values of the number of alleles and genetic diversity
below the average values detected on the farmers’ populations
(Table S7). It was also revealed that the allelic richness (Nar)
and genetic diversity (HE) were significantly lower on farmers’
populations when compared to participatory bred populations
(Nar = 3.164 vs. Nar = 3.692, HE = 0.490 vs. HE = 0.514)
(Table 3).

Genetic differentiation between all pairs of populations was
measured with pairwise FST estimates. All pairwise FST values
were significantly different from zero at P < 0.05, except between
Estica and Fisga populations.

TABLE 3 | Differences in average values of Nar, HO, HE, and FIS between

farmers’ populations and participatory bred (PPB) populations.

Group No. of populations Nar HO HE FIS

Farmers’ populations 16 3.164 0.487 0.490 0.008

PPB populations 9 3.692 0.514 0.544 0.055

P-value* 0.001 0.063 0.002 0.006

*P-values obtained after 1,000 permutations.
Nar , allelic richness; HO, observed heterozygosity; HE , expected heterozygosity; FIS,
inbreeding coefficient.

The average genetic differentiation of farmers’ populations
was below the overall average (overall FST = 0.124 vs. farmers’
populations FST = 0.099; Table S8).

The results from the (AMOVA; Excoffier et al., 1992) can
be found in Table 4. AMOVA was used to partition the total
microsatellite diversity: (1) among and within all populations;
(2) among farmers’ PPB populations, among populations within
groups, and within all populations.

The result from the AMOVA shows that most of the observed
genetic variance (87.25%) can be explained by the heterogeneity
that exists within each population—intra-population variability.
Nevertheless, some degree of genetic differentiation exists
between farmers’ PPB populations with a φCT = 0.023 (P-value
(φ) < 0.001; Table 4).

In the unrooted tree, all farmers’ populations were placed
on the same branch, clustered together with two participatory
bred populations—Pigarro and Bastos. Moreover, the farmers’
populations were placed further away from the populations with
a US genetic background—BS22(R)C6, Fandango, Estica, and
Fisga (Figure 3).

The average genetic distance between all populations was
0.104, with the minimum distance observed between two
participatory bred populations (Estica and Fisga, DCSE =

0.021) and the maximum distance observed between a farmers’
population—broa-CMSPH8—and the outer group population—
BS22(R)C6—(DCSE = 0.281; Figure 3, Table S9).

The existence of a genetic structure within the overall
set of maize populations was investigated using a model-
based clustering method implemented in STRUCTURE software
(Pritchard et al., 2000). The highest 1K value was observed for
K = 2 (for K = 2, 1K= 336.156, a value considerably bigger
than the subsequent 1K value for K = 3, 1K = 67.031) and
therefore two gene pools were considered to be the optimal
solution. The proportion of membership of each gene pool in the
30 individual plants analyzed per population was retrieved from
the run with the highest average estimates of the likelihood of the
data, conditional on a given number of clusters, ln[Pr(X|K)].

From the 16 farmers’ populations analyzed, all were
predominantly build of gene pool A (Figure S1, gene pool A in
blue), averaging a proportion of membership of 93.3± 9.6%.

TABLE 4 | Analysis of molecular variance (AMOVA) analysis for the partitioning of microsatellite diversity (1) among all populations and within populations, (2) among

farmers’ populations and participatory bred (PPB) populations, among populations within groups, and within all populations.

Analysis Source of variation dfa Percentage of variation φ-statisticsb P-value (φ)c

(1) All populations Among populations 25 12.75 φST = 0.127 <0.0001

Within populations 1,534 87.25

(2) Farmers’ populations vs. PPB populations Among groups 1 2.30 φCT = 0.023 <0.001

Among populations within groups 23 10.29 φsc = 0.105 <0.0001

Within populations 1,475 87.41 φST = 0.126 <0.0001

adf, Stands for degrees of freedom.
bφ-statistics: corresponds to an analogous to the Wright’s F-statistics which measures the degree of genetic differentiation.
cP-value (φ): the level of significance of the φ-statistics was tested by non-parametric randomization tests using 10,000 permutations.
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FIGURE 3 | Fitch-Margoliash tree based on Cavalli-Sforza–Edwards’ chord distances between 16 farmers’ populations and 9 participatory bred (PPB) maize

populations, plus the BS22(R)C6 synthetic population from the US, abbreviated for BS22 in the tree figure; bootstrap support values higher than 50% over 1,000

replicates are indicated with a red asterisk.

DISCUSSION

Given the previous successful Portuguese experience in
participatory maize breeding and to promote the use of the
maize populations collected from a broa-producing region, this
work aimed to develop decision-making tools to support the
establishment of a new participatory maize quality-oriented
breeding program in the country.

Maize Populations’ Quality
Characterization
The detailed characterization performed in the present study
allowed for the identification of two main quality-based groups,
and an outlying population, Amiúdo. Amiúdo clearly differed
from the remaining maize populations in terms of its higher
carotenoids level and lower levels in p-coumaric and ferulic acids.
The different quality-based groups detected by cluster analysis
were in agreement with the results obtained from PCA: 14
out of the 16 farmers’ populations analyzed were placed in the
same quality-group, named quality-group I, which corresponds
to 87.5% of the farmers’ populations (broa-x populations), with
the exception of broa-092 and broa-102 populations; broa-
x populations were essentially separated from the non-broa-x
populations by their higher protein and fiber content, their lower
levels of total carotenoids, α- and δ-tocopherol, and volatile
aldehydes, as well as by their lower breakdown viscosities values.
Populations belonging to quality-group I had on average 12.18%
protein, a value slightly above the average reported for maize
kernel (8–11% of protein, % w/w, Fao, 1992) but similar to
the values (12.73–13.33%) previously reported by Vaz Patto
et al. (2009) using an extended number of Portuguese maize

populations. Quality group I populations also presented on
average 2.36% in fiber, which is similar to the value reported for
maize kernel (2% fiber, %w/w, Fao, 1992; 2.59–2.61% inVaz Patto
et al., 2009). The populations from quality-group I had lower
breakdown viscosities when compared with the populations from
the other quality-group, which were composed mainly of non-
broa-x populations. Breakdown viscosity (BD) is calculated as
the difference between the peak (maximum) and the trough
(minimum) viscosities obtained during the RVA heating-cooling
cycle. Breakdown viscosity is a measure of how easily the swollen
starch granules can be disrupted after peak viscosity is reached
during the Rapid Visco Analyser (RVA) heating-cooling cycle
(Wani et al., 2012). Since the breakdown viscosity is the result
of the disintegration of starch granules, this value suggests the
degree of starch stability during cooking (Wani et al., 2012).
Julianti et al. (2015), when studying different composite flour
formulations, observed that by increasing the proportion of
soybean flour, a flour rich in protein, the breakdown viscosity
measured during the RVA heating-cooling cycle decreased. In
the present work protein content and breakdown viscosity values
are shown to have a strongly negative correlation between them.
Related to what was discussed by Julianti et al. (2015), one of the
possible explanations for the lower breakdown viscosities values
observed in this current work in farmers’ populations (broa-x
populations) is the higher level of protein usually detected on
those materials compared to the values obtained for the majority
of non-broa-x populations.

It is known that the chemical composition of flour will
influence the food texture and aroma (Collar et al., 2015;
Shobha et al., 2015). Additionally, the maize populations that
produce better-quality broa have higher protein values and
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lower breakdown values when compared to commercial maize
varieties (Brites et al., 2010). The higher protein contents can
probably induce increased amounts of flour water absorption
ratio and corresponding higher bread moisture. In fact, the
crumb moisture was been identified (Carbas et al., 2016) as a
relevant attribute for consumer acceptability of broa.

Taking all that into consideration, according to the values of
protein and breakdown viscosity obtained for traditional maize
populations in the current work, and previously by Vaz Patto et al.
(2009), one can argue that for maize populations used for broa
production the optimal range values will be 12–13% of protein,
and breakdown viscosity values of 82-300 cPoise.

Besides the basic nutritional value and pasting behavior-
related traits also previously studied in Vaz Patto et al. (2009), in
the current work, quality traits that might influence consumers’
preferences/choices, such as volatile compounds related to aroma
and health-related compounds such as carotenoids, tocopherols,
and phenolic compounds, were also analyzed.

Vitamin A, as provitamin A carotenoids, and vitamin E, as
tocopherols, are the predominant fat-soluble vitamins found in
maize kernels (Nuss and Tanumihardjo, 2010). Moreover, the
health benefits of grain products have also been associated with
the antioxidant properties of the phenolic compounds found in
grains (Bonoli et al., 2004). Carotenoids are a diverse family of
yellow-orange pigments (Nuss and Tanumihardjo, 2010), and
even though previous reports showed that grain color is not
necessarily correlated with a provitamin A concentration of
yellow and orange maize (e.g., Harjes et al., 2008), in the current
work a strong positive correlation between the total carotenoid
content and flour yellowness was detected.

Within the antioxidant phenolic compounds, ferulic acid is
predominant in maize kernel, mainly present in the bound form
(Adom and Liu, 2002), with p-coumaric acid also widely found
in maize (Pei et al., 2016). Within the present study quality-
group I, composed mainly by broa-x populations, a substantial
range of variation could be found for flour yellowness and total
carotenoids, and for the two individual phenolic compounds
analyzed—p-coumaric acid and ferulic acid. This indicates that
further improvement to increase the attractiveness of food
formulations based on the populations within that quality-group,
and specifically for those traits, where variation can still be found,
is still possible. Indeed, some of these antioxidant compounds
may reduce the retrogradation and improve starch qualities (Beta
and Corke, 2004; Zhu et al., 2009; Siriamornpun et al., 2016), or
influence the formation of dough texture (Klepacka and Fornal,
2006), a very important parameter in defining bread quality
(Matos and Rosell, 2012).

Maize kernel nutritional composition can varies due various
factors such as the genotype, environmental conditions, and
processing (Prasanthi et al., 2017). In the future, the study of G
× E interaction for quality traits should also be undertaken since
genotype-by-environment interaction are known to affect some
quality traits (e.g., Malvar et al., 2008; Revilla et al., 2015). This
study would allow us not only to test the significance of the G ×

E on the presently considered quality traits, but also to compare,
for each trait, the proportion of explained variance by the G × E
term with respect to the genotype main effects.

Because data acquisition for the quality traits accessed in
this study is very expensive and time consuming in the present
work genotype-by-environment analysis was only performed at
an agronomic level. Nevertheless, even with quality data from
only one common-garden experiment, the results obtained from
the multivariate analysis allowed us to highlight the similarities
that exist among farmers’ populations, as well as to identify the
quality traits that discriminate them.

Maize Populations’ Agronomic
Performance
Multi-location field trials were established across different
farming systems in order to accurately estimate the agronomic
performance and evaluate the agronomic potential of the farmers’
maize populations. An Additive Main effects and Multiplicative
Interaction (AMMI) method was implemented to identify maize
populations with broader stability (i.e., lower variation across
locations) or specific adaptability to the tested locations, and
to evaluate potential new locations for the quality-oriented
breeding program in the country. According to Furtado Ferreira
et al. (2006), an undesirable population will have low stability
associated with low productivity; therefore, the ideal population
is one with high productivity and IPCA1 values close to zero
(stable across environments).

The lower the IPCA1 value (in absolute values), the lower
its contribution to the G × E interaction; therefore, the more
stable the agronomic behavior of the population. On average,
and in terms of grain production, the farmers’ populations
analyzed in the present work had a broader stability value when
compared to all the maize populations (|IPCA1|FARMERS = 1.124
vs. |IPCA1|OVERALL = 1.635). However, the results also showed
that all farmers’ populations were low-yielding (4.49 Mg/ha, on
average), performing better in environments such as the Valada
do Ribatejo (organic production), Travassos, or Coimbra sites.

In conclusion, the agronomic evaluation allowed for the
identification of the most appropriate locations where selection
activities should be pursued if increasing grain yield and/or ear
weight is among the breeding objectives in a quality-oriented
participatory maize breeding program. Moreover, that choice
can be fine-tuned according to the maize populations under
selection. Of course, other factors, such as local support/interest
from both farmers and local institutions (e.g., municipality and
farmers’ associations) must be taken into consideration when
choosing the location for this kind of participatory research (Vaz
Patto et al., 2013). In addition, the end product to be produced
(maintaining the ethnic maize-based bread entity or extending
it to other novelty food products) may influence the choice of
the location as well as the particular populations that are more
suitable due to their quality traits. In this way, if a population
or a group of populations selected for a quality objective/end-
use behaves better in a particular environment, this might be the
best environmental choice. An extra factor to keep in mind for
these decisions: should we consider the quality certification of the
end product? For example, if we were to consider the Portuguese
ethnic maize-based bread as a value-added product by adding a
certification, according to the European Union (EU) agricultural

Frontiers in Plant Science | www.frontiersin.org 11 December 2017 | Volume 8 | Article 2203

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/plant-science#articles


Alves et al. Decision-Tools in Participatory Maize Breeding

product quality policy [such as protected designations of
origin (PDOs), protected geographical indications (PGIs),
or traditional speciality guaranteed (TSG) (https://ec.europa.
eu/agriculture/quality_en; accessed August 30th 2017)], this
possibility of certification might have profound implications on
the organization of the breeding program. Not only geographic
implications [selection of the site(s) for PPB implementation],
if one wants to select for a particular environment, but
also on the breeding design/crosses allowed (intra-population
selection, selection of one population vs. inter-populations
crosses, selection of several populations).

Phenotypic and Molecular
Characterization Data Integration
One of the proposed objectives of this study was to build
decision-making tools for an accurate population selection
within a quality-oriented participatory breeding program. This
was achieved by complementing a precise agronomic and quality
description with a more thorough molecular characterization.

For example, in the case in which we need to start from
either one particular population (intra-population selection) or
from several populations (inter-populations crosses), molecular
information such as that gathered in this study acts as an effective
extra decision-making tool to evaluate and compare the genetic
resources available to breeders. As already pointed out by Reif
et al. (2003), simple sequence repeat markers provide a valuable
tool for grouping germplasm and are a good complement to field
trials for identifying groups of genetically similar germplasm.

The genetic diversity/distance calculated between potential
crossing parents can be chosen to assure the highest possible
diversity within a cross (Tuvesson et al., 2007), to plan useful gene
combinations, increasing the performance through increased
heterosis (Reif et al., 2003), or to add new variation to the
breeding program in a controlled fashion (Tuvesson et al., 2007).

In the present work, based on the genetic distances and
genetic structure of the maize populations, two main clusters
could be identified that in a systematic manner separated the
maize populations with a known US genetic background from
the other maize populations. One of the clusters contained all
the broa-x populations together with two participatory bred
populations derived from two traditional maize populations
(Pigarro and Bastos). The quality-group I, which is composed
mainly of farmers’ populations (14 broa-x populations), plus one
participatory bred population (Bastos), is almost identical to this
genetic-based cluster (only Pigarro is not included). We also
observed that the maize flour from the majority of the broa-
x Portuguese populations, evaluated at the Coimbra site, had
higher levels of protein and fiber and lower levels of α- and δ-
tocopherols, associated with a lower breakdown viscosity values
when compared to the maize populations of quality-group II.

For illustration purposes, in the case of a quality oriented
breeding program for maize bread using the Portuguese
populations, one of the breeding objectives to be pursued
could focus on increasing the agronomic performance of the
populations and tocopherol levels (α- and δ-tocopherol content)
that are limiting on this germplasm, but without compromising

the protein content or increasing viscosity. An increase in maize
vitamin E levels, as tocopherols, can elevate its nutritional value
by enhancing their role as antioxidants (Nuss and Tanumihardjo,
2010). As an example, one can improve the α-tocopherol
levels on these Portuguese populations by using as a donor
parent the maize population with the highest α-tocopherol levels
(Fandango; 123.64µg/g fat basis; a population with a known US
genetic background). The cross with the Fandango population,
genetically distant from the broa-x populations, may promote
heterosis and consequently a higher agronomic performance of
the resulting hybrid.

As in the described example, the knowledge generated from
both phenotypic and genotypic analysis will aid in deciding
future breeding activities and genetic resources management.
As for bread making and other end uses, the same decision-
making process could be used to select the initial populations,
breeding approaches, and optimal breeding locations. At present,
existing information is already in use to identify potential
maize open-pollinated populations as parental lines to generate
better-performing population hybrids with increased content
in tocopherols and total free phenolic compounds, decreased
content in volatile aldehydes, and decreased overall viscosity.
This information was compiled separately according to the
populations’ kernel color (white kernel vs. non-white kernel)
since kernel color has been linked to consumer acceptance
(Ranum et al., 2014) and also appears to be important for
Portuguese maize bread consumer choices (Carbas et al., 2016).

Through the integration of the different levels of information
available, more informed choices are optimizing the use of
resources and improving the efficiency of participatory breeding
activities.
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