
Full Terms & Conditions of access and use can be found at
http://www.tandfonline.com/action/journalInformation?journalCode=tcej20

Coastal Engineering Journal

ISSN: 2166-4250 (Print) 1793-6292 (Online) Journal homepage: http://www.tandfonline.com/loi/tcej20

New approach to flap-type wavemaker equation
with wave breaking limit

Nino Krvavica, Igor Ružić & Nevenka Ožanić

To cite this article: Nino Krvavica, Igor Ružić & Nevenka Ožanić (2018): New approach to
flap-type wavemaker equation with wave breaking limit, Coastal Engineering Journal, DOI:
10.1080/21664250.2018.1436242

To link to this article:  https://doi.org/10.1080/21664250.2018.1436242

Published online: 12 Mar 2018.

Submit your article to this journal 

View related articles 

View Crossmark data

http://www.tandfonline.com/action/journalInformation?journalCode=tcej20
http://www.tandfonline.com/loi/tcej20
http://www.tandfonline.com/action/showCitFormats?doi=10.1080/21664250.2018.1436242
https://doi.org/10.1080/21664250.2018.1436242
http://www.tandfonline.com/action/authorSubmission?journalCode=tcej20&show=instructions
http://www.tandfonline.com/action/authorSubmission?journalCode=tcej20&show=instructions
http://www.tandfonline.com/doi/mlt/10.1080/21664250.2018.1436242
http://www.tandfonline.com/doi/mlt/10.1080/21664250.2018.1436242
http://crossmark.crossref.org/dialog/?doi=10.1080/21664250.2018.1436242&domain=pdf&date_stamp=2018-03-12
http://crossmark.crossref.org/dialog/?doi=10.1080/21664250.2018.1436242&domain=pdf&date_stamp=2018-03-12


ORIGINAL RESEARCH PAPER

New approach to flap-type wavemaker equation with wave breaking limit
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Faculty of Civil Engineering, University of Rijeka, Rijeka, Croatia

ABSTRACT
The limitations of the classical wavemaker theory motivated the development of a new
equation that can directly predict both regular and broken waves based on the flap-type
wavemaker setup. This is achieved first by coupling a commonly accepted wave breaking
formula with the linear wavemaker equation. Both these equations were then rewritten in
terms of the paddle stroke, water depth, and frequency instead of the wave number.
Additionally, the validity range for each equation was explicitly defined to predict the
maximum wave height before breaking. Comparison with both classical wavemaker theory
and measurements confirms the reliability and accuracy of the proposed equation.
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1. Introduction

Studies and tests of water wave interactions with
coastal and offshore structures are regularly per-
formed in experimental wave tanks or flumes. Waves
are usually generated by an oscillatory motion of a
wavemaker. Although many types of wavemakers
were developed in the last several decades, the
most commonly used are flap (or hinged), piston,
and plunger (Dean and Dalrymple 1991).

The relationship between the motion of the wave-
maker and resulting waves may be defined by the
linear wavemaker theory (Havelock 1929; Biesel and
Suquet 1951), which states that the generated wave
height H is directly related to the wavemaker stroke S,
still water depth d, and wave number k ¼ 2π=L, where
L is the wave length. The wave height to paddle
stroke ratio for a flap-type wavemaker is given by
the following analytical solution (Dean and
Dalrymple 1991):

H
S
¼ 4 sinhðkdÞ

kd
kd sinhðkdÞ � coshðkdÞ þ 1

sinhð2kdÞ þ 2kd
; (1)

where S is defined as the maximum horizontal dis-
tance at the still water level that the paddle travels in
one direction from its neutral position (see Figure 3).
Equation (1) defines how the wave height to paddle
stroke ratio changes for a given depth and wave
number.

The first study designed to verify Equation (1) was
performed almost 60 years ago by a group of engi-
neers at the Laboratoire Neyrpic (1952). The experi-
ments showed that the measured wave heights were
consistently 30% below the values predicted by
Equation (1). Ursell, Dean, and Yu (1960) re-evaluated

this theory using a piston type wavemaker and, in
contrast, found a very close agreement between the
experimental and theoretical results for smaller wave
steepness and ,10% lower values than predicted for
larger wave steepness. This discrepancy was, at the
time, attributed to limitations of the linear wave the-
ory and imperfections in the wavemaker motion
(Ursell, Dean, and Yu 1960).

To account for finite amplitude effects, Madsen
(1970) extended the linear wavemaker theory to a
second-order accuracy. He used a piston-type wave-
maker and found a 15% lower wave height than
predicted by the nonlinear equation. Therefore, he
suggested that these differences should not be attrib-
uted to the finite amplitude effects (Madsen 1970).
The real reason, he argued, was the leakage around
the wavemaker paddle. Madsen (1970) additionally
supported his claim by an unpublished technical
report by Tenney who demonstrated a significant
reduction of wave heights when a hole was drilled
in the wavemaker paddle. Furthermore, Fenton (1985)
emphasized that in second- or higher-order wave-
maker theories, when the wave length is initially
unknown, either the wave speed or the mean current
of the fluid or the mass flux induced by the waves
must be known to accurately obtain the wave length.
Otherwise, the extension to a higher-order theory is
irrational and is likely to result in the same order of
error as in the linear theory (Fenton 1985).

The wavemaker theory was once more thoroughly
analyzed and verified by Keating, Webber, and Havelock
(1977) using a more sophisticated measuring equip-
ment. They applied a piston-type wavemaker and
focused specifically on steeper waves. The results
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indicated that the wave heights could be predicted by
the linear wavemaker equation to within 6% of error if
the leakage around the paddle was minimized. They
additionally suggested that a flap-type wavemaker is
more suitable for deep water waves, which should addi-
tionally reduce the discrepancies. Keating and Webber
(1977) also discussed the importance of a reliable pre-
diction of waves generated by a wavemaker. Although
knowing the relationship between paddle parameters
and wave characteristics is not crucial for regular waves
(where generated wave characteristics can bemeasured
directly), it is essential to know this relationship when
generating irregular waves by an adaptive control of the
wavemaker (Keating, Webber, and Havelock 1977).

In subsequent years, the wavemaker theory was
extended for waves with surface tension (Hocking and
Mahdmina 1991), for stratified two-layer systems
(Mohapatra, Karmakar, and Sahoo 2011), and for porous
wavemaker paddles (Chwang 1983; Chakrabarti and
Sahoo 1998). Recently, acoustic-gravity waves (AGW)
have receivedmuch attention in regard to early detection
of tsunamis (Stiassnie 2010) or detection of sea-states for
wave-power harnessing farms (Tian and Kadri 2017).
Therefore, conventional wavemaker theories are cur-
rently being adapted for compressible fluids to study
the laboratory generation of AGW by wavemakers
(Stuhlmeier and Stiassnie 2016; Tian and Kadri 2017).

Today, the wavemaker theory is not only important
in planning and executing laboratory experiments,
but also in verifying numerical models. More and
more frequently, two-dimensional or three-dimen-
sional numerical wave tanks are being developed
and applied in studying different wave conditions as
an addition or alternative to physical modelling. In the
development stage, the numerical wave tanks are
being verified by comparing the results to the linear
wavemaker theory (e.g. Huang, Zhang, and Lee 1998;
Lal and Elangovan 2008; Oliveira, Sanchez-Arcilla, and
Gironella 2012; Finnegan and Goggins 2012;
Anbarsooz et al. 2013; Saincher and Banerjeea 2015).
However, the conventional wavemaker approach has
two major limitations for such purposes.

First, the wavemaker theory is valid only for a certain
range of wave steepness H=L. In other words, it does not
account for wave breaking. If a wavemaker is set to
generate a wave that is too steep, the wave would
break right on the paddle and the generated wave
height would be significantly lower than predicted. For
validation purposes, however, it would be more useful if
the wavemaker equation could accurately predict both
regular and broken wave heights or at least indicate the
maximum wave height that can be generated before
wave breaking occurs. Although brokenwaves are rarely
used in laboratory experiments, sometimes they are
included in the validation of numerical models (e.g.
Finnegan and Goggins 2012). Another possible applica-
tion of broken waves could be in AGW experiments

where much higher frequencies are required in compar-
ison to traditional wave studies (e.g. Stuhlmeier and
Stiassnie 2016; Tian and Kadri 2017).

The second difficulty is that Equation (1) is given as a
function of the wave number k, whereas the wavemaker
is actually controlled by the paddle frequency f (or per-
iod T ¼ 1=f ). These parameters are linked by the implicit
wave dispersion relation (Dean and Dalrymple 1991):

ω2 ¼ gk tanhðkdÞ; (2)

where ω ¼ 2πf is the angular frequency and g is
acceleration of gravity. Therefore, the generated
wave height cannot be directly predicted based on
the wavemaker setup parameters (paddle stroke,
water depth, and frequency). Instead, either the
wave length must be measured or the wave number
must be found by iteratively solving Equation (2) for
a given frequency and depth, before the wave
height can be computed by Equation (1). Note that
solving Equation (2) is not a problem today; how-
ever, explicit expression should be more practical to
use. Gilbert, Thompson, and Brewer (1971) recog-
nized this limitation and presented curves for both
piston- and flap-type wavemaker as a function of
the dimensionless wave period d=ðgT2Þ rather than
the relative water depth kd. Unfortunately, the
results were presented only graphically, without
any explicit equations.

The aim of this article is twofold and it follows from
existing limitations. First, a new wavemaker equation is
proposed, which combines both regular and broken
waves. This step also includes defining the validity
range for each of these equations and the explicit
expression for the maximum wave height that can be
generated at a given depth. Second, an approximate
wavemaker equation is presented in a more practical
form – as a function of frequency and depth. In other
words, a modified wavemaker equation is derived that
answers a theoretical question: what wave height could
one expect to be generated when the wavemaker is set
to a certain combination of the paddle stroke and fre-
quency at some water depth? More importantly, this
study gives an answer to a practical question: what are
the maximum wave heights that can be generated
before wave breaking occurs? The classical wavemaker
theory can only indirectly provide an answer to the first
question, and only for a limited range of parameters.

2. Methodology

2.1. Wavemaker equation for regular and broken
waves

To define the equation that is valid for both regular
and broken waves, Equation (1) should be combined
with a corresponding wave breaking equation. A
detailed review of wave breaking equations is given
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by Rattanapitikon and Shibayama (2000) and
Robertson et al. (2013). Because of its inherently vari-
able nature, the understanding of wave breaking pro-
cess is still an ongoing area of research, but the
accuracy of predicting wave breaking parameters
has progressed significantly over recent years
(Robertson et al. 2013). Many authors have developed
different empirical relationships based on small- or
large-scale laboratory experiments; most of them are
given as a ratio of the broken wave height Hb to the
depth at which breaking occurs db or to the wave
length at the breaking Lb. The resulting equations
have many forms and are given as either linear,
slope-based, surf similarity parameter, trigonometric,
or deep-water wave steepness relationships
(Robertson et al. 2013). Since this study is interested
in the wave breaking that occurs at the paddle, the
trigonometric wave steepness relationship was cho-
sen as the most relevant.

Based on the Stokes wave theory and the assump-
tion that wave breaking occurs when the particle
velocity in the wave crest exceeds the wave celerity,
Miche (1944) proposed the following equation:

Hb ¼ KbLb tanh kbdð Þ; (3)

where Hb is the broken wave height, Lb is the wave
length at breaking, kb is the wave number for Lb, and
Kb is the breaking coefficient. Maximum theoretical
wave steepness is defined by Kb ¼ 0:143; however,
in practical applications, a lower value Kb ¼ 0:12 is
sometimes recommended (Danel 1952). Battjes and
Janssen (1978) modified Equation (3) by introducing
an additional parameter γ as follows:

Hb ¼ KbLb tanh
γ

0:88
kbd

� �
; (4)

where values γ ¼ 0:8 and Kb ¼ 0:14 were proposed
based on the calibration with laboratory experiments
(Battjes and Janssen 1978). Ostendorf and Madsen
(1979) and, recently, Rattanapitikon, Vivattanasirisak,
and Shibayama (2003) extended trigonometric wave
breaking equations to include bed slope effects.

However, both these formulas may also be used for
horizontal beds, in which case they reduce back to
Equation (4), with Kb ¼ 0:14, γ ¼ 0:704, and Kb ¼ 0:14,
γ ¼ 0:8, respectively.

To combine the wavemaker equation with the
wave breaking, Equation (4) is rewritten in terms of
the wave height to paddle stroke ratio as follows:

Hb

S
¼ Kb

L
S
tanh

γ

0:88
kbd

� �
: (5)

Furthermore, since paddle stroke depends on depth, it is
more appropriate to define the paddle stroke as
S ¼ d tan θ, where θ is the tilting angle of the paddle
(see Figure 3). Equation (5) is further modified as follows:

Hb

S
¼ Kb

2π
tan θ

tanhðγkbd=0:88Þ
kbd

: (6)

Regular and broken waves may, therefore, be predicted
by finding a minimum of Equations (1) and (6) for a
given wave number, water depth, and paddle angle:

H
S

� �
gen

¼ min
H
S
;
Hb

S

� �
: (7)

Equation (7) in its dimensionless form (wave height to
paddle stroke ratio H=S versus relative depth kd) is
illustrated in Figure 1(a) for different paddle angles
ranging from 5° to 25°, with γ ¼ 0:8 and KB ¼ 0:14.
This figure shows how a single wavemaker curve
(Equation 1) spreads into a set of wave breaking
curves (Equation 6) as the relative depth increases.
Clearly, the wave height to paddle stroke ratio starts
to reduce once the maximum wave steepness is
reached. As the wave number increases, wave length
becomes shorter, and as a result, the wave height
continues to reduce.

Considering that the wavemaker is controlled by the
frequency, Equation (7) is also illustrated in Figure 1(b) in
a dimensional form. This figure shows one example of
the predicted wave heights for a range of frequencies
and paddle angles at a 1.0 m depth. In this case, once
the breaking limit is reached, all individual wave

Figure 1. Dimensionless form of a new wavemaker Equation (7) for θ = 5–25°, with γ ¼ 0:8 and KB ¼ 0:14, (a) H=S versus kd, (b)
H versus f for 1.0 m depth.
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generator curves (Equation 1) collapse into a single
wave breaking curve given by Equation (4).

2.2. Laboratory experiments

To verify the classical wavemaker equation and the
newly proposed equation that accounts for broken
waves, a series of experiments were carried out in the
Hydraulic Laboratory of the Faculty of Civil Engineering
at the University of Rijeka. Periodic waves were gener-
ated by a flap-type wavemaker in a 12.5 m long experi-
mental flume, with rectangular cross-section, 31 cm
wide and 45 cm deep. The flume consists of a stainless
steel support and glass reinforced plastic walls. The flap
wavemaker consists of a motor with a frequency con-
verter and a crank mechanism that drives the paddle
which is fixed to the bottom (Figure 2).

The experimental setup is illustrated in Figure 3.
The waves were dissipated by a permeable beach
positioned at the other end of the flume. A beach
slope of 1:5 was chosen to maximize the dampening,
as suggested by Finnegan and Goggins (2012). Some
reflection still does occur and, therefore, the wave
height slightly varies along the channel. The resulting
reflection coefficient εr was determined by measure-
ments of wave heights at two locations between the
wavemaker and the absorbing beach, as follows
(Ursell, Dean, and Yu 1960):

εr ¼ Hr

Hi
¼ Hmax � Hmin

Hmax þ Hmin
(8)

where Hr is the reflected wave height, Hi is the inci-
dent wave height, and Hmax and Hmin are the respec-
tive maximum and minimum values of measured
wave heights at the gauges. The first gauge was

positioned at a distance of three times the still water
depth from the wavemaker, whereas the second
gauge was positioned at a distance Δx ¼ 0:4 m (for
f < 1:0 Hz) and Δx ¼ 0:15 m (for f � 1:0 Hz) from the
first gauge. Keating and Webber (1977) showed that a
distance of 3d from the wavemaker is the optimum
positioning of the measuring device, where the eva-
nescent modes produced by the wavemaker comple-
tely decay and only the progressive wave is present.
The distance of the second gauge was chosen to
always fall somewhere in the recommended range
0:05 <Δx=L<0:45 (Goda and Suzuki 1976).

Water-level oscillations were measured by capaci-
tive gauges and the corresponding wave heights were
computed by a zero-down crossing method. For all
considered combinations of water depths and paddle
angles, the reflected wave height was less than 10%
of the incident wave heights.

Four sets of measurements were conducted, which
combined two different water depths (d ¼ 19 and
29 cm) with two different paddle angles (θ = 17.3°
and 25°). Paddle frequencies varied between 0.4 and
2.0 Hz, and the corresponding wave number was
determined from the measured wave period by itera-
tively solving Equation (2). Each experiment run for
5 min to record at least 100 wave periods of the
longest waves (T ¼ 2:5 s).

3. Results and discussion

3.1. Comparison of measured wave heights with
the classical and new wavemaker equation

The generated waves mainly correspond to inter-
mediate water depth (π=10 � kd � π), but also

Figure 2. Flap-type wavemaker and the experimental flume in the Hydraulic Laboratory of the Faculty of Civil Engineering at
the University of Rijeka.

Figure 3. Scheme of the experimental setup (not to scale).
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several deep water conditions (kd > π) were tested.
Furthermore, a wide range of waves steepness was
considered, so both small steepness (H=L � 0:03),
large steepness (0:03 < H=L � 0:11), and broken
waves (H=L > 0:11) were generated. Waves with
steepness very close to or over the limit broke
right on the paddle; however, they eventually
reformed, although the wave profiles were slightly
irregular. Keating, Webber, and Havelock (1977)
found similar behavior of broken waves in their
experiments.

Measured values were first compared to classical
wavemaker Equation (1). It seems that in these
experiments, both small and large steepness wave
heights are slightly below the curve predicted by
Equation (1), as shown in Figure 4. However, when
the limiting wave steepness is reached, waves break
and wave heights decrease as the relative depth
increases. Clearly, Equation (1) is not valid for bro-
ken waves. For θ = 17.3°, waves break when
kd > 1:7 with the maximum H=S ratio equal to
0.81, on the other hand, for θ = 25° waves break
when kd > 2:0 with the maximum H=S ratio equal to
0.93. These results show that the point at which the
wave generator curve losses its validity depends not
only on the relative water depth, but also on the
paddle angle. This is expected, however, since kd
controls the wave length, whereas both kd and θ

control the wave height.
For non-broken waves, the wave height to pad-

dle stroke ratio increases with the relative depth as
predicted by the classical wavemaker equation.
Slightly lower measured values in comparison to
Equation (1) could be contributed to the leakage
around the paddle, as suggested by Madsen (1970).
Leakage is known to cause a loss of wave energy
and produce slightly lower wave heights (Keating,
Webber, and Havelock 1977).

3.2. Modification of the wavemaker equation by
introducing the energy loss coeffcient

To account for the wave height reduction due to
leakage, an energy loss coefficient β was introduced,
so that Equation (1) is rewritten as follows:

H
S
¼ β

4 sinhðkdÞ
kd

kd sinhðkdÞ � coshðkdÞ þ 1
sinhð2kdÞ þ 2kd

: (9)

A value β ¼ 0:81 was found by the regression analysis
between the measured and computed values for non-
broken waves, with coefficient of determination
R2 ¼ 0:97 and a root mean square error (RMSE)
3.3 mm. The discussion on quantifying the loss coeffi-
cient due to leakage is left for the next section.

Broken waves, on the other hand, agree well with
Equation (6), especially if Kb is calibrated. Again, using
regression analysis, a value Kb ¼ 0:11 provided the
best agreement with the measurements (R2 ¼ 0:93
and RMSE = 4.5 mm). This is lower than Kb ¼ 0:143,
which is generally used (Miche 1944). However, this
higher value is based on a maximum theoretical wave
steepness limit, which overestimates broken wave
heights in practical applications because some of the
energy is dissipated in the breaking process. Battjes
and Janssen (1978) used Kb ¼ 0:14, whereas Danel
(1952) proposed that Kb should be lowered to 0.12
when Equation (4) is applied to horizontal beds.
Similarly, Kamphuis (1991) investigated both regular
and irregular waves and found that the broken wave
height over a horizontal bed could be better pre-
dicted when a lower Kb value was used, he proposed
0:095 for irregular and 0:127 for regular waves.

It is reasonable to conclude that the leakage
around the paddle could also be responsible for
lower Kb values in comparison to other studies.
Namely, because of the energy loss due to leakage,
the wavemaker is unable to generate a theoretically

Figure 4. Comparison of measured wave heights with classical Equation (1) and new Equation (13) for β ¼ 0:81 and Kb ¼ 0:14:
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steepest wave. In fact, Kb ¼ 0:14 multiplied by the
energy loss coefficient β ¼ 0:81 results in Kb ¼ 0:113,
which is almost identical to the calibrated value found
in this study. Furthermore, no significant improve-
ment was found with the parameter γ, therefore the
wave breaking Equation (6) was redefined to include
the energy loss coefficient as follows:

Hb

S
¼ βKb

2π
tan θ

tanhðkdÞ
kd

: (10)

The results suggest that when adequate energy loss and
breaking coefficients are included, Equation (7) predicts
generated wave heights with a high degree of accuracy
(R2 ¼ 0:97 and RMSE = 4.1 mm), for both regular and
brokenwaves, and over a wider range of wave numbers,
water depths, and paddle angles (see Figure 4).

3.3. Conditional wavemaker equation in terms of
wave number and water depth

Although the wave height can be obtained by finding a
minimum of two equations (as suggested by Equation 7),
it is more convenient to know the relative depth range
over which Equation (9) is valid. This range would be
limited by the peak relative depth kdp which corresponds
to the maximum wave height before braking for a given
depth and paddle angle. The kdp values are defined by
points where Equations (9) and (10) intersect.

These intersection points are found by computing
the root of the following equation:

β
4 sinhðkdÞ

kd
kd sinhðkdÞ � coshðkdÞ þ 1

sinhð2kdÞ þ 2kd

¼ βKb
2π
tan θ

tanhðkdÞ
kd

: (11)

Of course, root of Equation (11) varies with paddle angle
θ. Therefore, a set of discrete solutions kdi that satisfy
Equation (11) were individually computed for different

values in the range θi ¼ 1� 30�. Next, a power curve
was fitted to a series of points defined by parameters kdi
and tan θ=Kb, as illustrated in Figure 5. And finally, the
following equation for the peak relative depth was
obtained (accurate within 1:3% of error):

kdpðθÞ ¼ 3:43
tan θ
Kb

� ��0:92

þ 0:71: (12)

The following conditions can, therefore, be defined
based on Equation (12):

● for kd < kdp regular waves are generated as
predicted by Equation (9),

● for kd > kdp broken waves are generated as
predicted by Equation (10),

● for kd ¼ kdp a maximum wave height before
breaking is achieved.

Finally, a conditional wavemaker equation is pre-
sented for predicting the wave height to stroke ratio
for a given wave number and water depth:

H
S
¼ β 4 sinhðkdÞ

kd
kd sinhðkdÞ�coshðkdÞþ1

sinhð2kdÞþ2kd for kd<kdp

βKb 2π
tan θ

tanhðkdÞ
kd for kd � kdp

(

(13)

where β depends on the amount of leakage around
the paddle and Kb is the breaking coefficient.
However, Equation (13) should be valid for any flap-
type wavemaker, regardless of what value is chosen
(or calibrated) for parameters β and Kb. A comparison
between measured wave heights and Equation (13)
for β = 0.81 and Kb = 0.14 is also shown in Figure 4.

3.4. Conditional wavemaker equation in terms of
frequency and water depth

Although for each wave number and depth, a corre-
sponding wave frequency may iteratively be found (as

Figure 5. Curve fitting of discrete solutions for a maximum relative depth kd given by Equation (11), after which wave breaking
occurs.
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illustrated in Figure 4), sometimes it is more conveni-
ent to have a wave maker equation defined as a
function of water depth and frequency. Using trigo-
nometric hyperbolic functions and curve fitting, the
following approximation of Equation (9) was found
(with 3% of error for kd < π and 0.6% of error
for kd � π):

H � 2βd tan θ 1� 1:03 tanh 0:79ω2d=gð Þ0:97
ω2d=gð Þ1:02

" #
: (14)

A comparison between the classical wavemaker
Equation (9) and the proposed approximate
Equation (14) is illustrated in Figure 6(a).

Wave breaking Equation (10) can also be rewritten
as a function of the frequency and depth. Since the
dispersion equation that defines the relationship
between the wave number and wave frequency is
implicit, we will base our analysis on its explicit alter-
native (Guo 2002):

kd � ω2d
g

1� expð�ðω
ffiffiffiffiffiffiffiffi
d=g

p
Þ5=2Þ

h i�2=5
; (15)

which approximates Equation (2) with under 0.75% of
error. From Equation (15) it follows that

tanhðkdÞ � 1� expð�ðω
ffiffiffiffiffiffiffiffi
d=g

p
Þ5=2Þ

h i2=5
; (16)

therefore, the wave breaking equation can be rewritten
as follows:

Hb � βKb
2πg
ω2

1� expð�ðω
ffiffiffiffiffiffiffiffi
d=g

p
Þ5=2Þ

h i4=5
: (17)

A comparison between the proposed approximate
Equation (17) and wave breaking Equation (10) is
illustrated in Figure 6(b). The comparison is presented
for paddle angle θ = 25°, but all other angles show
almost identical results.

What remains is to find the peak frequency fp that
defines the validity limit for Equation (14), i.e., defines
the maximum wave height before braking. For each
relative depth kdi that satisfies Equation (11), a corre-
sponding dimensionless frequency was found, as
follows:

ω2d
g

� �
i
¼ kdi tanhðkdiÞ: (18)

Next, a power curve was fitted to a series of points
defined by parameters ω2d=g and tan θ=Kb. And,
finally, after some algebraic manipulation, the follow-
ing formula for the peak frequency is obtained (accu-
rate within 2% of error):

fpðd; θÞ ¼ 1
2π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3:77g
d

tan θ
Kb

� ��0:83

þ 0:37g
d

s
: (19)

Figure 7 shows the curves derived from Equation (19)
for different combinations of coefficients and relative
paddle angles tan θ=Kb, which define the validity of
the wavemaker theory and delineate the non-break-
ing from breaking waves.

The following conditions can now be defined
based on Equation (19):

● for f < fp regular waves are generated as
predicted by Equation (14),

● for f > fp broken waves are generated as
predicted by Equation (17),

● for f ¼ fp a maximum wave height before
breaking is achieved.

Finally, a new conditional equation is obtained for
directly predicting generated wave heights for a given
water depth, paddle angle, and frequency.

Hðf ; d; θÞ �
2βd tan θ 1� 1:03 tanh 3:16π2 f 2d=gð Þ0:97

4π2 f 2d=gð Þ1:02

� �
for f < fp

βKb
g

2πf 2 1� expð�ð4π2f ffiffiffiffiffiffiffiffi
d=g

p Þ5=2Þ
h i4=5

for f � fp

;

8>><
>>:

(20)

The comparison of measured values and Equation
(20) is illustrated in Figure 8 for each measured
depth and paddle angle. Note that the two-step
process does not increase the complexity of obtain-
ing the wave height, since the classical approach
also requires that the wave dispersion equation is
solved before the wave height to paddle stroke
ratio can be obtained.

Figure 6. Comparison of: (a) wavemaker Equation (9) to approximate Equation (14) and (b) wave breaking Equation (10) to
approximate Equation (17) for θ ¼ 25�.
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To summarize, Equation (7) is a general way of
mathematically describing a new approach that com-
bines the classical wavemaker equation with a wave
breaking formula to predict both regular and broken
waves generated by a flap-type wavemaker. Equation
(13) in comparison to Equation (7) is written as a com-
bined equation with explicitly defined boundaries of
validity, which additionally includes the energy loss
coefficient β to account for the leakage around the
paddle. Equation (20), on the other hand, is an approx-
imation of Equation (13), which should produce almost
the same results. The only difference between these
two equations is that the former is explicitly defined
and therefore the results can be computed directly for
a given water depth, paddle angle and frequency.
Equations (7), (13), and (20) are shown side-by-side in
Figure 9 to illustrate their similarities and differences.

4. Effect of the leakage around the paddle

In this study, the effects of leakage were accounted for by
introducing an energy loss coefficient, which was com-
puted by linear regression between the measured and

theoretical values for non-broken waves. However, this
reduction in wave heights can be predicted based on
wave characteristics and the ratio of the gaps to the
flume cross section. Madsen (1970) proposed the follow-
ing analytical expression for the wave height reduction
which accounts for the leakage under and through the
sides of the paddle (Madsen 1970):

Figure 7. Set of curves (Equation 19) that define the maximum frequency for a given depth after which wave breaking occurs.

Figure 8. Comparison of the measured wave heights and Equation (20) with β ¼ 0:81 and Kb ¼ 0:14 for different paddle angles
at depth: (a) d ¼ 29 cm and (b) d ¼ 19 cm.

Figure 9. Equations (7), (13), and (20) in terms of relative
frequency for θ = 5–25°.
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ΔH
H

¼ � 2:22
Δb
d

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

cosh kd

r
kd

sinh kd

"

þ1:11
Δs
b

1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
cosh kd

r !#
gH
2U2

ð20Þ

where ΔH is the difference between generated and
theoretical wave heights, Δb is the size of the gap
between the paddle and flume bottom, Δs is the size
of the gap between the flume walls and the paddle, b
is the flume cross-section width, and U is the wave-
maker velocity averaged over depth. Note that the
energy loss coefficient is related to the height reduc-
tion as β ¼ 1� ΔH=H.

In the current experiments, the paddle is connected
to the flume bottom by a rubber strip to eliminate any
leakage under the paddle; however, the gap between a
31 cm wide paddle and flume walls is Δs ¼ 14 mm
(4.5%). For current wavemaker setup, Equation (21) pre-
dicts wave height reductions ranging from 17% to 39%
(with a mean value of 25.1% and standard deviation
5.3%). This is in good agreement with average reduction
of 20.7% (standard deviation 8.1%) obtained from com-
paring measured and theoretical wave heights. A close
value was also obtained using linear regression to com-
pare measured and theoretical wave heights, where a
constant 19% reduction resulted in the smallest root
mean square error (RMSE = 3.3 mm).

A similar difference was found in the Madsen’s
experiment (1970), where a wave height reduction
of 15% was measured for a 3% leakage area.
Oliveira, Sanchez-Arcilla, and Gironella (2012) found
a 8:2� 8:9% reduction for Δb ¼ 1:2 cm, Δs ¼ 1:0
cm, and b ¼ 40 cm. Keating, Webber, and Havelock
(1977) showed that when leakage is minimized,
height reduction may become lower than 5%.
However, Wu et al. (2016) studied generation of soli-
tary waves by a wavemaker and numerically analyzed
the influence of leakage around the paddle. They
found that the leakage is still apparent even for a
very a small gap of just 0.24%. Although Madsen’s
expression produced reliable prediction of an average
wave height reduction in the present study, fully
understanding the influence of leakage is, clearly,
still an unresolved issue, which requires further
experimental and numerical investigation.

5. Conclusion

A combined wavemaker equation for both regular and
broken waves was presented in this study. The limita-
tions of the classical wavemaker equation for the pre-
diction of wave heights based on specific paddle angles
and frequencies at a certain water depth were demon-
strated. The first limitation is that the wavemaker theory
is not valid for broken waves. The second,more practical
difficulty, is that the wavemaker is sometimes implicit in

predicting the wave height based on the experimental
setup (water depth and paddle frequency).

The first problem was solved by combining the
linear wavemaker theory with a wave breaking equa-
tion, which was expressed as a wave height to paddle
stroke ratio. The proposed Equation (13) indicated a
close agreement with small-scale laboratory measure-
ments for both regular and broken waves generated
by a flap-type wavemaker. Furthermore, a relative
depth limit that defines the maximum wave height
before breaking was explicitly defined (Equation 12).
However, waves that break at the paddle are not
sufficiently investigated; therefore additional mea-
surements are needed to instill more confidence in
the combined equation.

The second difficulty was resolved by deriving an
approximate Equation (20) for both the wavemaker
and wave breaking equation expressed in terms of the
water depth, paddle angle, and frequency. Comparisons
of approximate results against both classical equations
and measurements indicated a satisfactory agreement.
Furthermore, a frequency limit that denotes the validity
range of the wavemaker theory and themaximumwave
heights before breaking was also explicitly defined
(Equation 19).

To conclude, the proposed equation should be valid
and applicable for any flap-type wavemaker, under the
assumption that the energy loss and breaking coeffi-
cient are determined by the calibration. Also, it should
be straightforward to derive a similar approximation
for a piston-type wavemaker by following the metho-
dology presented here.
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