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Abstract

This paper is a review(with a few original additions) on the radiative transport and collisional transfer of energy
in laser-excited cesium vapors in the presence of argon or helium. Narrow-band excitation of lines with Lorentz,
Doppler and Voigt profiles is studied in order to calculate effective rates for pumping of spectral lines with profiles
comprising inhomogeneous broadening components. The radiative transport of excitation energy is considered, and a
new, simple and robust, but accurate theoretical method for quantitative treatment of radiation trapping in relatively
optically thin media is presented. Furthermore, comprehensive lists of experimental values for the excitation energy
transfer cross-sections related to thermal collisions in Cs–Ar and Cs–He mixtures are given. Within the collected
cross-section data sets, specific regularities with respect to the energy defect, as well as the temperature, are discerned.
A particular emphasis is put on the radiative and collisional processes important for the optimization of resonance–
fluorescence imaging atomic filters based on Cs–noble gas systems.
� 2003 Elsevier Science B.V. All rights reserved.
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1. Introduction

Theoretical and experimental investigations on
radiative transport and collisional excitation energy
transfer in gases, vapors and plasmas have a long
tradition in physics, since these complex processes
have to be fully understood if, for example, astro-
physical phenomena are interpreted, plasmas are
characterized or discharge lamps for light genera-
tion are optimized.

*Corresponding author. Fax:q385-1-469-8889.
E-mail address: vadla@ifs.hr(C. Vadla).

Numerous basic studies have been performed
on systems involving alkali vapors and their
mixtures with noble gases. There are several rea-
sons why these systems are very suitable subjects
for experimental as well as theoretical investiga-
tions. Alkali resonance lines are in a spectral range
attainable by available lasers and alkali vapors can
easily be generated in cells. On the other hand,
due to their simple hydrogen-like structure, alkali
atoms are convenient subjects for theoretical cal-
culations and for modeling. All these investigations
are important contributions to the general basic
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understanding of the physical processes in excited
atomic systems. They can be found in the literature
under keywords such as optical pumping, line
broadening, interaction potentials, radiative trap-
ping, diffusion of resonance radiation, collisional
excitation energy transfer, etc. On the other hand,
there is a large body of work that deals with
practical applications of energy exchange pro-
cesses in mixed vapors or gases. Alkali–noble gas
systems used as atomic line filters represent one
example.
In an atomic line filter the input radiation at a

resonance wavelength is absorbed in an atomic
vapor and a radiation output is observed at a
different frequency after radiative and non-radia-
tive excitation energy transfer processes. Atomic
line filters operate in various metal vapors at
numerous discrete wavelengths throughout the UV,
visible and near-infrared spectral regionsw1,2x.
Mixtures of excited Cs or Rb atoms and noble gas
atoms have been found to be good candidates for
atomic filters. In a passive atomic line filter, no
additional optical pumping is applied, while in an
active filter the atomic vapor is initially prepared
by optical excitation using a laser tuned to the
wavelength of an intermediate transition, which
enables conversion of the input radiation to the
signal at a desired output wavelength. The atomic
line filters are ultra-narrow-band filters, which can
have various practical applications in applied spec-
troscopy, for instance in analytical chemistry or in
optical communications. Of particular interest are
atomic filters operating at the Fraunhofer minima
of the solar spectrum, which allow the measure-
ment of weak radiation in the presence of the solar
background.
Special classes of the atomic filters are imaging

detectors, i.e. two-dimensional atomic line filters.
Ultra-narrow-band atomic resonance ionization and
fluorescence imaging detectorsw1–4x represent a
new trend in imaging science with promising
practical applications. They are under development
for the detection of e.g. moving objects or spatial
distributions of excited particles in a medium.
Here, besides spectral resolution and quantum
efficiency, spatial resolution is the most important
characteristic of such detectors. Recently, several
investigationsw5–10x into cesium-based fluores-

cence imaging filters have been carried out, deal-
ing with the optimization of the basic filter
properties to find compromise conditions between
optimum efficiency and both spectral and spatial
resolution. The experiments were performed with
cells filled with pure Cs vapors or mixed with Ar
as the buffer gas. Cesium was chosen because of
its high vapor density at room temperature and its
convenient resonance wavelengths. As pointed out
in w9x, the laser wavelengths for pumping Cs atoms
are in the near-infrared region, which is easily
accessible by cw laser diodes. Furthermore, the
detectors can be compact, portable and operated
with very low power consumption. The experi-
mental findingsw5–10x stressed the influence of
the pumping schemes chosen and the effects of
radiation trapping and collisional mixing on the
general efficiency of a Cs imaging filter. It was
stated that further investigations of these processes
are needed to optimize these systems.
The aim of the present paper is to give specific

contributions to the optimization of the Cs imaging
filters. In particular, optical pumping, radiation
trapping and collisional excitation energy transfer
in neutral metal vapors are considered. New
aspects as well as new theoretical approximations
are presented, which can be useful for the straight-
forward quantitative analysis of the systems.
The present paper is organized as follows. Sec-

tion 2 deals with optical pumping i.e. pumping
rates and atom number densities created in excited
states are considered for narrow-band laser exci-
tation of both homogeneously and inhomogeneous-
ly broadened spectral lines. Appropriate relations
are obtained, which enable the evaluation of pump-
ing rates and the determination of optimum con-
ditions for optical pumping with respect to
maximum excited state number density. In Section
3 approaches are presented that yield a qualitative
picture of the radiative transport in atomic vapors
leading to trapping and diffusion of resonance
radiation. The procedures presented also allow a
quantitative treatment of the radiation diffusion
and the effective radiation rates at almost optically
thin conditions in a simple way. The collisional
excitation energy transfer in cesium vapors, pure
and mixed with Ar or He, is addressed in Section
4. The elements of experimental and theoretical
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approaches to this subject are discussed, and com-
prehensive lists of experimental cross-section data
for various collision excitation energy processes
involving cesium atoms taken from literature are
given. Taking into account these data, a simple
empirical relation between the energy defects and
the cross-sections for different excitation energy
transfer processes is presented and a general pic-
ture of the temperature dependence of the collision
cross-section is given. Finally, based on the con-
siderations and theoretical approaches presented,
experimental conditions for improvement of the
spatial resolution and efficiency of imaging atomic
filters are predicted. The relevant spectroscopic
and other data concerning cesium are given in
Appendices.

2. Optical pumping

Optical pumping can generally be defined as
selective population or depletion of energy levels
by radiation. There are many aspects of optical
pumping, the effects of which depend on the
properties of the radiation and the characteristics
of the absorbing transition. For instance, if a
polarized narrow band light is absorbed in transi-
tions between the states±1M and ±2M, represented

by the electronic angular momenta and and© ©J J1 2

the corresponding magnetic quantum numbersM ,i
then the 2J q1 degenerate substates±J ,M M of thei i i

lower and upper level will be unequally depleted
and populated. The unequal population, i.e. the
polarization of particular Zeeman sublevels, is the
consequence of the selection rules for the absorp-
tion of the polarized light in the±1,J ,M M™1 1

±2,J ,M M process and the spontaneous emission in2 2

the ±2,J ,M M™±1,J ,M M process. These optical2 2 1 1

pumping effects can easily be achieved by classical
incoherent light sources and detected by monitor-
ing the anisotropy and polarization of fluorescence
light. Long before the invention of the laser,
experiments of this type were extensively per-
formed applying spectral lamps, hollow-cathode
lamps, radio-frequency discharges, etc. At the same
time, the theory of optical pumping was developed.
A detailed review on this subject for the period
1924–1971 is given in Ref.w11x.

In the following sections, optical pumping by a
single mode laser is considered with a view to
producing the highest possible population density
in an excited atomic state, which is directly related
to the efficiency of atomic filters. It is assumed
that the atomic vapor is confined in a closed cell
at thermal equilibrium and that the absorbing
atoms are influenced by atom–atom collisions.
Some basic items important for the present consid-
erations is briefly discussed(for more details see
Ref. w12x) and the conditions for optimum effi-
ciency of optical pumping of the cesium resonance
lines in Cs–noble gas mixtures are discussed.

2.1. Line kernel profiles

In gaseous medium, spectral lines have homo-
geneous profiles in their kernels due to natural and
collision (impact) broadening. The termhomoge-
neous is related to the fact that all atoms in the
system participate in absorption(or emission) with
equal probability. In contrast to that, the lines can
also be inhomogeneously broadened due to the
Doppler effectw13x.
The homogeneously broadened line profile has

a Lorentzian shape, given in the normalized form
by:

n1 G
P nyn s (2.1)Ž .L 12 22 n2p nyn q G y2Ž . Ž .12

whereG ws x denotes the broadening parameter,n y1

which comprises contributions from different
homogeneous broadening mechanisms. Note that
the broadening parameter is expressed in frequency
(emphasized by the superscriptn), not in angular
frequencyvs2pn. This notation is used through-
out the paper. The natural broadening is character-
ized by the parameter , whereA isnG sA y2pnat 21 21

the Einstein coefficient for spontaneous emission.
The collision broadening parameters are usually
represented in the form , wheren n nG sg N gcol P P P

ws m x is the broadening rate coefficient andy1 3

N wm x the perturber number density. Due toy3
P

natural and collisional broadening, the homogene-
ous profile is a convolution of individual profiles,
which again is a Lorentzian with the broadening
parameter . The peak value of then n nG sG qGtot nat coll
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Lorentzian profile equalsP (0)s2y(pG ) andn
L tot

the half-width (full width at half-maximum,
FWHM) is D sG .n

L tot

The Maxwellian distribution of atomic velocities
in a thermal vapor and the Doppler effect yield a
Gaussian line profile, which in the normalized
form is represented by:

2w zB E1 nyn12C FP nyn s expy (2.2)x |Ž .G 12 1y2
D Gp Dn Dny ~D D

with Dn sn (v yc), wherev s(2kTyM ) is1y2
D 12 m m A

the most probable velocity of atoms, whilek and
M are the Boltzmann constant and the mass ofA

the atom, respectively. The peak value of the
Gaussian profile isP (0)s1y(p Dn ) and the1y2

D D

full-width at half-maximum amounts toD sG
2(ln2) Dn .1y2

D

When both homogeneous and inhomogeneous
broadening processes are present, the full line
shape is a convolution of the Lorentzian and the
Gaussian profiles. The resulting line shape is
known as a Voigt profile, for which an exact
analytic expression has not yet been found. There
are, however, tabulated data for the normalized
Voigt profile P (nyn ,a), where the parameterV 12

asD yD . They can be found e.g. in Ref.w14x.L G

The analysis of these data and fitting to analytical
functions yielded approximate analytical expres-
sions for the peak valuesP (0) and the half-V

widthsD of the normalized Voigt profiles. FromV

the empirical analytic expressions, as given in
w15x, it follows that the peak value of the normal-
ized Voigt profile can be expressed by the half-
widths of the Lorentzian and Gaussian
components:

P 0Ž .V

1
s w z2

x |D 1.065q0.447 D yD q0.058 D yDŽ . Ž .V L V L Vy ~

(2.3)

where the half-widthD of the Voigt profile isV

given by:

1y2w z2 2x |D sD y2q D y2 qD (2.4)Ž .V L L Gy ~

It should be emphasized that the above relations
are accurate to 1% for all values ofD yD in theL D

range from 0 tò .

2.2. Pumping rate as a function of line profiles

For modeling of atomic excitation schemes, a
quantitative description of the optical pumping,
i.e. knowledge of the pumping rates, is often
needed. To establish the relationships between
pumping rates and basic characteristics of absorb-
ing transitions, we consider a cell filled with
atomic vapor having the total number densityNA

at temperatureT. The vapor is illuminated by a
laser beam with the frequency-dependent spectral
intensity I (n) wJ m s Hz x, which is deter-n y2 y1 y1

mined by the powerW wJ s x, the bandwidthy1

D wHzx and the beam cross-sectionq wm x. The2
las

laser frequencyn is tuned to the frequencynlas 12

of the 1™2 transition from the ground to an
excited state. It is assumed that states 1 and 2 are
degenerate and that their Zeeman sublevels are
collisionally mixed to such an extent that the
polarization effects become negligible. This is
valid in experiments with the cesium resonance
lines optically pumped by a linearly polarized,
single-mode laser beam when, for example, the
noble gas pressure is larger than several 10 mbar
at room temperature. Information and data for
collisional depolarization of Cs resonance lines
can be found e.g. inw16x. States 1 and 2 are taken
to be well separated mutually and isolated from
the other levels, so that all collisional excitation
energy transfer processes(see Section 4) can be
neglected. In such conditions and taking into
account absorption, spontaneous emission and
stimulated radiation, the system is described in the
steady-state regime by the following simple rate
equation for the number densitiesN andN in the1 2

relevant states:

dN dN g1 2 1sy s0syPN qA N q PN1 21 2 2dt dt g2
(2.5)

where P ws x is the pumping rate,A is they1
21

Einstein coefficient for spontaneous emission, and
g and g label the statistical weight of the lower1 2
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and upper state, respectively. The above rate equa-
tion is related to an optically thin volume element.
Considering the spectral intensityI (n,x) of then

beam propagating in thex-direction, the appropri-
ate expression for its change at the position
betweenx andxqdx is:

d
n n nI n,x syk n I n,x qk9 n I n,x (2.6)Ž . Ž . Ž . Ž . Ž .

dx

wherek(n) wcm x is the linear frequency-depend-y1

ent absorption coefficient andk9(n) is the coeffi-
cient for stimulated emission. Here, the
contribution by the isotropic spontaneous emission
in the x-direction has been neglected. Eq.(2.6)
corresponds to Eq.(2.5), and it is obvious that the
k9(n)yk(n) ratio is equal to(g yg )(N yN ), and1 2 2 1

that k9(n) becomes non-negligible for high inten-
sities of incoming light. In that case, the medium
is characterized by a fictitious absorption coeffi-
cient k (n)sk(n)(1yg N yg N ), which is usu-S 1 2 2 1

ally called the saturated or non-linear absorption
coefficient. However, the actual absorption pro-
cesses are related tok(n), which can be expressed
as:

k n sKN P nyn (2.7)Ž . Ž .1 12

whereK is given by the well-known Ladenburg
relation:

2 2pe g c2Ks f s A (2.8)12 212m c g 8pne 1 12

andP(nyn ) wHz x is the normalized(|Pdns1)y1
12

line profile. Here,f is the line oscillator strength,12

and e and m are the electron charge and mass,e

respectively. If the line is homogeneously broad-
ened, the first term in Eq.(2.6), integrated over
the whole frequency range, yields the total power
absorbed per unit volume:

nYsKN P nyn I n dn (2.9)Ž . Ž .1 H 12|

where the subscript H is a reminder of the homo-
geneous character of the line profile. On the other

hand, Y wJ s m x is proportional to the firsty1 y3

term in Eq.(2.5):

HYshn P N (2.10)12 1

whereh is the Planck constant. The combination
of Eqs. (2.9) and (2.10) gives an expression for
the pumping rate in the case of a homogeneous
line profile:

KH nP s P nyn I n dn (2.11)Ž . Ž .H 12|hn12

If we consider the influence of the relationship
between the line profile widthD and the laser
bandwidthD on the pump rate, it is useful tolas

make a straightforward analysis in which the line
profiles are approximately represented by rectan-
gles. In this model, the square profileP (nyn ),sqr 12

normalized to unit area, is constant and equals 1y
D for the frequencies in the interval(n yD ysqr sqr

12

2, n qD y2). Outside of this interval it is zero.sqr
12

In the same way, the rectangular laser spectral
intensity isI sWyqD in the frequency intervaln

sqr las

(n yD y2, n qD y2), and zero otherwise.las las las las

In the following, we consider only optical pump-
ing in the center of the line(n sn ). In the caselas 12

when

(a) D )Dsqr
las

which corresponds to broadband laser pumping,
Eq. (2.11) yields:

KW 1aP s (2.12)Ž .
hn q D12 las

which means that the line profile is irrelevant, i.e.
the pumping is homogeneously distributed over
the whole atomic ensemble. Therefore, Eq.(2.11)
can also be used for calculation of the pumping
rate of inhomogeneous profiles in the case of
broadband pumping. It is plausible that optimal
pumping occurs whenD sD . Furthermore, insqr

las

the case when

(b) D -Dsqr
las

the rectangular approximation of a homogeneous
profile (width: ) yields the following expres-sqrDH
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sion for the pumping rate:

KW 1bHP s (2.13)Ž . sqrhn q D12 H

Obviously, the pumping rate(P ) can beH b

determined without exactly knowing the laser
bandwidth. However, the line width of the homo-
geneous profile is needed.
If the line profile comprises the inhomogeneous

component, thenN in Eq. (2.9) should be for-1

mally replaced by a portionN -N . Since theIH
1 1

pumping rate in Eq.(2.10) is defined for the total
number densityN , this implies a lowering of the1

effective pumping rate. Nevertheless, the integral
over the frequencies in Eq.(2.9), which is related
to a inhomogeneous absorption coefficient, has no
specific physical sense. In this case the determi-
nation of the pumping rate is not simple and this
issue is treated in the following subsection.

2.3. Single-mode laser excitation in the line kernel

For practical and economic reasons, diode lasers
are the only true candidates for realization of active
atomic filters and imaging detectors. They can be
multimode(power of the order of magnitude of 1
W) or single mode(typical power up to 100 mW).
However, the modes of a multimode diode laser
are typically 0.2 nm apart, which greatly exceeds
the Doppler widths at temperatures somewhat
above room temperature. Therefore, typical pump-
ing in the kernel of the spectral line with a
stabilized multimode laser is equivalent to single-
mode laser pumping.
In the following, we consider single-mode

pumping of a spectral line having a profile com-
prising the homogeneous and inhomogeneous
broadening contributions. Here, we assume that
the laser widthD (typical value approx. 10 MHz)las

is very small in comparison with the widths of
both homogeneous and inhomogeneous profile
components(D <D ,D ). Therefore, in the fol-las L G

lowing, the laser line profile is represented by the
d-function, i.e. the laser spectral intensity is
described byI (n)s(Wyq)Ød(nyn ).n

las

2.3.1. Pure Lorentzian profile
In the case of a pure Lorentzian profile

(D 4D ) and for the laser detuningDn sn yL G las las

n , the detuning-dependent pumping rateP ,L12

obtained via Eqs.(2.1) and (2.11), reads as
follows:

1 KW DLLP Dn s (2.14)Ž .las 222p hn q Dn q D y212 Ž . Ž .las L

For the sake of clarity in the following text,
here we define the pumping rateP for theLC

center of the Lorentzian profile(Dn s0):las

2 KW 1LCP s (2.15)
p hn q D12 L

and the rateP for the pumping in the Lorent-LW

zian wing(Dn 4D ):las L

1 KW DLLWP Dn s (2.16)Ž .las 22p hn q DnŽ .12 las

Since for the homogeneous line broadening the
absorption is equally probable for each atom in
the vapor, the detuning–dependent ratioN yN ,2 A

obtained by combination of Eqs.(2.5) and(2.14),
is N yN s(P yA )yw1q(P yA )(1qg yg )x.L L

2 A 21 21 1 2

In turn, the pumping rateP can be formallyL

expressed in terms of the established population
ratio N yN as follows:2 A

N DnŽ .2 las

NALP Dn sA (2.17)Ž .las 21 N DnŽ .2 las1y 1qg ygŽ .1 2
NA

The form of Eq. (2.17) is used in the next
subsection for the determination of effective pump-
ing rates in cases of inhomogeneous line
broadening.

2.3.2. Nearly pure Doppler profile
In thermal equilibrium, the number density

dN (v ) of the atoms with a velocity componentA x

betweenv andv qdv is given by the Maxwellianx x x
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distribution:

2w zB EN vA xC FdN v s expy dv (2.18)x |Ž .A x x
D Gvy ~y mpvm

Due to the Doppler effect, for the laser detuning
Dn sn yn only atoms with the velocity com-las las 12

ponent v s(cyn )Dn can absorb photons ofx 12 las

frequencyn propagating in thex-direction. How-las

ever, due to homogeneous line broadening, a cor-
respondingly larger portion of atoms can
participate in absorption.
First, we present a semi-quantitative approach

using the rectangular approximation for the shape
of the homogeneous line profile, since it is quite
illustrative for the subject considered. In this
approximation, the number density of atomsIHNA

able to absorb incoming photons is determined by
v being in the interval betweenv andv , where:y q
x x x

" sqrv s cyn Dn "D (2.19)Ž .Ž .x 12 las H

In the simple two-level approach, with the
selected velocity group of atoms taken as con-
served during the absorption and emission of a
photon, the following relationship is valid:

IH IH IHN sN qN (2.20)A 1 2

For v small compared withv , i.e. when"
x m

, the detuning-depend-sqr yD <D s2 ln2n v ycŽ .H G 12 m

ent number density , labeled with in theIH nDN NA A

case at hand, is given by:

qvxN 2AnD y4ln2 Dn yDŽ .las GN Dn f e dvŽ .A las x|
yypv vm x

sqrln2 D2 H sqry4ln2 Dn yDŽ .las Gs4 e N , D <D

(2.21)
A H Gy p DG

Taking into account Eq.(2.20), the rate equation
for the number densitiesN and N , writtennD nD

1 2

analogously to Eq.(2.5), yields the following
expression for the number densityN of thenD

2

excited atoms:

nDN DnŽ .2 las
HP yA21

nDs N Dn ,Ž .A lasH1q P yA 1qg ygŽ .Ž .21 1 2
sqrD <D (2.22)H G

where the pumping rateP is given by Eq.(2.13).H

In the case when the saturation parameterP yH

A 41, the considered velocity group of atoms is21

strongly saturated, but the number density of the
atoms in the excited state is small compared with
the total number densityN . This is the case ofA

strong burning of Bennet holes in the velocity
distribution w12x.

By analogy with Eq.(2.17), the effective rate
related to all atoms can, in terms of ratiosnDPeff

, be defined as:nDN yN2 A

nDN DnŽ .2 las

NAnDP Dn sAŽ .eff las 21 nDN DnŽ .2 las1y 1qg ygŽ .1 2
NA

nDN DnŽ .2 las
sqrfA , D <D21 H GNA

(2.23)

For example, in the case of strong pumping
(P yA 41) the combination of Eqs.(2.23),H

21

(2.22) and (2.21) yields for pumping in the line
center:

nD sqr4 ln2ypyP 0Ž .eff DHf ,
A 1qg yg D21 1 2 G

(2.24)
sqr HD <D , P yA 41H G 21

which is obviously much smaller than 1. In the
limit P yA <1, the effective pumping rate isH

21

related toP as follows:H

sqrDHnD HP 0 f4 ln2yp P ,yŽ .eff
DG

sqr HD <D , P yA <1 (2.25)H G 21

However, from the efficiency standpoint of an
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atomic filter, it is important to obtain the highest
possible excited-state number density. In the case
of single-mode pumping, that can be simply and
efficiently realized by increasing the homogeneous
half-width wsee Eq. (2.24)x, for instance by
increasing the buffer gas pressure.

2.3.3. Combination of Doppler and Lorentzian
profiles
In the following step we consider single-mode

pumping of a spectral line with Lorentzian shape
of the homogeneous profile component. For the
Lorentz profile and for the given laser detuning,
the corresponding portionN , labeled asN , isIH DL

A A

determined by a convolution of velocity compo-
nent distribution wEq. (2.18)x and the profile

, where the var-P9 s pD y2 P Dn yv n ycŽ . Ž .L L L las x 12Ž .
iable of integration isv . In contrast toP wseex L

Eq. (2.1)x, the Doppler-shifted LorentzianP9 isL

dimensionless and is normalized to unity in the
line center. Note that Eq.(2.21) can be formally
regarded as a convolution of the velocity distri-
bution and the homogeneous square profile, where
the latter is normalized to have height equal to 1.
The convolution yields detuning–dependent

N , which may be represented in the form:DL
A

DLN u,a sf u,a N (2.26)Ž . Ž .A V A

where the relative detuningu is defined as:

us n yn yD (2.27)Ž .las 12 G

and the broadening parametera, as already defined
in Section 2.1, is:

asD yD (2.28)L G

The Voigt functionf (u,a), the value of whichV

is in the interval between 0 and 1 for all values of
u anda, is given by:

q`1 2f u,a s expyßŽ . Ž .V |
y4 p y`

2a
= dß (2.29)2 2

yuyßy2 ln2 q ay2Ž . Ž .
where the variable of integration iszsv yv .x m

The rate equation for the number densitiesNDL
1

andN with appropriate pumping rateP wseeDL LC
2

Eq. (2.15)x yields the following expression for the
detuning-dependent number densityN :DL

2

b

aDLN u,a,b sf u,a N (2.30)Ž . Ž .2 V A
b

1q 1qg ygŽ .1 2
a

where the pumping parameterb is defined by:

2KW 1
bs (2.31)

phn qA D12 21 G

The calculated dependence ofN (0,a,b)yNDL
2 A

on parametersa andb for single-mode pumping
in the line center is shown in Fig. 1a. The
calculations were performed for the case when
g sg . As can be observed in Fig. 1a, an optimum1 2

population density in the excited state for moderate
pumping power(parameterbF3) appears when
af1. A further increase in pumping power does
not produce a significant rise in the population of
the excited state.
For instance, in the case of the Cs D resonance2

line at 300 K, the Doppler width of a particular
hyperfine component isD s380 MHz. Using theG

cesium vapor pressure curve given in Appendix C
and the value for the broadening parametergn

Cs

given in Appendix D, we obtain a Lorentzian half-
width that is approximately two orders of magni-
tude smaller than D . However, addingG

approximately 50-mbar argon gas withg sn
Ar

2.5=10 s (see Appendix D) makes they10 y1

Lorentzian width comparable with the Doppler
width, i.e. creates optimum pumping efficiency. At
this point it should be stressed that, under the
physical conditions defined here, the decrease in
noble gas pressure below several 10 mbar, besides
lowering the pumping efficiency, also removes the
effects of collisional depolarization of the Zeeman
substates. In the limit of pure cesium equilibrium
vapors near room temperature, we should take into
account strong polarization effects appearing when
the Cs first resonance states are excited by polar-
ized narrow-band lightw11,16x.
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Fig. 1. (a) The calculated excitedytotal atom number density
ratio as a function of the ratio of theDLN Dn s0,a,b yNŽ .2 las A

Lorentzian and Gaussian line widthsasD yD for a series ofL G

pumping parametersb, in the case of single-mode pumping in
the center of the line comprising inhomogeneous and homo-
geneous broadening.(b) The relative effective pumping rate

for single-mode pumping in the center of theDLP 0,a,b yA bŽ .eff 21

line comprising inhomogeneous and homogeneous broadening,
as a function of theasD yD ratio and pumping parameterL G

b. The dashed line indicates the relative rate for pumping
homogeneously broadened(Lorentzian) line.

The effective pumping rates wereDLP u,a,bŽ .eff

calculated by analogy with Eqs.(2.17) and(2.23)
from the field of curves via:DLN u,a,b yNŽ .2 A

DLN u,a,bŽ .2

NADLP u,a,b sA , g sgŽ .eff 21 1 2DLN u,a,bŽ .21y2
NA

(2.32)

The results obtained for the pumping in the line
center, expressed as the ratio ,DLP 0,a,b yA bŽ .eff 21

which we call the relative effective pumping rate,
are plotted vs.D yD in Fig. 1b. In the presentL G

notation, the Lorentzian pumping ratewEq. (2.14)x
is described by:

aLP u,a,b sA b (2.33)Ž . 21 2 24u qa

For comparison, the hyperbolic curve
is also plotted in Fig. 1b. AsLCP yA bsD yD21 G L

can be observed, when a line having the Voigt
profile is pumped by a narrow-band laser, the
effective pumping rate strongly depends on the
parameterb, i.e. on the applied laser power den-
sity. However, in the limitb<1 and for aG1,
the effective pumping rate approaches theDLPeff

values ofP . The present representation is veryL

convenient for establishing the relationships
between effective pumping rates and the rates
corresponding to the homogeneous component of
the line profile considered. For instance, in the
case of line-center pumping and foras1, the
following relationship is obtained by fitting the
data displayed in Fig. 1b:

1DL LP 0,1,b s P 0,1,b , g sgŽ . Ž .eff 1 21.42q0.83b
(2.34)

The numerical accuracy of the latter expression is
better than 0.01% forb values between 0 and 100.
If b™` (case of strong pumping), then Eq.
(2.34) yields , whichDLP 0,1,` sA y0.83Ž .eff 21

means that the maximum saturation parameter is
.DLP yA s1.2eff 21

2.4. Pumping in the Lorentzian wing of the Voigt
profile

In order to reach very high populations in the
excited state, it is obvious thatN , i.e. the tem-A

peratureT of the metal vapor cell, should be
increased as much as possible. However, for the
given power and bandwidth of the laser, a finite
saturation parameter and consequently a finite
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Fig. 2. The effective rate for pumping the lineDLP u,a,bŽ .eff

comprising inhomogeneous and homogeneous broadening as a
function of laser detuningus(n yn )yD for a series oflas 12 G

pumping parametersb in the case ofas3. The dashed line
indicates the relative rate for pumping homogeneously broad-
ened(Lorentzian) line in the line wing(u4a).

Fig. 3. The ratio of the effective rate for pumping the Voigt
profile in the Lorentzian wing and the rate for pumping pure
Lorentzian profile in the line wing calculated forDLW LWP yPeff

detuningsuG5a and displayed as a function ofa andb for
parameter values in the range 1FaF100 and 0.1FbF100.

absorption coefficient occurs. Thus, attenuation of
the laser beam takes place in accordance with the
Lambert–Beer exponential law, and this produces
a spatially inhomogeneous number densityN in2

the excited state. Nevertheless, under the condi-
tions of an optically thick line center, uniform and
efficient pumping in the whole vapor volume can
be achieved by laser excitation in the optically
thin line wing.
We have calculated the detuning-dependent

effective pumping rates using Eqs.DLP u,a,bŽ .eff

(2.30) and (2.32) for a series ofa and b para-
meters in the range 1FaF100 and 0.1FbF100.
For illustration, the results foras3 are shown in
Fig. 2. As can be observed, the effective pumping

rate acquires the form of the Lorentzian wing
(;u ) for a relative detuning several-fold(;5)y2

greater thana. To obtain a relationship between
P and the effective rate for the pumpingLW DLWPeff

in the Lorentzian wing of the Voigt profile, we
have calculated the ratios DLWP uGŽeff

. The results as a func-LW5a,a,b yP uG5a,a,b. Ž .
tion of a and b are depicted in Fig. 3. Analysis
of the results displayed has shown that the relation:

DLWP uG5a,a,bŽ .eff

1 LWs P uG5a,a,b ,Ž .
1q2 byaŽ .

g sg , aG1 (2.35)1 2

holds with the numerical accuracy better than
1:10 for thea and b parameters in the range5

stated above. Substitution of Eqs.(2.33), (2.31),
(2.28) and (2.27) into Eq. (2.35) yields a more
detailed expression for :DLWPeff

DLWP DnŽ .eff las

1 KW DLs ,22phn q Dn4KW 1 Ž .12 las1q
phn q A D12 21 L

Dn G5D , D GD (2.36)las L L G
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In the limit of strong pumping (W™`),
.2DLWP s0.125A D yDnŽ .eff 21 L las

Obviously, this rate is smaller than the rate
obtained by pumping in the line center. However,
at higher N , trapping effects start to play aA

significant role. Radiation trapping refers to the
fact that the absorbed, and subsequently sponta-
neously emitted, photons can be absorbed and re-
emitted several times before finally reaching the
cell window. A comprehensive overview dealing
with the problem of trapping is given in Ref.w17x.
As a consequence of this multiple re-absorption
and re-emission, the effective lifetime in the excit-
ed state, related to photon escape from the whole
excited volume, is prolonged, i.e. the effective
radiative rate is smaller than the EinsteineffA21

coefficient A (see Section 3). The simple rate21

equationwEq. (2.5)x, related to an optically thin
volume element, cannot be applied for the descrip-
tion of such systems, since trapping is a volume
effect. Nevertheless, in the case of weak pumping
in the Lorentzian wing(N yN <1), stimulated2 A

emission can be neglected and the balance in the
whole volume considered yields:

DLWPeffN̄ s N (2.37)2 AeffA21

where is the spatial average ofN . The valuesN̄2 2

for are usually estimated using the resultseffA21

obtained by Holsteinw18,19x, who studied in detail
two volume shapes: an infinitely long cylinder and
an infinite slab. In both cases, the limit of strong
absorption in the line kernel has been considered
for two extremes: a pure Doppler and pure Lor-
entzian line profile. In the case of an infinitely
long cylinder with the radiusR (a similar situa-C

tion as for a long absorption cell) and in the case
of a pure Lorentzian profile, the Holstein approx-
imation yields:

1.115effA s A (2.38)21 211y2Lpk RŽ .0 C

where k is the peak value of the absorptionL
0

coefficient, i.e. k s2KN ypD . It should beL
0 A L

emphasized that Eq.(2.38) is valid for the optical

depths k R being approximately in the rangeL
0 C

between 5 and 100. At optical depths higher than
100, A becomes nearly constant over a wideeff

range of large optical depths(see for example the
case of sodium in Ref.w20x).

In the case of the cesium D and D lines at1 2

N G10 cm (and a cell radius of approx. 113 y3
Cs

cm) the effective rates are approximately two
orders of magnitude smaller than the radiative rate
A (see Appendix E). An increase in the ground-21

state number densityN has the favorable effectA

so that not only is there an increase in the popu-
lation of the excited state by pumping, but also by
lowering of the effective spontaneous emission
rate wsee Eq.(2.37)x.

Although pumping in the optically thin line
wing produces a rate that is smaller than that
realized by pumping in the line centerwcompare
Eqs.(2.34) and(2.36)x, due to radiative trapping,
a significant and spatially uniform population in
the excited state can be produced, which is on the
track of achieving high quantum efficiency of
atomic filters.

3. Radiation trapping

As stated previously, a detailed treatment of the
radiation trapping can be found inw17x, which also
comprises a list of nearly 1000 most relevant works
published up to 1996. This bookw17x yields
insights into the physical mechanisms of radiation
trapping and can serve as a toolbox of mathemat-
ical methods to solve various radiation trapping
problems in practice. In addition, historical pro-
gress of investigations in this field has been over-
viewed, showing that, at particular stages in the
development of this field, several times independ-
ent groups of atomic physicists and astrophysicists
made equivalent contributions at the same or
slightly different times.
Trapping problems are usually analyzed in

media characterized by high opacity at the relevant
spectral lines. Due to trapping, the lifetimes of the
resonance states can be prolonged by up to three
orders of magnitude, which makes the resonance
states act as quasi-metastable states.
As for the atomic line filters, they can be

regarded as textbook examples of practical situa-
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Fig. 4. Schematic illustration of the trapping and resonance
radiation diffusion processes. For detailed explanations see the
text in Section 3.

tions in which trapping plays a vital role. Discus-
sion on the positive influence of strong trapping
on the quantum efficiency of an atomic line filter
can be found in Ref.w17x. Nevertheless, regarding
the spatial resolution of an atomic imaging filter,
trapping is an especially undesired effect. For
example, when only part of a volume with metal
vapor is excited in such imaging detectorsw8x, the
subsequent re-absorption and re-emission pro-
cesses produce excited atoms far outside of the
original excitation zone. This diffusion-like effect
can strongly degrade the spatial resolution of the
imaging atomic line filter.
Since imaging atomic line filters should have as

high quality as possible, it is obvious that the
region of relatively small optical depths, where
trapping effects start to play an important role, is
of particular interest. For this reason, we consider
here radiation trapping for optical depths lower
than 1 in a way that can be useful for finding
experimental conditions for optimum spatial reso-
lution of atomic imaging filters.

3.1. Rate equation approach

Following the considerations in the previous
section, the problem of trapping can easily be
defined in terms of additional optical pumping
rates appearing in dense, excited media. For this
purpose, we consider again the cell filled with
atomic vapor illuminated by a light beam matching
the 1™2 transition. Here, we assume low intensity
of the incoming light and neglect stimulated emis-
sion. Furthermore, we assume significant opacity
of the medium at the frequency of the transition
considered. The latter assumption means that the
spontaneously emitted photons can be absorbed
and re-emitted in the media again. Then, the
appropriate equation for the power balance in a
selected optically thin volume elementDV atn

position within the volumeV illuminated by the™rn
laser beam(see Fig. 4a) is:

B E B E
C F C F™ ™P r N r DV hnD G D Gn 1 n n 12

B E
C F™yA N r DV hn qX s0 (3.1)D G21 2 n n 12 n

whereP is the position-dependent pumping
B E
C F™rD Gn

rate for the 1™2 transition. In contrast to Eq.
(2.5), we have here not only the position-depend-
ent number densities, but also the additional
‘pumping’ termX , which represents absorption inn

DV of the spontaneously emitted radiation fromn

the rest of the excited volume:

X s X (3.2)n mn8
m/n

where,X wJ s x is the power of the radiationy1
nm

from volume elementDV that is reabsorbed inm

the volumeDV . The powerW wJ s x emittedy1
n m

from volumeDV is given by:m
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B E
C F™W sA N r DV hn (3.3)D Gm 21 2 m m 12

At this point, it is crucial to define the spatial
and spectral distribution of re-emitted light from a
selected volume element. We assume that the
spontaneous emission is isotropic and, in addition,
that all atoms emit the same, fully spectrally-
redistributed spectrum, which is the same as the
absorption profileP(n). It should be noted that
the same assumption was made by Holsteinw18x.
Now, the spectral intensity wJ m sn y2 y1I nŽ .mn

Hz x at position , which is spontaneously emit-™y1 rn
ted in the volumeDV and exponentially attenu-m

ated along the path , can be expressed as:™ ™Z Zr yrm n

w zWm ™ ™n x |Z ZI n s P n expyk n r yrŽ . Ž . Ž .y ~mn m n2™ ™Z Z4p r yrm n

(3.4)

The volumeDV is characterized by an absorp-n

tion coefficient k(n) at the transition 1™2. The
absorbed power per unit volumeX is definedmn

analogously to Eq.(2.9):

nX sDV k n I n dn (3.5)Ž . Ž .mn n mn|

By substituting Eqs.(3.5), (3.4), (3.3) and(3.2)
into Eq.(3.1), we obtain the following relation for

the number densities at position :™rn

B EB E B E
C F C F™ ™ ™ ™C FZ ZA N r yA DV N r F r yrD G D G21 2 n 21 m 2 m D m n G8

m/n

B E B E
C F C F™ ™sP r N r (3.6)D G D Gn 1 n

where the function is given by:
B E™ ™C FZ ZF r yrD m n G

w z™ ™x |Z Zk n P n expyk n r yr dnŽ . Ž . Ž . m n| y ~B E™ ™C F nZ ZF r yr sD m n G 2™ ™Z Z4p r yrm n

(3.7)

By replacing the sum in Eq.(3.6) by a volume

integral where and become and , respec-™ ™ ™ ™r r r9 rm n

tively, we obtain the steady-state equation of Hol-

stein w18x with an external source :
B E B E
C F C F™ ™P r N rD G D G1

B E B E
C F C F™ ™A N r yA N r9D G D G21 2 21 2|

vol

B E B E B E
C F C F™ ™ ™ ™ ™C F 3Z Z=F r9yr d r9sP r N r (3.8)D G D GD G 1

The above equation, with no source part, was
derived by Holsteinw18x and in the literature it is
known as the Holstein or Holstein–Biberman
equationw17,20x.
The Holstein integral Eq.(3.8) is the equation

for the spatially dependent number densities of the
atoms in the excited state. A general solution of
the Holstein equation does not exist. For every
particular case, with given boundary conditions,
the solution can be obtained only by making
suitable approximations. In the Holstein approxi-
mation w19x, the solutions were obtained fork nŽ .

for a geometry reduced to a quasi™ ™Z Z= r yr 41m n

one-dimensional case. For instance, in the case of
an infinite slab the number densities of atoms in
the excited state are taken to be independent of
two space coordinates. In addition, as mentioned
in Section 2, the Holstein approximation is related
to pure Doppler and pure Lorentzian profiles.
Because of their convenient explicit form, the
results of the Holstein approximation became
widely used in spectroscopy for situations in which
media exhibited a strong trapping effect. In con-
trast, in the next subsection we consider the trap-
ping effect for a finite volume and low optical
depths.

3.2. Low opacity and constant number-density
approximation

We consider a finite volume of the sizeL . The3

atoms are excited by spatially uniform optical
pumping at the transition 1™2, i.e. we assume
the pumping rateP to be independent of the space

coordinates. At uniform pumpingw
B E
C F™P r sPsD G

x, the number densities and
B E B E
C F C F™ ™constant N r N rD G D G1 2



1248 C. Vadla et al. / Spectrochimica Acta Part B 58 (2003) 1235–1277

Table 1

Numerical values of the coefficientsa s(P(0))yiP
i |

n

(P(n)) for the Doppler and Lorentzian profileiq1dn

i Dai Lai

1 0.707 0.500
2 0.577 0.375
3 0.500 0.312
4 0.447 0.273
5 0.408 0.246
6 0.377 0.225
7 0.353 0.209
8 0.333 0.196
9 0.316 0.185

10 0.301 0.176

can be regarded as weakly dependent on spatial
co-ordinates and, in a straightforward approach,
the position-dependent number densities can be
replaced by average values and , respective-¯ ¯N N1 2

ly. This implies that the integral in Eq.(3.8)

should be related to the average value of in the™r
volume considered, i.e. to the center of gravity
where the contributions from the rest of the volume

are the largest. Therefore, we take , where™ ™r'rcg
is the position of the center of gravity(see Fig.™rcg

4a).
Hence, the integral Eq.(3.8) reduces to the

linear equation:

B E™ ™ ™C F 3¯ ¯ ¯Z ZA N yA N F r9yr d r9sPN (3.9)21 2 21 2 D cg G 1|
vol

If we look for the simplest way to reduce the
problem described by Eq.(3.9), it is apparent that
the volume integral is most easily solved by
assuming spherical symmetry. Although this geom-
etry is of no particular interest regarding further
considerations in the present paper, it is, neverthe-
less, very convenient for transparent demonstration
of the validity of the approximations that are made.

With the substitution , the volume™ ™Z Zrs r9yrcg
integral in Eq.(3.9) in spherical coordinates reduc-
es to:

B E™ ™ ™C F 3Z ZJ s F r9yr d r9sph D cg G|
sph

w zRS

w z
x |s k n P n expyk n r dn dr (3.10)Ž . Ž . Ž .x |y ~| |

y ~0 n

where R is the radius of the spherical volumeS

considered. In accordance with the initial assump-
tion of low opacity, the exponential function in
Eq. (3.10) can be represented by the first three
terms of the Taylor series:

1 2w z
x |expyk n r f1yk n rq k n r (3.11)Ž . Ž . Ž Ž . .y ~ 2

which is a good approximation fork(n)r-0.5.

With this approximation, we obtain the following
result for the integralJ :sph

P Pa a2 32 3P P P PJ fa k R y k R q k R (3.12)Ž . Ž . Ž .sph 1 0 S 0 S 0 S2 2Ø3

where is the peak absorption coef-P ¯k sKN P 0Ž .0 1

ficient, while the dimensionless coefficientsa areP
i

of the following form:

1 iq1Pa s P n dn (3.13)Ž Ž ..i |iP 0Ž Ž .. n

For pure Lorentzian and pure Doppler profiles,
the corresponding coefficientsa and a are 1y2L D

1 1

and 1y62, respectively. The calculations(see Table
1) show that these coefficients are always smaller
than 1 and, in addition, they decrease slowly when
i increases. Fork R F0.4, the first term in Eq.P

0 S

(3.12) is dominant. Even whenk R s0.4, itsP
0 S

contribution toJ amounts to approximately 95%.sph

Therefore, in the present approximation it is justi-
fied to takeJ fa k R for k R F0.4.P P P

sph 1 0 S 0 S

In view of the further consideration presented,
cube- or cylinder-shaped volumes are of interest.
In the case of a cylinder with radiusR and heightC

2R , the corresponding integralJ is given by:C cyl

P P PJ f1.13a k R , k R F0.35 (3.14)cyl 1 0 C 0 C

In the case of a cube with volumeL , the3

calculation yields:
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P P PJ f0.64a k L, k LF0.6 (3.15)cub 1 0 0

For the particular geometry and corresponding
J, Eq. (3.9) yields a number density in the excited
state:

P¯ ¯N s N (3.16)2 1A 1yJŽ .21

which is higher than in the pure optically thin
case. The emitted radiation is ‘trapped’ in the
volume considered and, from the macroscopic
point of view, the excited state is characterized by
a lowered spontaneous emission rate, given by:

effA sA 1yJ (3.17)Ž .21 21

The factorhs(1yJ), commonly attributed to
the probability for radiative escape from a cell
(escape probability), exhibits in the case of low
opacity and constant number density a direct
dependence on the line broadening parameters,
number density of the atoms in the lower state and
the size of the cell. In summary, bearing in mind
the basic assumption of spatially isotropic and
frequently fully redistributed spontaneous emis-
sion, theJ values for all three cases of geometry
and three basic types of line profiles(Lorentzian,
Voigt, Gaussian) discussed above are given by:

SS WR 1ypDS L2 TT T pe V¯U X UJf 1.13R =N = f = a P 0 , JF0.3Ž .C 1 12 1 VmcT T T 1y2
V Y0.64L 2ln2yp yDŽ . GV

(3.18)

where the values for the coefficienta , whichV
1

corresponds to the Voigt line profile, depend on
the ratioD yD and are in range between 1y2 andL G

1y62.

3.3. The ‘piece-by-piece’ method

Among many approximations for the solution
of the Holstein equation, a simple but efficient
method for numerical solution is the so-called
piecewise methodw17x. The basic principle is to

divide the vapor cell volume inton small optically

thin regions with centers at corresponding . The™nrcg
number density in the excited state is assumed to
be constant within each region. Then, the specific
trapping problem is defined by ann-dimensional
set of linear equations withn unknown population

densities . Obviously, this method fits with
B E
C F™nN rD G2 cg

the concept of trapping adopted in Section 3.2.
The substantial difference we make here is that we
consider optically quasi-thin and slightly ‘trapped’
volumes. Using the results given in Section 3.2 it
is instructive to examine the simplest case when
we have two adjacent cubic volumes(see Fig. 4b)
of equal size L, both relatively optical thin
(k LF0.6). In this ‘piece-by-piece’ approach, bothP

0

volumesV andV are supposed to be under then m

same physical conditions(among others:̄N n sŽ .1

). The volumes are excited by the¯ ¯N m sNŽ .1 1

pumping ratesP and P and, as stand-alonen m

units, are characterized by an effective spontaneous
emission rate . Then, followingeffA sA 1yJŽ .21 21 cub

the scheme given by Eq.(3.6), with ,effA ™A21 21

, and , we
B E
C F™ ™ ™3 ¯Z ZDV™L r yr ™L N r ™N iD G Ž .m n 2 i 2

obtain the system of two coupled relations for the
average number densities and :¯ ¯N n N mŽ . Ž .2 2

eff eff 3¯ ¯ ¯A N n yA L FN m fP NŽ . Ž .21 2 21 2 n 1

(3.19)
eff 3 eff ¯ ¯yA L FN n qA N m fP NŽ . Ž .21 2 21 2 m 1

where, analogously to Eq.(3.7) and to the proce-
dure performed in the steps from Eq.(3.10) to Eq.
(3.15), the coupling factorF is given by:

w z
x ||k n P n expyk n L P PŽ . Ž . Ž .y ~ a k L 0.12Jn 1 0 cub

Fs f s ,2 3 34pL 4pL L
Pk LF0.6 (3.20)0

Regarding the pumping of volumesV andV ,n m

we consider two cases. In the first case, when

(a) P sP sPn m
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the solution to Eq.(3.19) is:

¯ ¯N n sN mŽ . Ž .2 2

P ¯f N (3.21)1A 1yJ 1y0.12JŽ .Ž .21 cub cub

The above relation clearly shows that mutual
influence betweenV and V (see Fig. 4b, left)n m

leads to a further decrease in the effective spon-
taneous emission rate in the wholeV qV volume.n m

In the second case, when

(b) P /0 andP s0n m

the following solutions for the number densities of
the excited atoms in the particular volumesn and
m are obtained:

Pn¯ ¯N n s NŽ .2 12A 1yJ 1y0.0144 JŽ .Ž Ž . .21 cub cub

Pn ¯f N1A 1yJŽ .21 cub

(3.22)

0.12J Pcub n¯ ¯N m s NŽ .2 12A 1yJ 1y0.0144 JŽ .Ž Ž . .21 cub cub

0.12J Pcub n ¯f N1A 1yJŽ .21 cub

(3.23)

Eq. (3.23) describes diffusion-like effects, i.e.
widening of the originally excited zone by radia-
tive transport (see Fig. 4b, right). In terms of
optical pumping, it can also be described as the
appearance of induced pumping in the medium
outside of the primarily excited region.
The approach presented here yields a qualitative

picture of the radiative transport in atomic vapors
leading to the trapping and diffusion of the reso-
nance radiation. With restraints for relatively opti-
cally thin cases acknowledged, these simple
procedures enable quantitative treatment of the
trapping effect as well, which is illustrated by an
example in the following subsection.

3.4. Infinite cylinder: piece-by-piece approach

Trapping is a volume effect and, in its theoretical
treatment by solving the Holstein equation, solu-

tions were most often sought for two basic geom-
etries studied originally by Holstein, i.e. the
infinite cylinder and the infinite slab. In order to
test the validity of the approximate solutions
obtained here, we have applied the procedure
described to an infinite cylinder.
For this purpose, we consider an infinite long

cylinder with a radiusR , which is divided intoC

sub-regions of equal length 2R (see Fig. 4c).C

Each region is pumped by the same rateP. By
taking into account all assumptions made before,
each sub-regionn with the volumeVs2pR can3

C

be characterized as a stand-alone unit by an effec-
tive spontaneous emission rate ,effA s 1yJ AŽ .21 cyl 21

where J f1.13a k R for k R F0.35 as givenP P P
cyl 1 0 C 0 C

by Eq. (3.14). In the next step, we consider the
piece-by-piece interaction between the sub-regions.
The situation is described by an infinite system of
coupled relations. Following Eq.(3.6) and the
substitutions introduced in the previous subsection,
the expression for the average number density

of the n-th element is:N̄ nŽ .2

weffx ¯ ¯A N n y2VF N nq1Ž . Ž .y21 2 1 2

z
|¯y2VF N nq2 y«Ž . ~2 2

¯sPN n (3.24)Ž .1

where, according to Eq.(3.7) and the approxima-
tion mentioned above(k R F0.35), the factorsP

0 C

F are:m

w z
x ||k n P n expy2mk n RŽ . Ž . Ž . Cy ~

n
F sm 24p(2mR )C

wP P Pa k R a1 0 C 2Pxf 1y 2mk RŽ .0 C2 3 P8m 2pR ayŽ .C 1

2 3P P zP P2mk R 2mk RŽ . Ž .0 C 0 Ca a3 4 |q y q« (3.25)P P2! a 3! a ~1 1

Using the values for the coefficientsa given inP
i

Table 1, and fitting the series in Eq.(3.25) to an
exponential function, we can writeF as follows:m
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Fig. 5. The escape probabilityh calculated for the case of
infinite cylindrical volume and Doppler broadened line as a
function of the optical depthk R . The results of the approx-D

0 C

imation presented here are compared with the more general
numerical calculations reported inw21x.

P Pa k R1 0 C w zP P
x |F s expy2mk R yb (3.26)m 0 Cy ~2 38m 2pRŽ .C

where the coefficientb for Lorentzian and Gaus-P

sian profiles are given byb s1.27 andb s1.19,L D

respectively.
However, since equal pump rates for each vol-

ume element and homogeneous number density
are assumed, the problem¯ ¯ ¯N n sN nqm sNŽ . Ž .1 1 1

is reduced to a single equation, because in that
case is valid. Thus, for an¯ ¯ ¯N n sN nqm sNŽ . Ž .2 2 2

infinite cylinder Eq. (3.24) yields the following
expression:

P¯ ¯N s N (3.27)2 1A 1yJ 1yJ9Ž .Ž .21 cyl cyl

where

w zP P
x |expy2mk R yb` 0 Cy ~1 P PJ9 f a k R ,cyl 1 0 C8 24 mms1

Pk R F0.35 (3.28)0 C

Note that the series in Eq.(3.28) can be repre-
sented with great accuracy by the first three terms
only. The approximate expression for the factorh,
i.e. for the escape probability, is:

B
1

` P P P PCh f 1y1.13a k R 1y a k RŽ .cyl 1 0 C 1 0 C4D

w zP P E
x |expy2mk R yb` 0 Cy ~

PF= , k R F0.350 C8 2m Gms1

(3.29)

The values for calculated via Eq.(3.29) are`hcyl

shown in Fig. 5, together with the numerical
calculations made by Postw21x for the same
geometry. Both results are given for the case of a
pure Doppler line profile. The numerical results
published in w21x were obtained for values of
k R between 0.1 and 100. In that work, similarD
0 C

to the Holstein approximation, the solutions for
the number density in the excited state were

expanded into power series and the escape proba-
bility was obtained by integration over the funda-
mental mode distribution. Post’s calculations, as
given in w20x show excellent agreement with
experimental results. Very good agreement
between the results obtained using Eq.(3.29) and
the numerical results given inw21x for small values
of k R confirm the efficiency of the present piece-D

0 C

by-piece approach. This agreement is most proba-
bly the consequence of the equivalence of the
physical assumptions made in the model presented
here(uniform optical pumping, averaged constant
number densities) and solving the Holstein equa-
tion for the fundamental mode distribution.

4. Collisional excitation energy transfer

Collisional excitation energy transfer(CEET) in
thermal collisions between excited atoms and mol-
ecules in gases has been the subject of numerous
investigations during the last decades. The CEET
processes are important mechanisms for establish-
ing the population distributions, and very often
play a crucial role in many phenomena in excited
gaseous media. Studies of such interactions are of
great interest in a variety of fundamental and
applied fields. Therefore, when speaking about
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working schemes and the efficiency of atomic line
filters, these non-radiative processes represent an
inevitable issue.

4.1. Cross-sections for CEET processes

In general, the CEET processes involving two
particles A and B excited to different states before
and after collision can be schematically represented
by:

A i qB j ™A i9 qB j9 qDE (4.1)Ž . Ž . Ž . Ž . iqj,i9qj9

where the energy defectDE sE qE yE yiqj,i9qj9 i j i9

E is transferred to or gained from the kineticj9

energy of the colliding pair AqB. Studies on
CEET concern the determination of rate coeffi-
cients or corresponding collision cross-sections for
a particular reactionwEq. (4.1)x. Denoting the
states of the AqB complex with ±1Ms±i,jM and
±2Ms±i9,j9M, the number of reactions±1M™±2M per
unit volume and unit time is defined as the product
N (m)N (n)k , whereN (m) and N (n) are theA B 12 A B

number densities of colliding particles, andk12
ws m x is the temperature-dependent rate coeffi-y1 3

cient. Analogously to the gas kinetic theory, the
rate coefficient is usually defined ask sNvMQ ,12 12

where NvM is the average relative velocity of a
colliding pair and the factor of proportionality
Q wm x is the temperature-dependent collisional2

12

cross-section for the CEET process±1M™±2M. In
the same manner, we can define the cross-section
Q for the reverse±1M§±2M process. TheseQ (T)21 ij

cross-sections are averages of the actual cross-
sections(see Section 4.2) over the thermal relative
velocity distribution. In a statistical assembly in
thermodynamic equilibrium and in the absence of
other processes, a simple rate equation
N (i)N ( j)k sN (i9)N ( j9)k must be fulfilled.A B 12 A B 21

Since the number densities in that case obey the
Boltzmann distribution, the principle of detailed
balancing predicts thatQ (T) andQ (T) should12 21

be in the ratio:

Q T yQ T s g yg exp yDE ykT (4.2)Ž . Ž . Ž . Ž .12 21 2 1 21

where the statistical weights of the AqB system
after and before CEET are labeled withg . Thisi

relation is a very sensitive check for the consisten-
cy of the experimental results and is very useful
for the determination of complementary values for
cross-sections in cases when only one member of
the cross-section pair is known.
From the experimental and theoretical point of

view, alkali atoms are the most convenient subjects
for investigation of CEET processes, and therefore
they are the most extensively studied systems in
this field. An exhausting overview of the experi-
mental and theoretical results up to 1974 is pro-
vided in w22,23x. The investigations of CEET in
that earlier period are most frequently related to
the excited alkalis in collisions with ground-state
alkali atoms(of the same or a different type) or
with noble gas atoms. Alkali atoms easily evapo-
rate at relatively low temperatures and experiments
were mainly performed in the temperature range
of few 100 K above room temperature, which
defines the collisions investigated asthermal. Low-
pressure alkali vapors generated in cells at thermal
equilibrium were optically excited by use of spec-
tral lamps and the population densities in excited
states were determined via fluorescence measure-
ments. Here, two basic processes have been stud-
ied, known as intra-atomic mixing:

* *A i qB 0 ™A i9 qB 0 qDE (4.3)Ž . Ž . Ž . Ž . i,i9

and inter-atomic mixing:

* *A i qB 0 ™A 0 qB j qDE (4.4)Ž . Ž . Ž . Ž . i,j

The application of tunable lasers in later years
enabled a large variety of precise experiments to
be carried out and the investigation of processes
in which two excited atoms in collision produce
one atom excited in a high-lying state(h) and the
other atom in the ground state:

* * **A i qB j ™A h qB 0 qDE (4.5)Ž . Ž . Ž . Ž . iqj,h

These processes are known as energy pooling.

4.2. Elements of experimental approach

One of the simplest CEET experiment represents
the resonance fine-structure mixing of the alkali
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first n P andn P sublevels due to ground-2 2
1y2 3y2

state atoms of the same kind. The first alkali
resonance doublets lie isolated in the energy term
diagram, and, for example, if then P is optically2

3y2

excited from the ground-staten S , the rate2
1y2

equations for the statesn P andn P can be2 2
1y2 3y2

written as:

dN1syN A yN R qN R (4.6)1 10 1 12 2 21dt

dN2sqN R yN A yN R qP N (4.7)1 12 2 20 2 21 02 0dt

where the statesn S , n P and n P are2 2 2
1y2 1y2 3y2

labeled with indices 0,1,2, whileR and R are12 21

the collision transfer rates of the formR sk N sij ij P

NvMQ N . In the case of cw laser excitation, i.e. inij A

the steady-state regime, the ratio of the indirectly
N to directly producedN number density yieldsind dir
1 2

via Eq. (4.6) the relationshipN yN sR yind dir
1 2 21

(A qR ). Analogously, for optically pumped10 12

n P , we obtainN yN sR y(A qR ). With2 ind dir
1y2 2 1 12 20 21

known values for the radiative relaxation rates,
these data pairs yield the values for collision
transfer rates. Finally, to evaluate the correspond-
ing cross-sections, the values for the average rel-
ative velocity and the perturber number density
are needed. Although this may appear to be a
relatively simple task to accomplish, due to several
difficulties it is not. First, determination of the
ground-state number densities for alkalis is often
difficult. Furthermore, to achieve detectable signals
the experiments often have to be performed at
ground-state number densities where, due to radi-
ation trapping, measured lifetimes are no longer
natural lifetimes and the determination of effective
lifetimes is necessary. Once effective lifetimes are
involved, diffusion of the excited atoms out of the
excitation zone has to be considered too. Several
additional effects, for example fluorescence ani-
sotropy due to polarization, have to be properly
taken into account. The situation becomes more
complicated in systems in which simple two-level
models are not appropriate and the set of relevant
rate equations should be enlarged. It usually takes
several experiments, performed independently by

different groups, to establish reliable cross-section
values for a particular CEET.

4.3. Elements of theoretical approach

The comparison of experimental and theoretical
results provides an important check on our under-
standing of the dynamics of inelastic collisions in
gases and our knowledge of interaction potentials
between colliding atoms or molecules. The prob-
lem of theoretical determination of CEET cross-
sections basically consists of the determination of
non-radiative quantum-mechanical transition prob-
abilities between the initial and final states of a
AqB collision complex. Due to their hydrogen-
like electronic structure and long-range electrostat-
ic interaction potentials, alkali–alkali collisional
systems seem to be ideal subjects for theoretical
modeling of CEET processes.
Parallel to the CEET studies during the last

decades, many investigations in a closely related
field of collisional broadening of spectral lines
were conducted. In these investigations, alkali–
alkali and alkali–noble gas systems were also
extensively studied. Numerous spectral line-shape
measurementsw24x and calculations of adiabatic
interatomic potentials, i.e. the atomic potentials
with the atoms at rest, have been performed,
yielding a relatively clear, but certainly not simple
pictures of the relationships between collisional
line-broadening parameters and interatomic poten-
tials. As for cesium–cesium interaction potentials,
most relevant information can be found in refer-
ences w25–29x. Regarding collisional dynamics,
typical physical conditions in CEET experiments
are very convenient for the application of several
standard quantum-mechanical approximate proce-
dures. First, the mean relative velocities of collid-
ing atoms(typically in the range between 10 and4

10 cm s ) are obviously negligible in compari-5 y1

son with the velocity of optical electrons(approx.
10 cm s ) which, in terms of quantum mechan-8 y1

ics, means that the collisions areslow, and the
motion of nuclei and electrons can be regarded
separately(adiabatic approximation). Furthermore,
the de Broglie wavelength for the relative motion
of the colliding complex(in CEET experiments
typically 10 cm) is substantially smaller thany9
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the range parameter of the interaction potentials
(typically up to 10 cm for alkali–alkali inter-y8

actions), which defines the collisions asquasi-
classical. In this case, the motion of the colliding
nuclei can be described by classical trajectories

. In a simplified model, we can regard™ ™ ™rsr v,tŽ .
the collisional trajectories as straight lines with

constant velocity . In this case the internuclear™v

separation is , whereR is the2 2 2rsR 1qv t yRy
distance of closest approach of the colliding par-
ticles (impact parameter). Interatomic potentials,
vanishing at infinite nuclear distances, are gener-
ally represented with terms proportional to 1yrn

(resonance dipole–dipole interaction,ns3; van
der Vaals interaction,ns6, etc.). As a function of
time, these interactions are of a bell-shaped form
and their maximum occurs approximately during
the collision timet fRyv. Taking into accountc

the mean relative velocities under typical condi-
tions in CEET experiments,t is significantlyc

shorter than the atomic radiative lifetimes. There-
fore, all excited states can be regarded as stable
during a single collision. In addition, at typical
atom number densities(up to 10 cm ) the18 y3

collisions are separated in time, i.e. only binary
collisions have to be taken into account.
Following the simple two-state model described

by Eqs.(4.6) and (4.7), states 1 and 2 at infinite
r, i.e. at the beginning of the collision, can be
represented by an orthonormal set of stationary
eigenfunctions±1M and ±2M of a time-independent
Hamiltonian operator with eigenvaluesE and0Ĥ0 1

E , which is related to the unperturbed quantum-0
2

mechanical system AqB. During the collision in
the time interval(tsy`,tsq`), an interatomic
perturbation represented by terms of the formV̂

occurs, and the perturbed Hamil-™nn nŽ . Ž .ˆV̂ sC yr v,tŽ .
tonian becomes time-dependent . Here,ˆ ˆ ˆHsH qV0

is the operator for the particular type ofnŽ .Ĉ
interaction, which is related to the coordinates of
the valence electrons. In accordance with the
common quantum-mechanical procedure, the wav-
efunction ±CM of the collisional system obeying
the time-dependent Schrodinger equation Zi"dCM¨

can be represented in the formˆ ˆ Zydts H qV = CMŽ .0

of a linear combination .Z Z ZC sa t 1 qa t 2M M MŽ . Ž .1 2

Applying the orthonormal properties of the unper-
turbed states to the time-dependent Schrodinger¨
equation, we obtain the time development of the
system considered, described by two coupled dif-
ferential equations for the time-dependent coeffi-
cientsa (t):k

da1i" sa V qa V exp yiDE ty" (4.8)Ž .1 11 2 12 21dt

da2i" sa V exp iDE ty" qa V (4.9)Ž .1 21 21 2 22dt

where the matrix elements are briefly written as
. Considering the system being in theˆ ZV sNiZV jMij

higher state±2M before collision, i.e. with initial
conditions a (tsy`)s0 and a (tsy`)s1,1 2

this equation system corresponds to the set of Eqs.
(4.6) and(4.7), where the upper state 2 is pumped.
The probability of finding the collisional pair after
collision in state ±1M depends on the relative
velocity and the parameters of the collisional
trajectory, and is given byP (R,v)s±a (R,v,ts21 1

q`)± .2

4.4. Comparing theory with experiment

To compare the theoretical results with the
experimentally obtained values for the cross-sec-
tions, we should carry out appropriate integrations
over the collision parameters of the collision tra-
jectories and average over the velocity distribution
corresponding to the physical conditions of the
particular experiment. If the energy defectDE is
negligible in comparison with the mean kinetic
energy of the collision system, we can suppose
that the velocities remain constant during the
collision and the collision trajectories can be rep-
resented by straight lines. Then, the velocity-
dependent cross-section is given by integration
over the impact parameters as follows:

`

s v s2p RP R,v,tsq` dR (4.10)Ž . Ž .21 21|
0
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Since the measurable quantity in experiments is
the rate coefficientk, the corresponding value for
the velocity-averaged cross-section should be cal-
culated asQ sNvs (v)MyNvM. Assuming the21 21

Maxwell–Boltzmann velocity distribution
P(v,T)sv expwymv ykTx, wherem is the reduced2 2

mass of the collision pair, we obtain the following
relation for the exothermic temperature-dependent
cross-section:

`

w z3 2
x |s v v expymv y2kT dvŽ .21 y ~|

0
Q T sŽ .21 `

w z3 2
x |v expymv y2kT dvy ~|

0

(4.11)

Under the assumptions made above, the same
relation holds for the cross-sectionQ of the12

inverse endothermic collision. If the energy defect
is not negligible in comparison with the mean
kinetic energy, the situation becomes more com-
plicated and enters the field of velocity-changing
collisions. In this case the collision trajectories
cannot be represented by simple straight lines. As
for the cross-section related to the endothermic
reactions, in such cases the lower limit of the
integral in the nominator of Eq.(4.11) should be

replaced by a threshold value .v s 2DEymyth

Different from the field of collision line broad-
ening, the agreement between experimental and
theoretical results is rather poor in CEET. In spite
of the many conveniences mentioned for the theo-
retical treatment of CEET processes involving
alkali atoms, theoretical determination of the cor-
responding cross-sections is extremely complicat-
ed. Since the interactions in collisions remove the
degeneracy of the states investigated, a large num-
ber of sub-states should be considered. The colli-
sion dynamics is generally very complex and can
hardly be represented by straight-line trajectories
with constant velocity. Solution of the correspond-
ing multidimensional set of coupled time-depend-
ent differential equations requires complicated
time-consuming numerical calculations, e.g. as
shown in w30x. These calculations yield good
agreement with experimental results, but their

complexity and specific parameters make it diffi-
cult to obtain transparent insight into the impor-
tance of special mechanisms leading to a particular
CEET. On the other hand, numerous models have
been proposed to simplify calculation of the CEET
cross-sections and to obtain tractable analytical
expressions that yield a better insight into the
collision transfer mechanisms. It is typical for these
modelsw23,31,32x to concern the transitions prob-

abilities localized in narrow regionsDR™P R,vŽ .
around the characteristic impact parametersR .0
Here, the basic assumption is that the off-diagonal
matrix elements in the system of Eqs.(4.8) and
(4.9) are small compared with the difference
between the diagonal ones. Then, in such case of
generally weak coupling, the non-radiative transi-
tions between the initial and final states becomes
significant only in narrow regions around the
pseudo-crossing points(located atR ) of the quasi-0

molecular adiabatic potential curves, where the
well-known Landau–Zener approachw33x can be
applied. Such models yield various analytical
expressions among the basic CEET parameters,
which makes it easier to interpret the relevant
transfer mechanisms, but unfortunately the numer-
ical results obtained are systematically and often
significantly lower than the experimental data.

4.5. CEET cross-sections for some alkali–alkali
systems

In general, the magnitude of collision cross-
sections depends on the kind of collision partners,
the configuration of the initial and final states, the
energy defect and the temperature. Owing to the
body of available experimental cross-section data,
certain regularities with respect to the dependence
on energy defect and temperature can be discerned.
As an example, two data sequences are given in
Table 2. The first concerns the fine-structure mix-
ing of the first resonancen P states of Na, K, Rb2

J

and Cs due to collisions with ground-state atoms
of the same species. The experimental values cited
were obtained at different temperatures in the range
between 323 and 573 K. The second set of the
values constitutes the data for the fine-structure
mixing of resonancen P states of Li, Na, K and2

J
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Fig. 6. The cross-sections, listed in Table 2, for then P ™2
3y2

n P fine-structure mixing of the first resonance states in2
1y2

alkalis induced by collisions with the ground-state atoms of
like or unlike species, plotted as a function of the reaction
energy defect. The data depicted were obtained at different
temperatures in the range between 323 and 573 K. The circles
and triangles, representing the AqA processes, label the val-*

ues obtained at higher and lower temperature, respectively.

Table 2
Cross-sections for homonuclear and heteronuclear fine-structure mixing in alkalis: the cross-sections for the fine-structure mixing
of the first resonancen P states of Na, K, Rb and Cs by collisions with the ground-state atoms of the same species and the cross-2

J

sections for the fine-structure mixing of the first resonancen P states of Na, K and Rb induced by collisions with Cs in the ground2
J

state

Process Q12 Q21 T Reference
(10 cm )y16 2 (10 cm )y16 2 (K)

Homonuclear A qA*

Na (3p )qNa Na(3P )qNa1y2 3y2 532"80 283"42 424 w22x
330"60 330"30 573 w34x

K (4P )qK K (4P )qK1y2 3y2 370"74 250"50 350 w22x
330"66 165"33 550

Rb (5P )qRb Rb(5P )qRb1y2 3y2 53"11 68"14 360 w22x
74"15 46"9 543

Cs (6P )qCs Cs(6P )qCs1y2 3y2 6.4"1.3 31"6 323 w22x
14"5 27"10 585 w36x

Heteronuclear A qCs*

Li (2P )qCs Li (2P )qCs1y2 3y2 890"400 430"193 475 w38x
Na (3P )qCs Na(3P )qCs1y2 3y2 140"28 83"17 530 w39x
K (4P )qCs K (4P )qCs1y2 3y2 77"15 48"10 520 w40x
Rb (5P )qCs Rb(5P )qCs1y2 3y2 16.5"3.3 15"3 575 w41x

Rb in collisions with ground-state Cs atoms. These
data were measured at similar temperatures of
approximately 500 K. It is instructive to inspect
the behavior of the cross-sections for the exother-
mic reactions, which, in contrast to endothermic
ones, do not have a velocity threshold. The data
for the exothermic cross-sections, depicted in Fig.
6, show clear and almost identical dependence on
the reaction energy defect. Presented in a double
logarithmic scale, the cross-sections decrease
approximately as 1yDE, with the cross-sections for
the homonuclear processes being shifted towards
higher values. This shift seems to be plausible,
because the homonuclear AqA reactions are*

characterized by strong long-range dipole–dipole
resonance interactionsw23,34–36x, while the
CEET in heteronuclear AqCs systems is found*

to be due to electrostatic interactions of shorter
range, i.e. due to dipole–quadrupole interactions
w37–41x in the cases at hand. As for the tempera-
ture dependence of the exothermic cross-sections
measured, the cross-sections considered show a
moderate decrease with increasing temperature.
The relationship between the exothermic cross-

sections and the energy defect in homonuclear
alkali–alkali collisions had been noticed in the
earliest CEET investigationsw22x. Similar behavior

was also observed for the energy pooling processes
w42x. The regularity of theQ;1yDE dependence
for homonuclear and heteronuclear alkali–alkali
reactions has been recently investigated in detail



1257C. Vadla et al. / Spectrochimica Acta Part B 58 (2003) 1235–1277

Table 3a
Cross-sections for intra-multipletnP ™nP andnD ™nD mixing in cesium induced by collisions with ground-state Cs3y2 1y2 5y2 3y2

atoms

Number Cs (2)qCs (6S)™Cs (1)qCs (6S) DE21 T Q21 Reference
(cm )y1 (K) (10 cm )y16 2

1 Cs(6P )™Cs (6P )3y2 1y2 554 350 31"3 w35x
585 27"10 w36x

2 Cs(7P )™Cs (7P )3y2 1y2 181 443 107"22 w48x
3 Cs(8P )™Cs (8P )3y2 1y2 83 420 {126"38} w44x
4 Cs(5D )™Cs (5D )5y2 3y2 98 601 36"8 w45x

585 57"19 w46x
5 Cs(6D )™Cs (6D )5y2 3y2 43 413–533 210"40 w47x
6 Cs(7D )™Cs (7D )5y2 3y2 21 413–533 270"50 w47x
7 Cs(8D )™Cs (8D )5y2 3y2 11.7 413–533 600"120 w47x
8 Cs(9D )™Cs (9D )5y2 3y2 7.2 413–533 1260"270 w47x
9 Cs(10D )™Cs (10D )5y2 3y2 4.7 413–533 2020"400 w47x

10 Cs(11D )™Cs (11D )5y2 3y2 3.25 398–453 5500"1700 w49x
11 Cs(12D )™Cs (12D )5y2 3y2 2.3 398–453 8700"2600 w49x
12 Cs(13D )™Cs (13D )5y2 3y2 1.7 398–453 11400"3400 w49x

For the processes where the cross-section was originally measured only for the endothermic reaction, the corresponding cross-
section for the exothermic process was obtained from the principle of the detailed balancing and these values are given in braces.
The reaction energy defect and the experimental temperature are given. References are in square brackets.

w43x, but an adequate, general theoretical descrip-
tion of this phenomenon is still lacking. Neverthe-
less, regular behavior with respect to a given
characteristic parameter, for instance the energy
defect, of the CEET cross-sections measured, can
be useful in making an estimation of the cross-
sections for those processes that have not yet been
investigated.

4.6. CEET processes in Cs qAr,He mixtures*

Since many experiments on imaging filtersw5–
10x were performed in Cs–Ar systems, the CEET
processes in mixtures of optically excited cesium
atoms and ground-state argon atoms are of partic-
ular interest here. Expected CEET reactions occur-
ring in a mixture of excited cesium atoms and
ground-state noble gas atoms are those involving
the following collision pairs: CsqCs, CsqCs ,* * *

Csqnoble gas and CsqCs . Based on data* *
2

published in the literature, it is possible to form a
scheme for the thermal cross-section dependence
on the energy defect and temperature for a given
class of collisions. For comparison, as well as for
confirmation of the regularities noticed in the
cross-section behavior, data for some other alkalis

and noble gases are also given. All data presented
here were obtained by measurements in cells at
thermal equilibrium.

4.6.1. CEET involving two cesium atoms
As pointed out in the previous section, the

behavior of the exothermic cross-sections is more
instructive than that of the endothermic ones, since
the latter depend on the reaction threshold, which
introduces an additional proportionality factor
equal to e . The cross-sections for variousyDEykT

exothermic CEET processes involving two cesium
atoms have been collected from the available
literature, were sorted by reaction type and are
listed in Tables 3a, 3b and 3c, where the data for
intra-multiplet mixing, inter-multiplet mixing and
energy pooling processes are given, respectively.
For some of the processes listed, the cross-section
was measured only for the corresponding endo-
thermic reaction, and the values listed for exother-
mic processes were calculated using the principle
of detailed balancing; these results are listed in
Table 3a–c in braces.
The data collected in Table 3a–c were measured

in the temperature range between 350 and 600 K.
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Table 3b
Cross-sections for various inter-multipletnl™n9l9 mixing processes in cesium induced by collisions with ground-state Cs atoms

Number Cs (2)qCs (6S)™Cs (1)qCs (6S) DE21 T Q21 Reference
(cm )y1 (K) (10 cm )y16 2

1 Cs(5D)™Cs (6P) 3010 480–637 30"3 w45x
585 35"10 w46x

2 Cs(7D )™Cs (8P )3y2 1y2 339 420 {33"8} w44x
3 Cs(7D )™Cs (8P )5y2 1y2 360 420 {23"6} w44x
4 Cs(4F)™Cs (8S) 155 525 {185"60} w22x
5 Cs(8P )™Cs (8S)3y2 1475 525 {120"40} w22x
6 Cs(9D)™Cs (8D) 1013 440 121"50 w50x
7 Cs(9D)™Cs (10S) 536 440 28"14 w50x
8 Cs(9D)™Cs (6F) 507 440 110"55 w50x
9 Cs(10D)™Cs (8D) 1657 440 111"45 w50x

10 Cs(10D)™Cs (6F) 1139 440 144"72 w50x
11 Cs(10D)™Cs (9D) 636 440 212"85 w50x
12 Cs(10D)™Cs (11S) 338 440 30"15 w50x
14 Cs(10D)™Cs (7F) 320 440 162"81 w50x
15 Cs(11D)™Cs (10D) 428 440 {128"53} w50x
16 Cs(7F)™Cs (9D) 312 440 {169"85} w50x
17 Cs(11S)™Cs (9D) 294 440 {273"136} w50x
18 Cs(8F)™Cs (10D) 210 440 {227"114} w50x
19 Cs(12S)™Cs (10D) 198 440 {285"143} w50x
20 Cs(6P)™Cs (6S) 11548 635 1.6"1.4 w36x

480–637 2.1"1 w51x

Legend as for Table 3a.

Table 3c
Cross-sections for a series of energy pooling processes in cesium vapor

Number Cs (i)qCs ( j)™Cs (i9)qCs ( j9) DEiqj,i9qj9 T Q21 Reference
(cm )y1 (K) (10 cm )y16 2

1 Cs(6P)qCs (6P)™Cs (6D)qCs (6S) 447 570 190"57 w52x
2 Cs(6P)qCs (5D)™Cs (7D)qCs (6S) 45 570 560"225 w52x
3 Cs(7F)qCs (6S)™Cs (5D)qCs (5D) 32 570 {1160"460} w52x
4 Cs(6D)qCs (6S)™Cs (6P )qC (6P )1y2 1y2 258 600 {163"65} w53x
5 Cs(6P )qCs (6P )™Cs (6D)qCs (6S)1y2 3y2 296 600 70"56 w53x
6 Cs(6P )qCs (6P )™Cs (6D)qCs (6S)3y2 3y2 850 600 -70 w53x

350 83"37a w54x
7 Cs(6D )qCs (6S)™Cs (6P )qCs (6P )3.y2 1y2 1y2 232 337–365 {168"40} w54x
8 Cs(6D )qCs (6S)™Cs (6P )qC (6P )5.y2 1y2 1y2 275 337–365 {82"40} w54x
9 Cs(6P )qCs (6P )™Cs (6D )qCs (6S)3y2 3y2 3.y2 876 337–365 27"9 w54x

10 Cs(6P )qCs (6P )™Cs (6D )qCs (6S)3y2 3y2 5.y2 833 337–365 56"28 w54x

Legend as for Table 3a.
Obtained fromJ-selective cross-section for the Cs(6P )qCs (6P )™Cs (6D )qCs (6S ) processes reported inw54x.a

3y2 3y2 J 1y2

In Section 4.7 it is shown that cross-sections of
the order of magnitude of 10 cm or highery16 2

exhibit weak dependence on temperature. There-
fore, it is suitable to plot the listed cross-sections
vs. energy defectDE, as shown in Fig. 7. It can
be observed that all data, regardless of the type of

process, lie around straight lines with the same
slope of;1yDE. The straight lines differ only in
magnitude, depending on the particular CEET
process. This behavior is more apparent if only
the data for intra-multiplet mixing and energy
pooling are compared. As for the inter-multiplet
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Fig. 7. The cross-sections for various exothermic CEET pro-
cesses involving two cesium atoms(listed in Table 3a–c) plot-
ted against the energy defectDE for the reaction. The straight
lines labeled with 1, 2 and 3 through the sets of the data listed
in Table 3a,c,b, respectively, are only guides for the eye.

mixing, the data scatter but still fit the general
picture.
It should be emphasized that the behavior of the

cross-sections presented for the CEET in CsqCs
systems shows a picture very similar to that given
in referencew43x, where a set of exothermic cross-
sections for a series of alkali–alkali interactions is
presented as a function of the energy defect. It is
far beyond the scope of this paper to propose an
explanation for the generalQ;1yDE relation for
CEET involving alkalis. There are also some data
that deviate from the general trend(illustrated in
Fig. 7 here, as well as in referencew43x). These
deviations can be attributed either to possible
systematical experimental errors, which are fre-
quent in this field, or a specific theoretical expla-
nation may be found for the disagreement with the
general trend. However, such an empirical picture
enables an estimation of at least the order of
magnitude of the unknown cross-sections, which
might be helpful in some applications.

4.6.2. CEET involving excited Cs and ground-state
noble gas atoms
Excitation transfer between alkali states due to

interaction with noble gases can easily be detected
and there is a long history of such experiments

w22x. Here, the fine-structure mixing of the lowest
alkali states was studied most frequently. In the
case of the Cs first resonance level, which is very
important in many working excitation schemes,
there are unclear points in the literature, which are
addressed in the following text.
For the cesium 6 P l6 P excitation trans-2 2

1y2 3y2

fer due to inert-gas collisions, two pioneering
works are still most relevant. In the first, Czaj-
kowski et al.w55x measured cross-sections for the
fine-structure mixing of Cs 6P states induced byJ

collisions with He, Ne, Ar, Kr and Xe at the
constant temperatureTs311 K. In the second
w56x, Gallagher reported extensive studies of Cs
6P and Rb 5P mixing due to noble gases. InJ J

Gallagher’s work the temperature dependence of
CEET cross-sections for CsqHe, Ne and Rbq* *

He, Ne, Ar, Kr, Xe were measured in the temper-
ature range between 300 and 900 K. The
exothermic cross-sections were found to have a
strong temperature dependence(;T ), i.e. strong2

dependence on the average relative velocity
(;NvM ).4

Due to the cross-section velocity dependence
observed inw56x, we can expect an approximate
relationshipQ;1ym to hold. Therefore, to com-2

pare the data ofw55x and w56x it seems suitable to
plot these results as a function of the reduced mass
m of the particular collision partner. In Fig. 8a, the
data for CsqX (Xsnoble gas) collisions given*

in w55x and data for the CsqHe, Ne cases at 311*

K taken from w56x are plotted on a double loga-
rithmic scale againstm . These cross-sectionsCs–X

are extremely small in comparison with typical
values for alkali–alkali collisions. Adequate theo-
retical modeling for the Csqnoble-gas collision*

cross-sections can be found inw23x. As can be
observed in Fig. 8a, the results ofw55,56x for the
fine-structure mixing due to helium are in reason-
able agreement. In addition, the ratiosQ yQ are12 21

approximately 0.15 atTs311 K, as predicted by
the principle of detailed balancing. The data given
in w56x for the CsqNe case also show the*

agreement with the principle of detailed balancing,
but they are more than one order of magnitude
smaller than those reported inw55x. In contrast to
that, the paperw55x reports data sets for CsqNe,*

Ar, Kr, Xe, which indicate a breakdown of the
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Fig. 8. (a) The cross-sections for the cesium 6 P excitation2
J

transfer due to inert-gas collisions plotted in a double logarith-
mic scale against the reduced massm of the collision part-A–X

ners(XsHe, Ne, Ar, Kr, Xe).The numbers in square brackets
are the corresponding references. The dataw56x were taken
from the reportedQ vs. T curve atTs311 K. The dataw55x
were measured atTs311 K. (b) The same as in(a), but for
the rubidium 5 P excitation transfer. The dataw56x were taken2

J

from the reportedQ vs. T curve atTs340 K. The dataw57x
were measured atTs340 K.

principle of detailed balancing. A similar situation
can also be found in the case of Rb 5P fine-J

structure mixing by noble gas collisions, which
was investigated inw56,57x; a comparison of these
data is made in Fig. 8b.
As pointed out inw56x, significant deviations

from the principle of detailed balancing inw55,57x
are due to systematic errors in the measurement of
Q values, caused by the far wing line broadening21

of the alkali D lines. The broadened wings, which
depend linearly on the noble gas density, leaked

through fairly broad interference filters centered
on the D lines and gave rise to intensity contri-
butions in the transfer cross-section measurements.
However, only theQ cross-section measurements21

were affected because the far wing line broadening
of the alkali resonance lines is asymmetric. For
the reason mentioned, theQ values reported in21

w55,57x were disregarded in later review articles
w22x, while theQ data ofw55,57x were still cited.12

However, as shown in Fig. 8a, theQ value of12

w55x for Ne is more than one order of magnitude
higher than the same datum found inw56x. Extrap-
olation of the results ofw56x would suggest even
stronger discrepancies for heavier noble gases. As
pointed out inw56x, the cross-sections for the Cs–
noble-gas collisions are extremely small(-10y22

cm , with the exception of helium), in which case2

a polyatomic impurity concentration in the inert
gas of one part in 10 could overshadow the7

doublet transfer measured. It was observed that
even 6.0-grade Ne produced excessive cross-sec-
tions against Cs if used before additional cleaning.
The experiments inw56x were not continued to
Cs –Ar, Kr or Xe, because of the time necessary*

to perform the cleaning procedure. Accordingly, it
is most likely that molecular impurities in the inert
gas contributed to the largeQ cross-sections12

observed by the authors inw55x. In this case the
correct mixing cross-sections for Cs 6P by argonJ

at room temperature should be approximately
10 cm , as indicted in Fig. 8a.y22 2

Bearing in mind these facts and returning to the
CsqAr resonance fine-structure mixing, it is*

amazing that the cross-section for the Cs 6P™1y2

Cs 6P transfer induced by collisions with argon3y2

given in w55x is still the only experimental value
to be found in the literature. We think that it is
useful to draw the attention of the reader to the
fact that the results ofw55x, both forQ andQ ,12 21

can be found cited even in recentw17x literature
without appropriate discussion.
The data for CEET exothermic cross-sections in

CsqAr reactions taken from the literature are*

listed in Table 4. For comparison, data for the
CsqHe collisions are also collected and listed in*

Table 5. As for the Cs 7P fine-structure mixingJ

by inert gases, systematic measurement of the
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Table 4
Cross-sections for intra-multipletnP ™nP , nD ™nD and inter-multipletnl™n9l9 mixing in cesium induced by collisions3y2 1y2 5y2 3y2

with argon

Number Cs (2)qAr™Cs (1)qAr DE21 T Q21 Reference
(cm )y1 (K) (10 cm )y16 2

Intramultiplet mixing
1 Cs (6P )™Cs (6P )3y2 1y2 554 311 {5.2=10 }y4 a w55x

2=10y6b w56x
2 Cs (7P )™Cs (7P )3y2 1y2 181 405 0.072"0.02 w58x

630 0.180"0.04 w58x
450 0.10"0.02 w59x
615 0.17"0.03 w59x

3 Cs (8P )™Cs (8P )3y2 1y2 83 420 {3.6"1.1} w44x
620 {4.2"1.3} w44x

4 Cs (8D )™Cs (8D )5y2 3y2 11.7 360 {133"21} w60x
5 Cs (9D )™Cs (9D )5y2 3y2 7.2 360 {150"27} w60x
6 Cs (10D )™Cs (10D )5y2 3y2 4.7 353 {211"42} w61x
7 Cs (11D )™Cs(11D )5y2 3y2 3.25 353 {263"54} w61x
8 Cs (12D )™Cs (12D )5y2 3y2 2.3 353 {262"67} w61x
9 Cs (13D )™Cs (13D )5y2 3y2 1.7 353 {268"80} w61x

10 Cs (14D )™Cs(14D )5y2 3y2 1.3 353 {260"80} w61x

Intermultilplet mixing
1 Cs (7D )™Cs (8P )3y2 1y2 339 420 {0.46"0.14} w44x
2 Cs (7D )™Cs (8P )5y2 1y2 360 420 {0.33"0.10} w44x
3 Cs (6D )™Cs (7P )3y2 3y2 642 450 {0.029"0.009} w59x
4 Cs (6D )™Cs (7P )3y2 1y2 823 450 {;0.014} w59x

For the processes where the cross-section was originally measured only for the endothermic reaction, the corresponding cross-
section for the exothermic process was obtained from the principle of the detailed balancing. These values are given in braces. The
reaction energy defect and the experimental temperature are indicated and the original references are given in square brackets.

The value calculated using the principle of the detailed balancing and the value for the endothermic cross-section for the process,a

which probably includes contributions due to molecular impurities(see text).
The hypothetical value suggested by measurements reported inw56x.b

cross-sections in the temperature range between
405 and 630 K is presented inw58x. There is very
good agreement between these results and the data
obtained at two other temperatures(450 and 615
K) reported inw59x. Similar to Cs 6P , the dataJ

for Cs 7P mixing due to He are significantlyJ

(approx. two orders of magnitude) larger than for
other noble gases. A rapid variation of the exo-
thermic cross-sections with temperature(approx.
T ) was observed in the cases of Ne, Ar and Kr,2

while for Xe and especially for He, the temperature
dependence was less pronounced. The remainder
of the data listed in Tables 4 and 5 are mainly
related to the inter-multiplet mixing of highernPJ

andnD states. There are also a few data fornP–J

nD inter-multiplet mixing. Unfortunately, all these

data were originally measured only for the endo-
thermic processes and the values for the exother-
mic cross-sections were calculated by applying the
principle of detailed balancing.
The data given in Tables 4 and 5 are plotted on

a double logarithmic scale vs. energy defect in
Fig. 9a,b, respectively. As can be observed for the
CsqAr and CsqHe cases, the data fornP and* *

J

nD intra-multiplet mixing can be fitted to aJ

continuous function of the energy defect, while
the data for inter-multiplet mixing obviously
belong to the other, higher-lying data sets. Expla-
nations for the saturation and the decrease in cross-
section values in theDE zero limit for the Ar and
He cases can be found in the corresponding
references.
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Table 5
The cross-sections for intra-multipletnP ™nP ,nD ™nD and inter-multipletnl™n9l9 mixing in cesium induced by collisions3y2 1y2 5y2 3y2

with helium

Number Cs (2)qHe™Cs (1)qHe DE21 T Q21 Reference
(cm )y1 (K) (10 cm )y16 2

Intra-multiplet mixing
1 Cs (6P )™Cs (6P )3y2 1y2 554 311 (3.9"0.4)=10y4 w55x

(2.7"0.4)=10y4 w56x
2 Cs (7P )™Cs (7P )3y2 1y2 181 405 15"3 w58x

630 15.6"3 w58x
450 11"2 w59x
615 11"2 w59x

3 Cs (8P )™Cs (8P )3y2 1y2 83 420 {22.5"7} w44x
620 {20.6"6} w44x

4 Cs (8D )™Cs (8D )5y2 3y2 11.7 360 {552"83} w60x
5 Cs (9D )™Cs (9D )5y2 3y2 7.2 360 {515"77} w60x
6 Cs (10D )™Cs(10D )5y2 3y2 4.7 353 {503"100} w61x
7 Cs (11D )™Cs (11D )5y2 3y2 3.25 353 {330"66} w61x
8 Cs (12D )™Cs (12D )5y2 3y2 2.3 353 {208"54} w61x
9 Cs (13D )™Cs (13D )5y2 5y2 1.7 353 {175"54} w61x

10 Cs (14D )™Cs (14D )5y2 3y2 1.3 353 {107"33} w61x

Intermultiplet mixing
1 Cs (7D )™Cs (8P )3y2 1y2 339 420 {2.2"0.7} w44x
2 Cs (7D )™Cs (8P )5y2 1y2 360 420 {1.6"0.5} w44x
3 Cs (6D )™Cs (7P )3y2 3y2 642 450 {2.1"0.6} w59x

615 {3.6"1.0} w59x
4 Cs (6D )™Cs (7P )3y2 1y2 823 450 {1.7"0.5} w59x

615 {2.7"0.7} w59x

Legend as for Table 4.

4.7. Temperature dependence of the CEET cross-
sections

There are very different forms of temperature
dependence for the various thermal CEET cross-
sections, as can be concluded from the previous
considerations. Unfortunately, systematic, quasi-
continuous measurements of this effect, as per-
formed in w56,58x, are very rare. Most frequently,
the measurements are related to a relatively narrow
temperature range, for which the relevant signals
in a particular experiment can be measured. Nev-
ertheless, from the data set presented in this paper,
an interesting relationship between the magnitude
of the exothermic cross-sections and their depend-
ence on temperature can be established. There is
a continuous change in dependence from approxi-
matelyQ;T to Q;T from the lowest to the2 y0.5

highest cross-section in Fig. 10. Here, various

collision partners and various types of CEET
processes with different energy defects are includ-
ed. There are no data in the cross-section databases
available that violate the regularity shown in Fig.
10. This means that neither the energy defect nor
the type of interaction, but only the absolute
magnitude of the thermal cross-sections is crucial
for the thermal cross-section temperature behavior.
It should be pointed out that cross-sections of the
order of 10 cm are temperature-independenty15 2

wzero slope ofQ(T) in Fig. 10x. This cross-section
value is of the same order of magnitude as the
geometrical cross-section for the collisions of the
atoms involved that are both in their ground states.
It is outside the scope of this paper to propose

a possible explanation for the empirical findings.
It should be emphasized that numerous models
exist that yield good agreement with the experi-
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Fig. 9. (a) The cross-sections for intra-multiplet(nP ™3y2

nP , nD ™nD ) and inter-multiplet(nl™n9l9) mixing in1y2 5y2 3y2

cesium induced by collisions with argon, plotted in a double
logarithmic scale vs. the reaction energy defectDE. The data
shown are listed in Table 4. The dashed straight line corre-
sponds to the eye-guiding line 1 in Fig. 7.(b) The cross-sec-
tions for intra-multiplet (nP ™nP , nD ™nD ) and3y2 1y2 5y2 3y2

inter-multiplet (nl™n9l9) mixing in cesium induced by colli-
sions with helium, plotted in a double logarithmic scale vs. the
reaction energy defectDE. The data displayed are listed in
Table 5. The dashed straight line corresponds to the eye-guid-
ing line 1 in Fig. 7.

Fig. 10. The temperature dependence of the various exothermic
CEET processes in cesium, showing the change of the slope
of the Q(T) curve depending on the magnitude of the exo-
thermic cross-section, which spans over eight orders of mag-
nitude. A continuous transformation from aQ;T to a2

Q;T dependence can be observed. Various collision part-y0.5

ners and various types of CEET processes with different energy
defects are included in the figure.(1) Na (3P )qNa (3S)™3y2

Na (3P )qNa (3S) w22,34x; (2) K (4P )qK (4S)™K1y2 3y2

(4P )qK (4S) w22x; (3) Cs (6P )qC(6P )™Cs (6D)q1y2 3y2 3y2

Cs (6S) w53,54x; (4) Rb (5P )qRb (5S)™Rb (5P )qRb3y2 1y2

(5S) w22x; (5) Cs (6P )qCs (6S)™Cs (6P )qCs(6S)3y2 1y2

w35,36x; (6) Cs (8P )qHe™Cs (8P )qHe w44x; (7) Cs3y2 1y2

(7P )qHe™Cs (7P )qHe w58x; (8) Cs (8P )qXe™Cs3y2 1y2 3y2

(8P )qXe w44x; (9) Cs (8P )qAr™Cs (8P )qAr w44x;1y2 3y2 1y2

(10) Cs (6D )qHe™Cs (7P )qHe w59x; (11) Cs3y2 1y2

(7P )qXe™Cs (7P )qXe w58x; (12) Rb (5P )qHe™3y2 1y2 3y2

Cs (5P )qHe w56x; (13) Cs (7P )qAr™Cs (7P )qAr1y2 3y2 1y2

w58x; (14) Rb (5P )qXe™Cs (5P )qXe w56x; (15) Cs3y2 1y2

(6P )qHe™Cs (6P )qHe w56x; and (16) Cs (6P )q3y2 1y2 3y2

Ne™Cs (6P )qNe w56x.1y2

mental cross-sections, as well as the temperature
behavior of the cross-sections for special CEET
processes. For example, the theoretical value of
the exothermic cross-section(31=10 cm aty16 2

311 K) and its temperature dependence(;T )y0.6

for the case of Cs(6P ) fine-structure mixing byJ

cesium was found to be in very good agreement
with experimental resultsw36x. On the other hand,
as mentioned in the previous section, inw23x a
quite different theoretical model yielded a very
good description for the strong temperature
dependence(;T ) of the extremely small cross-2

sections for the fine-structure mixing of the alkali
first resonance levels due to noble gases. There is
no general approach that would connect these
different models in a transparent manner. Never-
theless, the systematization given here can be of
use for experimentalists in predicting the values if
there is a lack of relevant data.

5. Applications related to resonance fluores-
cence imaging filters

5.1. Spatial resolution of imaging atomic filters

In the following the experimental results pub-
lished in w8x are discussed as an example of the



1264 C. Vadla et al. / Spectrochimica Acta Part B 58 (2003) 1235–1277

Fig. 11. Schematic diagram of the experiment reported inw3x
and discussed in Section 5.1.

application of the radiation trapping approach pre-
sented here. Inw8x, the spatial distortion due to
trapping in a Cs atomic-vapor imaging filter has
been investigated. For the sake of clarity of this
text, a sketch of that experiment is shown in Fig.
11 and the experimental procedure is briefly
described. A cell containing Cs metal in vacuum
was heated and illuminated by two perpendicular,
single-mode diode laser beams. The frequency of
the first laser was tuned to a hyperfine component
of the Cs D2 resonance line atl s852 nm. The12

laser beam was transmitted trough a mask with
periodic openings with widths(L) of a few 100
mm. The period was of the same size. In this way,
zones of excited(signal zones) and non-excited
(background zones) atoms in the vapor were deter-

mined. The second laser beam was transformed
into a 12-mm-long sheet with widthLs0.5 mm.
The second laser was used to pump the transition
at l s917 nm. The spatial distribution of the23

fluorescence intensity atl s455 nm was meas-41

ured while changing the cesium bath temperature
in the range between 293 and 318 K. The situation
is similar to that described in Section 3.3. Consid-
ering the number densities and in¯ ¯N s N bŽ . Ž .2 2

cubic volume elements of sizeL in the signal and
background zones, respectively, we can, accord-
ing to Eqs. (3.22) and (3.23), state that

. Since the intensityS of the¯ ¯N s yN b A1yJŽ . Ž .2 2 cub

fluorescence monitored in the signal zone is pro-
portional to and the intensityB in theN̄ sŽ .2

background zone is proportional to , theSyN̄ bŽ .2

B ratio can be written as followswsee Eq.(3.18)x:

S 1 1
A A (5.1)¯B J LN P 0Ž .cub 1

Obviously, the signalybackground ratio depends
on L and, for fixed L, exhibits a hyperbolic
dependence on the number density in the lowest
state ( ). This is in agreement with theN̄ fN1 Cs

experimental findings reported inw8x. Note that,
according to Eq.(5.1), we can improve the signaly
background ratio at fixedL and by increasingN̄1

the line broadeningwsee Eq.(2.3)x.
It is apparent that a volume of slab form is the

most appropriate geometry for an atomic imaging
filter, but it should be noted that the working
scheme in Fig. 11, i.e. in Ref.w8x, is not the best
choice for simulation of slab geometry. Namely,
the pumping of resonance level 2 in the experiment
sketched in Fig. 11 is not limited to the regions
defined by the beam size of the second pump
laser, but spreads over the whole cell volume.
Since diffusion of the resonance radiation depends
on the size of the volume excited in the first step,
the number density of the resonantly excited atoms
in the thin slice just behind the entrance cell
window illuminated by the second laser atl is23

strongly influenced by the rest of the excited
volume beyond that slice. Consequently, the mon-
itored fluorescence emerging from the signal and
background zones, i.e. signalybackground ratio,
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Fig. 12. Calculated signalybackground ratioSyB as a function
of cesium number density for various argon pressures. The cal-
culations refer to the excitation scheme applied in Ref.w8x and
to the case of a practically infinite, 1-mm-thick slab.

depends on the size of the excited volume extend-
ing beyond the thin slice observed. With the
cylindrical cell used, a much better signalyback-
ground ratio would be obtained by simple inter-
change of the directions of lasersl andl . In12 23

such a case, only atoms in the thin vapor layer
behind the cell window would be originally excited
to the resonance state, and the situation would be
closer to the imaging filter with slab geometry.
In order to obtain further insight into the pro-

cesses that influence the spatial resolution of imag-
ing filters, we apply here the approach presented
in Section 3 to a volume of slab form. We consider
the volume to be an infinite slab with thicknessL,
which is divided in cubic elements of volumeL ,3

and is illuminated in the same way as illustrated
in Fig. 11. According to Eqs.(3.6) and (3.7) and
the procedure in Section 3.3, we can establish the
following rate equation for the average density

in the central cubic elementb :N̄ bŽ .2 00 00

weffx ¯A N bŽ .y21 2 00

3 3¯ ¯y2L F N b y2L F N b y«Ž . Ž .01 2 01 02 2 02

3 3¯ ¯ xy4L F N s y4L F N s y«Ž . Ž .10 2 10 11 2 11

s0 (5.2)

Here, similarly to Eq. (3.25), the coefficients
F are given by:mn

P Pa k L w z1 0 2 2 P Px |yF s expy m qn k yb (5.3)y ~mn 02 24p m qnŽ .

If we assume isotropic pumping and take an
infinite slab, it follows that ¯ ¯N b sN b 'Ž . Ž .2 00 2 0n

and . In this case,¯ ¯ ¯ ¯N b N s sN s 'N sŽ . Ž . Ž . Ž .2 2 10 2 1m 2

Eqs.(5.2) and(5.3) yield the following expression
for the signalybackground ratio:

N̄ sŽ .2S
s ¯B N bŽ .2

P P `a k L 11 0 w zP P
x |1y expymk Lyb0y ~8 22p mms1s P P `a k L 1 w z1 0 2 P Px |yexpy 1qn k Lyby ~08 2p 1qnns0

(5.4)

Under the assumption that the slab contains pure
cesium vapor, the cesium resonance lines are
essentially Doppler-broadened in the temperature
range considered of 293–318 K(see Appendix
D). The meanD for the Cs D2 line is 385 MHz,G

but the effectiveD9 for two unresolved groups ofG

hyperfine components(see Appendix B) is
approximately 1.5=D . Taking this into account,G

we obtain the peak absorption coefficientk skP D
0 0

(cm )s3.02=10 =N (cm )L (cm). In they1 y11 y3
Cs

present simulation the valueLs1 mm was taken.
The results calculated forSyB are plotted in Fig.
12 as a function of the cesium number density for
the case of pure cesium vapor and in the presence
of argon atp s20, 40 or 80 mbar. Here, theAr

value for the collision broadening parameterg sn
Ar

2.9=10 s cm at the actual temperature wasy10 y1 3

used, which was obtained from the data given in
Appendix D. The calculations were limited accord-
ing to Eq.(3.18) and carried out using Eqs.(2.3)
and (2.4) for evaluation of peak values for the
absorption coefficient with a Voigt line shape.
As can be observed from Fig. 12, the presence

of the foreign gas increases the spatial resolution.
Certainly, better resolution can be gained simply



1266 C. Vadla et al. / Spectrochimica Acta Part B 58 (2003) 1235–1277

Fig. 13. Partial term diagram of cesium showing the excitation
scheme and the most probable collision-induced transitions in
a Csqnoble gas mixture(dotted arrows). For the sake of sim-
plicity, the sets of the inter-multiplet CEET transitions are rep-
resented by single dotted lines with arrows at both ends. The
numbers attributed to the levels are the energies given in
cm . The numbers in brackets are labels of the levels. They1

inset shows radiative(full arrows) and collision-induced tran-
sitions(dotted arrows) between the Cs 6D and 7P states.J J

Table 6
The total radiative relaxation rates 1yt, wheret is the lifetime of the particular sublevel of the Cs 6D or 7P doublet, and radiativeJ J

ratesA for the 6D™7P multipletki J J9

Transition k™i (1yt )k (1yt )i lvac Aki

(10 s )7 y1 (10 s )7 y1 (mm) (10 s )7 y1

6D ™7P5y2 3y2 9™7 1.66a 0.71a 12.147 0.0064b

6D ™7P3y2 3y2 8™7 1.66a 15.570 0.0009b

6D ™7P3y2 1y2 8™6 0.71a 14.595 0.0074b

The indicesk and i are related to labeling of levels displayed in Fig. 13.
Results fromw62x.a

The values calculated via oscillator strengths published inw63x.b

by loweringN , but this causes a decrease in theCs

quantum efficiency of the imaging filter. On the
other hand, it is important to bear in mind the
negative influence of the line broadening on the
spectral bandwidth of imaging filtersw4x. The
approximate approach presented can be used to
find compromise conditions for the spatial resolu-
tion with respect to the efficiency required, as well
as spectral resolution in the particular excitation
and de-excitation scheme.

5.2. Influence of CEET on population distributions

The pumping scheme of the previous section is
often applied in experiments dealing with Cs
resonance fluorescence imaging filtersw6–10x. As
pointed out inw4x, the near-infrared wavelength to
be detected(Cs D2 line) is useful for many
applications in which visible and ultraviolet pho-
tons are strongly absorbed in the medium exam-
ined, for example in biological tissuew9x. In the
first step, the weak signal input excites the Cs
atoms to the resonance 6P state(see Fig. 13).3y2

In the second step, using a high-power laser beam
at either 917 or 921 nm, the states 6D or5y2

6D , respectively, are excited with maximum3y2

saturation. Due to subsequent radiative relaxation,
the 6D states are mainly depopulated by 6D™J J

6P transitions, and with weaker branching by theJ9

6D ™7P transitions. The output signals areJ J9

observed at wavelengths of 455 and 459 nm
belonging to the Cs second resonance transition.
The signal output yield can be expressed as the
ratio of the population densities in the relevant
7P and 6D states. In Table 6 the theoreticalJ J

values for the total radiative relaxation rates
are given, wheret is the lifetime ofA s1ytki k k8

i

the statek considered. In addition, the radiative
rates for the 6D™7P multiplet are listed inJ J9

Table 6. As a consequence of the branching ratios,
the output signals at 455 and 459 nm are very
weak. Nevertheless, this situation can be signifi-
cantly improved when CEET processes are
involved, which is discussed in the following.
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We consider the Cs vapor cell at 320 K, a
typical temperature for a Cs resonance fluores-
cence imaging filter. The corresponding Cs number
density is approximately 3=10 cm (see11 y3

Appendix C). The cell is additionally filled with
buffer gas(Ar or He) at a given, relatively low
pressure(order of magnitude: several mbar). In
Fig. 13, the most probable CEET transitions under
the experimental conditions selected are indicated
by dotted lines.
With all radiative rates included(not displayed

in Fig. 13), the system can be described by a set
of 10 coupled rate equations for the population
densities in the states considered. Bearing in mind
the weak 6S ™6P and the strongly pumped1y2 3y2

6P ™6D transitions, the configuration can be3y2 J

reduced and consideration can be focused on the
four-level system comprising the states 7P ,1y2

7P , 6D and 6D labeled with 6, 7, 8 and 9,3y2 3y2 5y2

respectively. The radiative and collision-induced
transitions related to this four-level system are
sketched in the inset of Fig. 13. The corresponding
rate equations for the population densitiesN , N ,6 7

N andN can be written in matrix form as follows:8 9

B Ey1yt qS R A qR RŽ .6 6n 76 86 86 96

R y1yt qS A qR A qRŽ .67 7 7n 87 87 97 97C FR R y1yt qS RŽ .68 78 8 8n 98

D GR R R y1yt qSŽ .69 79 89 9 9n

B E B EN 06

N 07
= sC F C FN yP8 28

D G D GN yP9 29

(5.5)

where . The collision ratesR areS s Rmn mn mn8
n/m

the sums of the contributions

X X
N MR s R s Q v N (5.6)mn mn mn Cs–X X8 8

X X

where XsCs, Ar or He. Under the experimental
conditions assumed here,Nv MN is 6.8=1015Cs–Cs Cs

cm s and, in spite of the large cross-sectionsy2 y1

for 7P and 6D intra-multiplet mixing by cesiumJ J

(see numbers 2 and 5 in Table 3a), the correspond-
ing collision rates are small(;10 s ) compared2 y1

with the weak radiative rates for the Cs 6D™J
7P transitions. The cross-section data for the CsJ9

6Dl7P inter-multiplet mixing by cesium have
not been measured yet. However, they can be
estimated to be in the range between 20=10y16

and 200=10 cm (see Fig. 7), which meansy16 2

that in the present case all CEET contributions by
cesium can be neglected.
On the other hand, we can produce large colli-

sion mixing rates by noble gas pressure variation
and by the addition of other gases. An interesting
enhancement of theN(7P)yN(6D) ratio appears
when helium is used as a buffer gas. This can be
observed if we adjust the collision ratesR to fallmn

in the rangeA-R <1yt . Then, if, for example,mn m

state 8 is pumped(P /0, P s0), the system28 29

in Eq. (5.5) yields the following expressions for
the population ratios:

N A qR6 86 86f (5.7)
N 1yt8 Ž .6

N A qR7 87 87f (5.8)
N 1yt8 Ž .7

At pressure of 1 mbar andTs320 K, the
products Nv MN and Nv MN areCs–He He Cs–Ar Ar

2.6=10 and 9.4=10 cm s , respectively,21 21 y2 y1

which in combination with the values predicted
for the corresponding cross-sections at the temper-
ature chosen(see Table 7) yields R s3.1=10He 5

86

s , R s3.9=10 s , R s6.6=10 s andy1 He 5 y1 Ar 2 y1
87 86

R s1.4=10 s . The present considerationAr 3 y1
87

shows that, as a consequence of the relatively large
inter-multiplet mixing cross-sections, helium can
significantly enhance theN(7P)yN(6D) ratio in
comparison with the case when the 7P states are
populated only by radiative transitions. Argon as
a buffer gas is more than two orders of magnitude
less effective than helium, and comparable results
to those obtained with helium would require much
higher argon pressures.
To examine the relationships between the pop-

ulation densities of involved 7P and 6D substatesJ J

in a wider pressure region, we have to take account
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Fig. 14. (a) The calculated relative populations of the Cs 7PJ

(N yN ) and the Cs 6D(N yN ) sub-states as a function of6 7 J 8 9

buffer gas pressure in the case when the 6D state is optically5y2

excited. The calculated ratiosN y(N qN ) as a function ofi 8 9

buffer gas pressure up to(b) 10 and(c) 300 mbar.

Table 7
The collision cross-sections for the CEET between the Cs 6D and 7P levels by argon and heliumJ J

Transition k™i DEki X (10 cm )X y16 2Qki

(cm )y1
Experimental values Predicted Estimated
at differentT at Ts320 K atTs320 K

6D ™6D5y2 3y2 9™8 43 Ar – ;20
He – ;150

7P ™7P3y2 1y2 7™6 181 Ar 0.072 0.045
He 15 15

6D ™7P5y2 3y2 9™7 685 Ar – ;0.015
He – ;1.5

6D ™7P5y2 1y2 9™6 866 Ar – ;0.007
He – ;1.2

6D ™7P3y2 3y2 8™7 642 Ar 0.029 0.015
He 2.1 1.5

6D ™7P3y2 1y2 8™6 823 Ar 0.014 0.007
He 1.7 1.2

Experimental values at different temperatures that are listed here have been taken from Tables 4 and 5. The values at 320 K were
predicted taking into account Section 4.7 and Fig. 8. The data that have not been measured yet are estimated on the basis of the
general dependence of the cross-sections on the energy defect for the particular CsqX collision pair. The indicesk andi are related
to labeling of levels displayed in Fig. 13.

of the other mixing processes. Unfortunately, the
set of cross-sections(see Table 7) is incomplete.
Experimental data for the 6D intra-multiplet mix-J

ing, as well as for the 6D ™7P inter-multiplet5y2 J

mixing, by noble gases are not available. To obtain
further insight into the effect discussed, we used
estimated values(see Table 7) which, for a given
collision pair, can be obtained on the basis of the
general behavior of the cross-sections as a function
of temperature and energy defect presented in
Section 4. With these data, numerical solutions to
the system in Eq.(5.5) were obtained and the
results are shown in Fig. 14. In this model,P s28

0 andP /0 were chosen for the pumping of the29

transition 6P ™6D .3y2 5y2

As can be observed in Fig. 14a, the 7P andJ

6D states are completely mixed at helium pressureJ

of approximately 10 mbar, and the sublevel pop-
ulation ratiosN yN andN yN reach equilibrium6 7 8 9

values of 1.13 and 0.81, respectively, atTs320
K. For argon, complete intra-multiplet mixing
occurs at pressure of several 100 mbar. The
remarkable difference between helium and argon
can be recognized when viewing the inter-multiplet
population density ratios shown in Fig. 14b,c for
lower and higher pressures, respectively. Due to

the strong inter-multiplet mixing rates by He, the
relative populations in the 7P and 6D states
become much higher than those produced by
radiative transitions. In contrast, argon is a very
weak collision mixer, since its mixing rates are
approximately 300-fold smaller than for helium.
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The ratiosN y(N qN )sN(7P )yN(6D) for heli-i 8 9 J

um are approximately 0.5 at 10 mbar(Fig. 14b)
and approach equilibrium values of the order of
10 beyond 300 mbar(Fig. 14c).

Therefore, it is recommended to add an appro-
priate amount of helium to the atomic line detector
considered. However, experimental proof is
required, since the model presented is based on
partly interpolated data. In such experiments, unde-
sired side effects in the cesium imaging detector
should also be checked for, for example a reduction
in spectral resolution due to broadening of the
cesium spectral lines by helium. In that case, a
compromise between the efficiency and the spec-
tral resolution has to be found.

6. Summary

In this work, the processes of laser excitation,
diffusion of resonance radiation and the collision
excitation energy transfer were considered. The
methods presented enable straightforward qualita-
tive as well as quantitative analysis of the popu-
lation distributions in neutral thermal gaseous
media.
The narrow-band laser excitations of inhomo-

geneously(Doppler) and homogeneously(Loren-
tzian) broadened transitions were analyzed and the
pumping rates were determined, taking into
account the laser beam intensity and the broaden-
ing parameters of the line profiles.
The problem of trapping and diffusion of reso-

nance radiation was defined in terms of additional
pumping rates appearing in dense excited media.
Using the rate equation approach, the Holstein
integral equation for the spatially dependent, excit-
ed atomic number densities was derived in a
straightforward procedure. The steps by which the
trapping problem was treated implies plausible
ways for quantitative treatments of effective radi-
ative rates and diffusion-like transport of excitation
energy. Easy-to-handle formulas for optically qua-
si-thin conditions were derived.
The elements of the experimental and theoretical

treatment of the thermal collisions producing the
excitation energy transfer were given. A large body
of CEET cross-sections for the CsqCs, CsqAr
and CsqHe systems was collected, listed and

analyzed. An empirical dependence of the thermal
cross-sections on the energy defect, as well on the
temperature, was presented.
The results were used to model the spatial

resolution and the quantum efficiency of Cs-based
resonance imaging filters.

Acknowledgments

The authors gratefully acknowledge financial
support by the Deutsche Forschungsgemeinschaft
(Project 436 KRO 113y2y0) and the Ministry of
Science of the Republic of Croatia.

Appendix A: Definitions and units

In the following, the notation, definitions and
units of the physical quantities most frequently
used in this paper are listed. The indicesi and k
correspond to the lower and upper states,
respectively.

N , N :i k number densities(m )y3

g , g :i k statistical weights
A :ki Einstein coefficient for spontaneous

emission, spontaneous emission rate
(s )y1

P :ik pumping rate for thei™k transition
(s )y1

I (n):n frequency-dependent spectral intensity(J
m Hz s )y2 y1 y1

c: velocity of light (m s )y1

e: electron charge(C)
m: electron mass(kg)
k: Boltzmann constant(kg K )y1

h: Planck constant(J s)
n :ik central frequency of the spectral line
f :ik oscillator strength of the spectral line
k (n)sKN P(n): frequency-dependent linearik i

absorption coefficient(m )y1

K: (pe ymc)f (m Hz)2 2
ik

P(n): normalizedw|P(n)dns1x line profile
(Hz )y1
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Fig. B1. Hyperfine splitting of the cesium 6S , 6P and1y2 1y2

6P levels with the transition wavelengths(in nm), oscillator3y2

strengths(in square brackets) and level separations.

k sKN P(0): peak value of the absorptionP
0 i

coefficient
P (n)s(6pDn ) expwy{ (nyn )yy1
D D ik¯

Dn} x: normalized Doppler(Gauss)2

profile (Hz )y1

Dn s(n yc)(2kTyM) : Doppler broadening1y2
D ik

parameter(Hz)
D s26 ØDn : full-width at half-maximum ofln2G D

the Gauss(Doppler) profile (Hz)
P (0)s26 yD s1y(6pDn ): peak valueln2ypD G D¯

of the normalized Doppler profile
(Hz )y1

P (n)s(G y2p)yw(nyn ) q(G y2
L n ik n

2) x: normalized Lorentzian profile2

(Hz )y1

D sG :L n full-width at half-maximum of the
Lorentzian profile(Hz)

P (0)s2y(pD ): peak value of the normalizedL L

Lorentzian profile(Hz )y1

Appendix B: Hyperfine structure of the cesium
D1 and D2 lines

The total energy of an atomic level can be
presented as a sumw64x:

h
E sE qE qE sE q AKF J M1 E2 J 2

4
K Kq1 y I Iq1 J Jq1Ž . Ž . Ž .

3h 3
q B , I,JG1

8 I 2Iy1 J 2Jy1Ž . Ž .
(B1)

whereE is the energy of the level in the case ofJ

zero interaction of the electrons with the nucleus,
E is the interaction energy for the system elec-M1

trons–nuclear dipole moment,E is the interac-E2

tion energy for the system electrons-nuclear
quadrupole moment, whileJ, I and F have their
usual meaning. The quantityKsF(Fq1)yI(Iq
1)yJ(Jq1), andA andB are the hyperfine split-
ting constants of the atomic energy levels. For the
cesium 6S and 6P states,A s292 MHz,1y2 3y2 1y2

B s0 andA s50.3 MHz, B sy0.4 MHz,1y2 3y2 3y2

respectivelyw64x.

The hyperfine splitting of the cesium 6S ,1y2

6P and 6P levels is shown in Fig. B1, while1y2 3y2

Fig. B2 shows the structure and shape of the
Doppler-broadened D1 and D2 lines forTs300
K.
General expressions for the line strength of the

hyperfine component connectingF andF9 relative
to the line strength at theJ™J9 transition can be
found in w65x in the form of 3yj coefficients. The
evaluation yields expressions for the relative line
intensities of the transitions(a9IJ9F9)´(aIJF)
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Fig. B2. The shape and the structure of the Doppler-broadened
cesium D1(bottom) and D2(top) line atTs300 K. Hyperfine
components are represented by dotted lines and labeled with
a, b, c, etc. Dashed lines indicate Doppler envelopes for the
strong and weak components of the 6S™ 6P and 6S1y2 3y2 1y2

™ 6P transitions.1y2

Table B1
The relative intensities of the transitions(a9IJ9F9)´(aIJF) between hyperfine components of atomic levels

F9´F Line intensity I(F9™F)

J´J transitions Jy1´J transitions

Fy1´F

JqIq2qF JqIyF JyIq1qF JyIy1yFŽ .Ž .Ž .Ž .
yA

Fq1

JqFqIq1 JqFqI JqFyI JqFyIy1Ž .Ž .Ž .Ž .
B

F

F´F

2w x2Fq1 F Fq1 qJ Jq1 yI Iq1Ž . Ž . Ž . Ž .
A

F Fq1Ž .
2Fq1 JqFqIq1 JqFyI JyFqI JyFyIy1Ž .Ž .Ž .Ž .Ž .

yB
F Fq1Ž .

Fq1´F

JqIq1qF JqIq1yF JyIqF JyIyFŽ .Ž .Ž .Ž .
yA

F

JyFqI JyFqIy1 JyFyIy1 JyFyIy2Ž .Ž .Ž .Ž .
B

Fq1

A and B are the proportionality constants.

between hyperfine components of the atomic lev-
els. The expressions are given in Table B1 for two
types of J9™J transitions, i.e. forJ9sJ and J9s
Jy1. Symbolsa anda9 stand for all other quantum

numbers different fromI, J, J9, F and F9, which
have their usual meanings.
The intensity I of the spectral line occurring at

the transition(a9IJ9F9)´(aIJF) between hyperfine
components is:

I F9™F ;f F9™F ØN F9 (B2)Ž . Ž . Ž .

where f(F9™F) is the oscillator strength of the
transition andN(F9) is the number of atoms in the
state(a9IJ9F9) given by:

N F9 sg F9 ØN (B3)Ž . Ž . 0

whereN is the total number of atoms in the initial0

state and:

n 2F9q1Fg F9 s s (B4)Ž . F9sJ9qIntot 2F9q1Ž .8
F9sØJ9-IØ

is the relative statistical weight of the(a9IJ9F9)
level defined as the ratio of the number of states
of the (a9IJ9F9) level n to the total number ofF

states of the initial leveln .tot

The ratios of the relative intensities of the lines
at the transitions between hyperfine levels:

I F9™F f F9™FŽ . Ž . 2F9q1
s Ø ,˜˜ ˜˜ ˜ 2F9q1I F9™F f F9™FŽ . Ž .

˜ ˜F9, F, F9sF, F"1 (B5)
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Fig. C1. The Cs and Cs vapor pressure curves plotted against2

1yT (left) and the corresponding atom number densities vs.T
(right). Full and dashed lines correspond to Cs and Cs data,2

respectively. The Cs vapor pressure was calculated according
to Eq. (C1), while the Cs vapor pressure curve represents the2

results obtained from Eq.(C4) where the data inw67x for the
Cs atom number densityN were used.

yield oscillator strength ratios that allow determi-
nation of the oscillator strength for each particular
transition if the oscillator strength for the
(a9IJ9)´(aIJ) transition is known.

For cesium,Is7y2 and the oscillator strengths
for 6S ™6P and 6S ™6P are 0.341 and1y2 1y2 1y2 3y2

0.708 w62x, respectively.
If we consider each hyperfine sublevel of the

ground state, then:

f qf qf sf qf qf sf s0.708 (B6)a b c d e f 3y2

and

f qf sf qf sf s0.341 (B7)a9 b9 d9 e9 1y2

for the D2 and D1 lines, respectively. Using Eqs.
(B6) and (B7) and the set of oscillator strengths
ratios from Eq.(B5), the oscillator strength for
each hyperfine component can be determined. The
results are shown in Fig. B1.
If we look at the ground state as a whole, the

weak and strong components of the D2 and D1
lines are as follows:

D2f sg f qf qf s0.310,Ž .weak Fs4 a b c
D2f sg f qf qf s0.398 (B8)Ž .strong Fs3 d e f

D1f sg f qf s0.142,Ž .weak Fs4 a9 b9
D1f sg f qf s0.192 (B9)Ž .strong Fs3 c9 d9

where g s7y16 and g s9y16 denote theFs3 Fs4

relative statistical weightswEq. (B4)x of the
ground-state hyperfine sublevels withFs3 and
Fs4, respectively.

Appendix C: Cesium vapor pressure curve

According to Nesmeyanovw66x the data for
cesium vapor pressure published by Taylor and
Langmuir w67x may be considered as the most
reliable. Not long ago, their data were confirmed
by measurements of the absorption coefficient in
the quasi-static wing of the self-broadened cesium
resonance linesw29x. The vapor pressure data for
liquid cesium given inw67x are as described by
the following equation:

4041
logp s11.0531y y1.35=logT (C1)Cs T

and are shown in Fig. C1, together with the
corresponding atom number densityN obtained
from psNkT.
The vapor pressure curve given by Nesmeyanov

w66x should also be mentioned, with the remark
that it differs form the Taylor and Langmuir curve
by at most 16% in the temperature range from 293
to 573 K. The Nesmeyanov plot for liquid cesium:

4006.048
logp s8.22127y y6.0194Cs T

y4=10 =Ty0.19623=logT (C2)

was obtained as a weighted statistical average of
the data published up to 1963. In the above, as
well as in the following relations, the pressure is
expressed in Torr.
The vapor pressure curve for cesium dimers can

also be found in Nesmeyanovw66x, as follows:

6064.472
logp s18.22054y q9.016Cs2 T

y5=10 =Ty3.45395=logT (C3)
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Table D1
Line broadening parameters for the first and the second resonance doublet of cesium due to Ar, He and Cs

Transition lvac gn
Ar gn

He gn
Cs

(nm) (s cm )y1 3 (s cm )y1 3 (s cm )y1 3

Cs 6S ™Cs 6P1y2 3y2 852.3 (3.4"0.5)=10y10a (3.6"0.5)=10y10a (6.7"1)=10y7b

Cs 6S ™Cs 6P1y2 1y2 894.6 (2.7"0.7)=10y10a (3.1"0.5)=10y10a (5.7"1)=10y7b

Cs 6S ™Cs 7P1y2 3y2 455.5 (1.7"0.4)=10y9c (3.1"1)=10y9c –
Cs 6S ™Cs 7P1y2 1y2 459.3 (1.6"0.2)=10y9c (2.6"0.5)=10y9c –

Results fromw69x at Ts503 K.a

Results fromw70x at Ts298 K.b

Best values fromw71x at Ts400 K.c

The density of the cesium molecules is related
to the atom number densityN by a temperature-
dependent equilibrium rateK (T) through:eq

2N
N s (C4)Cs2 K TŽ .eq

where

22 1y2K T s1.37=10 =TŽ .eq
3=exp y5.22=10 yTŽ .

w z
x |= 1yexp y60.46yT (C5)Ž .y ~

as reported inw45x, was obtained using cesium
molecular ground-state constants given inw68x.
The Cs vapor pressure curve and the corre-2

sponding dimer number densityN vs. T areCs2

shown in Fig. C1. The data represent the results
obtained according to Eq.(C4), where the data
reported inw67x for the Cs atom number density
were used. In the temperature range between 293
and 500 K, the Cs vapor pressure curve of2

NesmeyanovwEq.(C3)x lies below the curve given
by Eq. (C4). The difference amounts to a factor
of three atTs293 K and decreases to 30% atTs
500 K.

Appendix D: Line broadening parameters for
Cs resonance lines

The broadening parametersg , g andg forn n n
Ar He Cs

collision broadening of the first and second cesium
resonance doublet lines by Ar, He and Cs, respec-
tively, reported in w69–71x, are summarized in

Table D1. It should be emphasized that, according
to theoryw16x, theg of self-broadening does notn

Cs

depend on temperature, while theg due to foreign-
gas van der Waals’ broadening shows weak tem-
perature dependence(;T ).0.3

Appendix E: Effective radiative rates for Cs D1
and D2

We consider a long, sealed cylindrical cell(radi-
us R) filled with Cs metal and Ar at pressurepAr

established atTs300 K. The cell is heated in the
range between 273 and 450 K, which produces Cs
number densities approximately in the range
between 10 and 10 cm (see Appendix C). To9 15 y3

estimate the effective radiative rates for cesium
resonance lines we use the low-opacity approxi-
mation presented in Section 3.4 and the Holstein
approximation for high opacitiesw19x. With inter-
polation of the results obtained, we can estimate
the effective radiative rates over the whole range
of Cs number densities considered. It is convenient
to present the effective radiative rates as a function
of the variableN R and the parameterp .Cs Ar

In the present model, the lines are generally of
the Voigt type, with the Gaussian widthD sG

MHz. The peak value of the normal-380 Ty300y
ized Voigt profile P (0) is given by Eqs.(2.13)V

and (2.14). The values for the coefficienta ,V1
depending on the ratioD yD , lie between 0.500G L

and 0.707. The corresponding width of the Lor-
entzian contribution can be calculated fromD sL

(see Sectionn n n nG qG sAy2pqg N qg Nnat coll Cs Cs Ar Ar

2.2). Using the data forg and g given inn n
Cs Ar

Appendix D, the Lorentzian widthsD andD1 2( ) ( )
L L
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Fig. E1.(a) Construction of the escape probability curves. For
detailed explanations see text in Appendix E.(b) Effective
radiative rates of the Cs D1 and D2 lines obtained for the
cylindrical geometry of the vapor cell. The curves are con-
structed by combinations of low peak absorption approxima-
tion presented in Section 3.4 and the Holstein approximation.
For more details see the text in Appendix E.

for the D1 and D2 lines, respectively, are expressed
in Hz and given by:

N RŽ .Cs
1 6 y7( )D s4.5=10 q5.7=10 q8.2L R

6=10 p (mbar) (E1)Ar

N RŽ .Cs
2 6 y7( )D s5.1=10 q6.7=10 q8.2L R

6=10 p (mbar) (E2)Ar

where N R and R are given in cm and cm,y2
Cs

respectively. In the low-opacity case, the escape
probability h sA yA can be calculated as aeff

a

function of N R and p using a modified Eq.Cs Ar

(3.29), as follows:

Vh i s 1y1.13a P 0 j i N RŽ . Ž Ž . Ž . .a 1 V Cs

B 1 VC= 1y a P 0 j i N RŽ . Ž .1 V Cs4D

E` expy2mP 0 j i N RŽ Ž . Ž . .V Cs F (E3)8 2m Gms1

wherej(i)s(pe ymc)=f(i) and f(i) is the total2

oscillator strength of the resonance line considered,
which is a simple sum of the contributions of
particular hyperfine components in the optically
thin case. Otherwise, the calculations become
much more complicated.
In the high-opacity case(see Section 2.4), the

Holstein approximation yields results for a pure
Gaussian and pure Lorentzian line profile. Accord-
ing to w19x, the escape probability for the Gaussian
line and a cylindrical geometry is given byhs

. For high opticaly1 y1y2D D1.6 k R pln k RŽ . Ž Ž ..0 0

depths, we can assume that the line kernels of the
D1 and D2 lines are fully absorbed, so that the
hyperfine structure can be neglected and the tran-
sitions can be considered as single lines. Then, for
Doppler broadening, the escape probability as a
function ofN R is given by:Cs

1.6
h i s (E4)Ž .b

yj i N R pln j i N RŽ . Ž Ž . .b Cs b Cs

wherej (i)s6.08=10 f(i), with N R given iny11
b Cs

cm .y2

In the case of a pure Lorentzian line form,
according to Eq.(2.38) the Holstein escape prob-
ability is given as a function ofN R and p byCs Ar

the following relation:

i 1y2B EDLC Fh s1.115 (E5)c
D Gj i N RŽ .c Cs

wherej (i)sp=1.689=10 f(i), with N R giv-y2
c Cs

en in cm .y2

The calculated curvesh , h and h describea b c

the escape probability well only in limited ranges.
The results for D2 in pure Cs vapor and at the
argon pressurep s100 mbar are given in Fig.Ar

E1a. The calculated curves are partially represent-
ed by solid and partially by dotted lines. The solid
curves are related to ranges in which the particular
approximation is estimated to be valid, while the
dotted parts describe the regions in which the
approximation is invalid. The dashed curves are
interpolations between the valid ranges. It should
be mentioned that for higher argon pressures, i.e.
for pure Lorentzian broadening, this interpolation
is much smoother, since the escape probability
curve goes from a low-opacity approximation into
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the Holstein approximation for a pure Lorentzian
profile without inflexion.
As the consequence of the transmission of the

trapped radiation in the resonance self-broadened
line wings, the escape probabilitieswsee Eqs.(E1),
(E2) and (E4)x saturate in the limitN R™` atCs

the value , whichy1 34.33 g (s cm )yf i R (cm)y Ž .Cs

for the D2 line and Rs1.5 cm amounts to
3.4=10 .y3

The calculations were performed forp s0, 10Ar

and 100 mbar. Using the values for the oscillator
strengths given in Appendix B, the effective radi-
ative rates were obtained in the previously
explained way, and the results are shown in Fig.
E1b. In addition, the experimental results for the
effective radiative rate of the D2 line published in
w36x are also given. Inw36x, which deals with the
mixing and quenching of the Cs 6P states byJ

cesium, the experiment was performed in a cell
with radiusRs1.35 cm and lengthLs13 cm. The
values measured for the effective radiative rate of
the Cs D2 line are somewhat lower than the
theoretical values presented here. However, taking
into account the error bars declared and the uncer-
tainty of the values used forg , we can concludeCs

that both results are in fair agreement.
It should be stressed that the results for the

infinite cylindrical geometry are also approximate-
ly valid for the infinite slab if the simple substi-
tution R™Ly2 is made{ see Eq.(3.18) andw20x} .
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