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  Abstract: Aim and Objective: The aim of this study was to derive robust and reliable QSAR models 
for clarification and prediction of antioxidant activity of 43 heterocyclic and Schiff bases dipicolinic 
acid derivatives. According to the best obtained QSAR model, structures of new compounds with 
possible great activities should be proposed.  
Methods: Molecular descriptors were calculated by DRAGON and ADMEWORKS from optimized 
molecular structure and two algorithms were used for creating the training and test sets in both set of 
descriptors. Regression analysis and validation of models were performed using QSARINS.  
Results: The model with best internal validation result was obtained by DRAGON descriptors 
(MATS4m, EEig03d, BELm4, Mor10p), split by ranking method (R2 = 0.805; R2

ext = 0.833; F = 
30.914). The model with best external validation result was obtained by ADMEWORKS descriptors 
(NDB, MATS5p, MDEN33, TPSA), split by random method (R2 = 0.692; R2

ext = 0.848; F = 16.818).  
Conclusion: Important structural requirements for great antioxidant activity are: low number of 
double bonds in molecules; absence of tertial nitrogen atoms; higher number of hydrogen bond 
donors; enhanced molecular polarity; and symmetrical moiety. Two new compounds with potentially 
great antioxidant activities were proposed. 
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1. INTRODUCTION 

 Dipicolinic acid (DPA) (2,6-pyridinedicarboxylic acid) is  
naturally inherent in the spores of Bacillus [1] and 
Clostridium genusus [2] that exists in the core in the form of 
chelates with calcium ions [3]. DPA contributes to the spore 
resistance to UV radiation [4], wet heat [5], and protecting 
spore DNA from damage [6]. DPA forms stable chelates 
with metal ion, and these complex compounds show a 
variety of biological activities, such as antimicrobial, 
antifungal [7-9], anticancer [10] and antioxidant activities 
[11]. 
 It was discovered that a series of substituted mono- and 
bis-dipicolinic derivatives possessed antimicrobial and 
antioxidant activities [12-15]. In our previous work, we have 
reported synthesis of Schiff bases [16] and heterocyclic 
compounds [17] derived from DPA. Many of the obtained 
compounds exhibited significant antifungal and antioxidant 
activities. The above-mentioned studies identified significant 
chemical features for the most active compounds. In a series 
of synthesized mono- and bis-dipicolinic acid heterocyclic 
derivatives – thiosemicarbazides, triazoles, oxadiazoles  
and thiazolidinones, and thiosemicarbazides showed  
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predominant antioxidant activity. Influence of different 
substituents is obvious, since in almost all compounds  
phenyl substitution results in a better 2,2-diphenyl-1-
picrylhydrazyl (DPPH) radical scavenging activity compared 
to the alkyl substitution [17]. In a series of Schiff bases 
derived from dipicolinic acid, compounds derived from di-
hydrazide showed higher antioxidant activity than the ones 
derived from mono-hydrazide [16]. 
 The structure-activity relationship (SAR) of the 
antibacterial and antiproliferative potential of some 1-
pyridinecarbonyl-4-substituted thiosemicarbazide derivatives 
showed that substitution at the position 2 of the pyridine ring 
enhances biological activity.  
 In the present study, the main goal was to build robust 
and reliable QSAR models for the description and prediction 
of antioxidant activity of heterocyclic and Schiff bases 
dipicolinic acid derivatives. The relevance of the best QSAR 
model should also be to provide a chemical and structural 
explanation of antioxidant activities of the most active 
compounds. Also, the aim of this study was to compare the 
statistical performance of different algorithms for splitting 
data into training and test set, as well as models obtained by 
two sets of descriptors calculated by different computer 
programs.  
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Table 1. Structures along with experimentally determined antioxidant activities (expressed as log % DPPH) of 2,6-
pyridinedicarboxylic acid derivatives [16, 17]. 
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2. MATERIALS AND METHODS 

2.1. Data Set 

The synthesis and antioxidant evaluation of 43 DPA 
derivatives have been described in our previous studies [16, 
17]. Antioxidant activities, expressed as % scavenging 
activity on DPPH (using ascorbic acid as standard), were 
converted in the form of the logarithm (log %DPPH). Higher 
value of log %DPPH means more powerful antioxidant 
activity. Structural details of all studied molecules along with 
experimental log %DPPH are shown in Table 1. 

2.2. Descriptor Calculation and Selection 

 The three-dimensional (3D) structures of 43 DPA 
derivatives were optimized using the molecular mechanics 
force field (MM+) [18] applying the Avogadro 1.2.0. 
(University of Pittsburgh, Pittsburgh, PA, USA). 
Subsequently, all structures were submitted to the geometry 
optimization using semiempirical AM1 method [19]. The 
molecular structures were optimized using Polak-Ribiere 
algorithm until the root mean square gradient (RMS) was 
0.001 kcal/(Åmol).  
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 The Polar Surface Area (PSA) surface was generated 
from an optimized structure by VEGA ZZ (Department of 
Pharmaceutical Sciences of the University of Milan, Milan, 
Italy) [20].  The Polar Surface Area (PSA) was calculated 
considering polar and apolar atom surfaces, as dotted shape, 
with probe radius 1.4 and density 60.  
 Two set of descriptors were calculated by two different 
softwares 1. DRAGON descriptors – were calculated using 
Parameter Client (Virtual Computational Chemistry 
Laboratory, an electronic remote version of the Dragon 
program [21]. Seventeen groups of two-dimensional (2D) 
and three-dimensional (3D) Dragon’s descriptors were used 
to generate QSAR models: constitutional, topological, walk 
and path counts, connectivity, information, 2D auto-
correlations, edge adjacency, BCUT (Burden eigenvalues), 
topological charge, eigenvalue-based, geometrical, RDF 
(Radial Distribution Function), 3D-MoRSE (3D-molecular 
representation of structures based on electron diffraction), 
WHIM (WeigHted Covariance Matrices), GETAWAY 
(Geometry, Topology, and Atom-Weights AssemblY) 
descriptors, functional group counts, and molecular 
properties [22]. In order to reduce huge number of calculated 
descriptors (about 1260), firstly, zero values descriptors were 
excluded from initial pool. Further exclusion was performed 
using QSARINS-Chem 2.2.1 [23]: constant and semi-
constant descriptors, i.e. those having chemical compounds 
with a constant value for more than 80 %, and too inter-
correlated descriptors (> 85%) were rejected.  
 2. ADMEWORKS descriptors – calculated by 
ADMEWORKS ModelBuilder, tool for building 
mathematical models (Version 7.9.1.0(build.187.4934.2102) 
Enterprise Edition Copyright (C) 2011 Fujitsu Kyushu 
Systems Limited). Numerous groups of 2D and 3D 
molecular descriptors have been calculated, such as: charged 
partial-surface-area (CPSA) descriptor, atom-specific CPSA 
descriptor (DATOM), carbon type (CTYPE), molecular 
distance edge descriptor (DEDGE), fragment descriptors 
generation routine (DMFRAG), hydrogen bond specific 
descriptors for pure (HBPURE) and mixed (HBMIX) 
compounds, measure of the conformational flexibility, 
Hückel molecular orbital calculation (HMO), MOPAC 
descriptor, molecular strain energy calculation (STRAIN), 
etc. [24]. Elimination of irrelevant descriptors was performed 
using Feature Selection command of ADMEWORKS 
ModelBuilder that includes following tests: a) missing 
values test - which excludes descriptors with missing values; 
b) zero test - which excludes descriptors with less than the 
specified percentage of non-zero values; c) automated 
correlations test - deletes all parameters that have single or 
multiple correlations to other parameters, with the R2 value 
larger than the specified threshold (0.7). 

2.3. Training and Test Set Compounds Selection 

 Two algorithms were used for creating the training and 
test sets in both set of descriptors: 
 1. Data sets were randomly divided into training (80 %, 
Ntrain = 35) and prediction (20 %, Ntest = 8) set using 
QSARINS. 
 

 2. Data sets were split by ranking method: Compounds 
were ranked by the activities from the most active to the least 
active compound. Then, the activities were divided into the 
bins by grouping the values into the six class intervals. 
Finally, one or two compounds were selected randomly from 
each class for the test set (Ntrain = 35, Ntest = 8) [25]. 

2.4. Regression Analysis and Validation of Models 

 The best QSAR models were obtained by using a Genetic 
Algorithm (GA) using QSARINS. In order to avoid the 
overfitting the smallest number of descriptors that can 
adequately model the activity of the compounds in the study 
should be used. According the Topliss-Costello rule [26], the 
number of variables should be higher or equal to 5. In this 
study, considering we worked with the small data set (35 
compounds in the training set), the number of descriptors (k) 
in the multiple regression equation was limited to four. 
Additional descriptors, will be resulted in overfittied and not 
predictive models. The models have been assessed by: fitting 
criteria; internal cross-validation using leave-one out (LOO) 
method and Y-scrambling; and external validation. Fitting 
criteria included: the coefficient of determination (R2), 
adjusted R2 (R2

adj), cross-validate R2 using leave-one-out 
method (Q2

LOO), global correlation among descriptors (Kxx), 
difference between global correlation between molecular 
descriptors and y the response variable, and global 
correlation among descriptors (ΔK), standard deviation of 
regression (s), and Fisher ratio (F) [27-29]. Collinearity 
among the descriptors has also validated by variance 
inflation factor (VIF). VIF is the reciprocal of tolerance: 
1/(1-R2

i) where R2
i is the squared multiple correlation of the 

ith independent variable regressed on the other independent 
variables in the analysis [30]. 
 Internal and external validations also included the 
following parameters: the coefficient of determination of test 
set (R2

ex), root-mean-square error of the training set 
(RMSEtr); root-mean-square error of the training set 
determined through cross validated LOO method (RMSEcv), 
root-mean-square error of the external validation set 
(RMSEex), concordance correlation coefficient of the training 
set (CCCtr), test set using LOO cross validation (CCCcv),  
and of the external validation set (CCCex) [27], mean 
absolute error of the training set (MAEtr), mean absolute 
error of the internal validation set (MAEcv) and mean 
absolute error of the external validation set (MAEex) [27], 
predictive residual sum of squares determined through cross-
validated LOO method (PRESScv) in the training set and in 
the external prediction set (PRESSex). The analysed external 
validation parameters also include. Robustness of QSAR 
models was tested by Y-randomisation test. 
 Investigation of the applicability domain of a prediction 
model was performed by leverage plot (plotting residuals vs. 
leverage of training compounds). The warning leverage h* is 
defined as 3p'/n, where n is the number of training 
compounds and p' is the number of model adjustable 
parameters [31]. Tools of regression diagnostic as residual 
plots and Williams plots were used to check the quality of 
the best models and define their applicability domain using 
QSARINS. 
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3. RESULTS AND DISCUSSION 

 Four models were obtained by two different sets of 
descriptors (calculated by Dragon and ADMEWORKS 
software) and two different methods (random and ranking) 
for creating training and prediction set.  

Models obtained by DRAGON descriptors: 

The random splitting model 
log %DPPH = -1.073 – 0.492 IVDE – 0.492 Mor08u – 
11.755 Dp + 1.736 R5u           (1) 
Compounds in the test set: 15, 20, 23, 31, 33, 36, 37, 42 
The ranking splitting model 
log %DPPH = 2.954 – 1.427 MATS4m + 1.093 EEig03d  – 
4.2 BELm4 + 0.974 Mor10p           (2) 
Compounds in the test set: 1, 2, 7, 16, 29, 33, 34, 35  
Models obtained by ADMEWORKS descriptors: 
The random splitting model 
log %DPPH = 0.545 – 0.4 NDB – 2.2 MATS5p – 0.182 
MDEN33 + 0.014 TPSA         (3) 
Compounds in the test set: 1, 4, 6, 7, 11, 13, 28, 29 
The ranking splitting model 
log %DPPH = 3.361 – 0.281 NDB – 0.432 GATS8v – 1.235 
MATS5p + 0.129 NUMHBD          (4) 
Compounds in the test set: 1, 2, 7, 16, 29, 33, 34, 35  
 The statistical results for the obtained models are 
presented in Table 2.  
 Description of descriptors included is given in Table 3. In 
order to exclude collinearity of descriptors included in same 
model, correlation matrix was generated (Tables 4-7). 
Descriptors included in models (1-4) are not mutually 
correlated (correlation coefficient, R ≤ 0.7). VIF values of 
individual descriptors from each model were also presented 
in Tables 4-7. Linear dependence within the correlation 
descriptors sets has been rejected since the all VIF < 5 [32]. 
Low collinearity is also verified by the low values of Kxx 
(Table 2). The molecular descriptor values have been 
tabulated in Supplementary File 1 (SF 1). Experimental and 
calculated log %DPPH by model (1-4) are shown in 
Supplementary File 2 (SF 2). 

 Satisfaction of fitting criteria implies the following: the 
closer R2 values are to unity, the more similar calculated 
values are to the experimental ones, that is, R2 ≥ 0.60. The 
minimum acceptable statistical parameters for internal and 
external predictivity include the following conditions: R2

ext ≥ 
0.60; CCC ≥ 0.85; RMSE and MAE close to zero; and 
RMSEtr < RMSEcv. Robust QSAR models should have R2

yscr 
and Q2

yscr < 0.2, as R2
yscr > Q2

yscr [33]. Also, larger F 
statistic and lower standard deviation means that the model is 
more significant. Analysis of Table 2 indicates that all four 
models satisfy threshold for most of the internal validation 
parameters. However, models (1) and (2), created by Dragon 
descriptors, have better fitting performances (higher R2, R2

adj,  
 

Table 2. The statistical results for the QSAR models for 
antioxidant activity. 

 Model (1) Model (2) Model (3) Model (4) 

Ntr 35 35 35 35 

Nex 8 8 8 8 

Fittinig criteria 

R2 0.821 0.805 0.692 0.646 

R2
adj 0.797 0.779 0.650 0.599 

s 0.281 0.278 0.381 0.374 

F 34.455 30.914 16.818 13.689 

p < 10-5 < 10-5 < 10-5 < 10-5 

Kxx 0.357 0.325 0.251 0.192 

ΔK 0.034 0.004 0.031 0.074 

RMSEtr 0.260 0.257 0.353 0.257 

MAEtr 0.212 0.19 0.290 0.257 

CCCtr 0.902 0.892 0.818 0.785 

Internal validation criteria 

Q2
LOO 0.753 0.725 0.576 0.522 

RMSEcv 0.306 0.305 0.414 0.403 

MAEcv 0.250 0.226 0.340 0.300 

PRESScv 3.268 0.849 5.989 5.670 

CCCcv 0.866 0.849 0.750 0.715 

R2
Yscr 0.118 0.118 0.119 0.116 

Q2
Yscr -0.224 -0.232 -0.208 -0.215 

External validation criteria 

RMSEext 0.674 0.550 0.231 0.520 

MAEext 0.611 0.365 0.197 0.381 

PRESSext 3.637 2.424 0.426 2.160 

R2
ext 0.717 0.833 0.848 0.639 

Q2
F1 -0.009 0.55 0.842 0.562 

Q2
F2 -0.078 0.507 0.84 0.56 

Q2
F3 -0.203 0.106 0.868 0.203 

CCCext 0.678 0.657 0.908 0.666 

!!!  0.261 0.083 0.765 0.26 

∆!!!  0.366 0.651 0.12 0.4 

Applicability 
domain  

N compounds 
outlier 2 (16,17) 3 (1,16,27) 0 2 (16,17) 

N compounds 
out of 

app.dom. 

3 (39, 42, 
20) 1 (17) 0 0 

 

F, and CCCtr, and lower s, RMSEtr, MAEtr than models (3) 
and (4), obtained by ADMEWORKS descriptors. Also, 
models (1) and (2) showed a better performance in the  
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internal validation (higher Q2
LOO, CCCcv, and lower RMSEcv, 

MAEcv, and PRESScv. The results of Y-scrambling 
demonstrated that all models were not obtained by chance 
correlation (Q2

yscr < 0.2, and R2
yscr< 0.2; R2

yscr > Q2
yscr). 

In spite of a good fitting performance and good internal 
validation, the real predictive power of model (1) and (2) is 
failed according to the external validation parameters and  
outliers and compounds outside of applicability domain. 
Moreover, negative values of Q2

F1, Q2
F2 and Q2

F3 of model 1, 
as well as very low values (< 0.7) of model (2) and (4), 
including values of 2

mr  < 0.6 indicate these models are 
useless for external predictivity. 
 Model (3) was generated by ADMEWORKS descriptors 
and random splitting methods. In spite of its powerless 
fitting and internal performances, model possess real 
predictivity for the chemicals in the validation set according 
to high values of parameters for external validations (R2

ext = 
0.848; CCCext = 0.908) and small difference between RMSEtr 
and RMSEex, and between MAEtr and MAEex.). Also, 
Williams plot for same model reveals no outliers, and no 
compounds outside of applicability domain (Fig. 1). A 
scatter plot of experimentally obtained antioxidant activity 
by model (3) is shown in Fig. (2). Model (4) has weakest 
parameters of external validation, as well as one outlier (16), 
and one compound out of the applicability domain (17).  
 Despite of difference in predictive potential of the 
proposed models, included molecular descriptors may relieve 
in elucidation of important physicochemical and structural 
requirements for the antioxidant activity of heterocyclic and 
Schiff bases dipicolinic acid derivatives. Negative sign of 
variable that represents a number of double bonds (NDB) in 
equations (3) and (4), means that this type of covalent bond 
is unfavourable for the antioxidant power (except double 
bonds in phenyl or heterocyclic ring). Thus, the most active 
compound 30 (log %DPPH = 1.936) has 3 double bonds, 
while the compounds with low antioxidant activity have 6 
double bonds (41, log %DPPH = 0.301; 17, log %DPPH = -
0.854). Negative sign of descriptor MDEN33 in model (3) 
indicates that higher distance between tertial nitrogen atoms 
negatively influences on the antioxidant activity. Compounds 
without tertial nitrogen atoms have a higher antioxidant 
potential, such as thiosemicarbazides (28-33). Since DPPH 
test is based on the capability of stable free radical 2,2-
diphenyl-1-picrylhydrazyl to react with H-donors [34], 
positive coefficient of hydrogen bond donors (NUMHBD) in 
model (4) is expected. That implies that higher number 
hydrogens attached to the oxygen, nitrogen or sulphur atoms, 
positively influences on antioxidant activity, such as 
secondary nitrogen atoms in thiosemicarbazides (28-33). 
This supports our recent findings that enhanced value of 
hydrophilic factor, which is related with number of –OH, – 
NH2, and >NH groups in molecule, is favourable for 
antioxidant activity of coumarinyl Schiff bases [35]. Also, it 
corresponds with previously statement about negative 
influence of enhanced number of tertial nitrogen atoms on 
antioxidant activity. However, five compounds (22, 24, 31- 
33) have more than five hydrogen bond donors, and 
according the Lipinski's rule of five [36], as potential drug, 
they could have poor absorption or permeation. Topological 
polar surface area (TPSA) in model (3), is descriptor that also 

characterized drug absorption, including intestinal 
absorption, bioavailability and blood–brain barrier 
penetration. Polar surface area (PSA) is sum of surface of 
polar atoms (oxygen, nitrogen, sulphur, etc.) [37]. Although 
model (3) implies that molecules with enhanced values of 
TPSA have higher antioxidant activity, these molecules could 
poorly penetrate through the cell membranes [15, 38]. 
According the data presented in Supplementary File 1, value 
of TPSA for the most active compound (30) is larger 
(124.44) than for the least active (17) (114.27). TPSA is a 
useful descriptor in QSAR models, which a sign its 
coefficient can indicate whether a more polar ligand is 
favoured or disfavoured for enhanced activity. However, it is 
based only on the contribution of tabulated polar fragments, 
not from the 3D conformations of these chemical groups. 
Also, TPSA does not include the influence of positional 
changes of functional groups [38]. In order to additionally 
clarify sense of PSA for antioxidant activity of Schiff bases 
dipicolinic acid derivatives, we were calculated and 
compared PSA of the most active (30) and the least active 
compound (17). Apolar atom surface takes into account C 
and H atoms bonded to C atoms. Polar atoms are O, S, N, P 
and H, not bonded to C. Because of higher number of polar 
atoms in molecule (30), their PSA (203.4 Å2) is much higher 
than molecule (17) (165.6 Å2). Moreover, apolar surface area 
of the most active compound (30) is significantly lower 
(590.3 Å2) than at least active compound (17) (983.2 Å2). 
Fig. (3) shows a mapped PSA of the most active molecule 
(30) and the least active molecule (17), for comparison. 
Apolar and polar surfaces are presented as gradient of two 
color codes: black (apolar surface) and grey (polar surface). 
 3D-MoRSE descriptors, Mor08u and Mor10p, are 
involved in models (1) and (2). These descriptors were 
generated from electron diffraction studies and reflect the 
three-dimensional arrangement of atoms in a molecule [39]. 
Descriptor Mor08u denotes unweighted descriptors with 
scattering parameter s = 7 Å−1. Since it is unweighted, the 
descriptor has no discriminative ability and treats each atom 
equally. It has the possibility to distinguish the difference 
between the bond lengths of any kinds of atoms at least 0.12 
Å. Consider that their final values are derived mostly from 
long distances atoms, it has great power to distinguish mono- 
from bis-substituted dipicolinic derivatives (Table S1). 
Negative coefficient of Mor08u in Eq. (1) implies that lower 
values of that descriptor are favourable for the exhibition of 
antioxidant activity. Descriptor Mor10p reflects the 
contribution of 3D distribution of atomic polarizability (p) at 
a scattering parameter s = 9 Å−1. According to model (2), it 
is expected that increased values of Mor10p indicates higher 
antioxidant activity. As can be noticed from Table S1, this 
descriptor is extremely sensitive to the position of the 
sulphur atoms (atom with higher polarizability, p = 19.6) in 
molecules.  
 MATS5p, MATS4m and GATS8v belong to the 2D 
autocorrelation molecular descriptors that describe how a 
considered property is distributed along a topological 
molecular structure. MATS5p corresponds to the Moran 
autocorrelation –lag 5 / weighted by atomic polarizability, 
while MATS4m is the Moran autocorrelation descriptor –lag 
5 / weighted by atomic masses. 
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Table 3. Summary table for descriptors included in models 1-4. 

Symbol Descriptor name Groups of descriptors 

IVDE Mean information content on the vertex degree equality Information  

Mor08u 3D-MoRSE signal 08 / unweighted 3D-MoRSE 

Mor10p 3D-MoRSE signal 10 / weighted by polarizability 3D-MoRSE 

Dp D total accessibility index / weighted by polarizability WHIM  

R5u R autocorrelation of lag 5 / unweighted GETAWAY 

MATS4m Moran autocorrelation of lag 4 weighted by mass Autocorrelations 

MATS5p Moran autocorrelation of lag 4 weighted by atomic polarizabilities  Autocorrelations 

GATS8v Geary autocorrelation of lag 8 weighted by van der Waals volume Autocorrelations 

EEig03d Eigenvalue 03 from edge adj. matrix weighted by dipole moments Edge adjacency 

BELm4 Lowest eigenvalue 4 of Burden matrix / weighted by atomic masses BCUT 

NDB Number of double bonds DMFRAG 

MDEN33 Molecular distance edge between all tert tert N  EDGE 

TPSA Topological polar surface area Mol. properties 

NUMHBD Number of hydrogen bond donors  H acceptor/donor 

 

Table 4. Correlation matrix for the descriptors included in model 1 and variance inflation factor (VIF) for individual descriptor. 

 
VIF IVDE Mor08u Dp R5u 

IVDE 1.45 1.00    

Mor08u 1.69 0.38 1.00   

Dp 1.23 0.00 0.01 1.00  

R5u 1.45 0.18 0.33 0.37 1.00 

 

Table 5. Correlation matrix for the descriptors included in model 2 and variance inflation factor (VIF) for individual descriptor. 

 
VIF MATS4m EEig03d BELm4 Mor10p 

MATS4m 1.49 1.00    

EEig03d 1.49 0.43 1.00   

BELm4 1.11 -0.28 0.09 1.00  

Mor10p 1.37 -0.41 -0.34 0.17 1.00 

 

Table 6. Correlation matrix for the descriptors included in model 3 and variance inflation factor (VIF) for individual descriptor. 

 
VIF NDB MATS5p MDEN33 TPSA 

NDB 1.96 1.00    

MATS5p 1.15 -0.20 1.00   

MDEN33 1.96 -0.49 -0.01 1.00  

TPSA 1.49 0.21 -0.01 0.34 1.00 

 

 



8    Combinatorial Chemistry & High Throughput Screening, 2018, Vol. 21, No. 3 Rastija et al. 

Table 7. Correlation matrix for the descriptors included in model 4 and variance inflation factor (VIF) for individual descriptor. 

 
VIF NDB GATS8v MATS5p NUMHBD 

NDB 1.49 1.00    

GATS8v 1.35 -0.13 1.00   

MATS5p 1.39 -0.20 0.01 1.00  

NUMHBD 1.85 0.43 -0.38 -0.02 1.00 

 

 GATS8v is Geary autocorrelation of lag 8 weighted by 
van der Waals volume [22]. These descriptors reflect 
contribution of pairs of atoms different polarizability/mass/ 
van der Waals volume at the defined topological distance or 
spatial lag. Therefore, MATS5p, MATS4m and GATS8v 
indicate dependence of one atom on value of polarizability 
/mass/ van der Waals volume of other atoms at the 
topological distance 5, 4, and 8, respectively. Their negative 
regression coefficients in models (3) and (4) suggest in 
unfavorable effect of increased autocorrelation contents of 
five-, four-, eight-member structural graphs weighted by 
atomic polarizability, mass, and van der Waals volume for 
the activity. 

 WHIM is geometrical descriptor calculated on the 
projections of the atoms along principal axes [24]. Descriptor 
Dp is total accessibility index weighted by atomic 
polarizability, which values are strongly influenced by kind 
and position of substituents on phenyl ring. Negative 
coefficient of Dp in model (1) implies that 3D distribution of 
substituents with the increased atomic polarizability (Cl, Br 
atoms) could negatively influenced to the antioxidant power. 

It explains weak antioxidant activity of compounds with Br 
(16) and Cl atoms (14, 15). Descriptor IVDE is mean 
information content on the vertex degree equality [24]. Since 
it is a measure of the lack of structural homogeneity or the 
diversity of a molecule [40], its negative coefficient in model 
(1) suggests that molecules with symmetrical moiety are 
potentially more active. 

 Descriptor BELm4 in model (2) belongs to the BCUT 
descriptors. BCUT descriptors are the eigenvalues of a 
modified connectivity matrix, the Burden matrix, which 
capture useful measurement of molecular diversity [41]. 
Highest value of BELm4 have most inactive compounds, 17 
and 20 (BELm4 = 1.894 and 1.607, respectively, Table S1), 
which correspond with a negative coefficient of that variable 
in model (2). Descriptor EEig03d in model (2) is related to 
the molecular polarity, which mainly described the electronic 
effect of molecule and the hydrophobic properties. Same as 
TPSA in model (3), positive regression coefficient of 
EEig03d in model (2) suggests that enhanced molecular 
polarity positively influence on antioxidant activity of 
compounds.  

 

 
Fig. (1). Applicability domain of the QSAR model for antioxidant activity calculated by model (3). 
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Fig. (2). Observed versus predicted log %DPPH for the 43 dipicolinic acid derivatives calculated by model (3). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (3). Dotted polar surface area (PSA) for the compound with highest (30), and compound (17) with lowest antioxidant activity. PSA is 
presented as gradient of two colors: black (apolar surface) and grey (polar surface). 
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Fig. (4). Structures of the proposed molecules as promising antioxidant agents. Antioxidant activities have been predicted according the 
model (3). 

 Based on the conclusions given in the QSAR analysis, 
structures of two new compounds (44, 45) with possible 
great activity are proposed (Fig. 4). Antioxidant activities of 
the proposed compounds have been predicted by means of 
the model (3) (log %DPPH = 1.953 and 2.015, for 44 and 45, 
respectively). Calculated descriptors are shown in 
Supplementary File 1. Applicability domain of the proposed 
new potentially active derivatives has been verified. 
Leverage (HAT) values of both compounds are inside the 
applicability domain of a model (0.267 for 44, 0.321 for 45; 
h* = 0.429).  The Williams plot of the regression is presented 
in Supplementary File 3 (SF 3). 

CONCLUSION 

 The results of the QSAR analysis suggest that derivatives of 
dipicolinic acid with the following structural feature may exhibit 
great antioxidant activity: low number of double bonds in 
molecules; absence of tertial nitrogen atoms; higher number of 
hydrogen bond donors; enhanced molecular polarity; 
substituents without halogen atoms; and symmetrical moiety. 
Model with the best external validation result was obtained by 
ADMEWORKS descriptors, and the test set was generated by 
random method. Obtained models could help in suggesting 
design of novel molecules with improved activity profile. 
According to developed model, structures of two new 
compounds with possible great activities were proposed. Thus, 
the model provides a practical tool for the prediction of 
antioxidant activity of new and untested antioxidant. 
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