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Abstract – In the present study we propose a new 
classification technique based on genetic 
algorithm and neural network, optimized for the 
cost-sensitive measure and applied to retail credit 
risk assessment. The relative cost of 
misclassification, which properly accounts for 
different misclassification costs of minority and 
majority classes, is used as the primary evaluation 
measure. The test of the new algorithm is 
performed on Croatian and German retail credit 
datasets for seven different cost ratios. An 
empirical comparison with others in the literature 
presented models demonstrates the potential of 
the new technique in terms of misclassification 
costs. 
 

Keywords – genetic algorithm; neural network; 
credit risk assessment; imbalanced datasets; 
misclassification cost. 

1.   Introduction 

Imbalanced datasets are common in many real-world 
domains, including finance, medicine, 
telecommunications, ecology, and biology. Such 
datasets can be considered as one of the major issues 
of the data mining process. A dataset is imbalanced if 
the classification categories are not approximately 
equally represented [1], [2]. It should be noted that 
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the minority class is usually of the highest interest 
because, when misclassified, it represents the largest 
cost [3]. Accordingly, class imbalanced datasets are 
very often related to cost-sensitive learning. 
Therefore, accurate classification of minority class 
instances is very important. 

Most of the published literature indicates that 
standard classification algorithms on imbalanced 
datasets suffer a significant loss of performance. It is 
inherent to the mentioned algorithms to often be 
biased in favor of the majority class, otherwise 
known as the ''negative'' class. There is a higher 
classification error rate for minority class instances, 
known as the ''positive'' class. Over the past years, 
many techniques have been proposed to address this 
type of classification problem, either through: (i) the 
data, (ii) the algorithmic, or (iii) the hybrid 
(combined) approach. All these techniques address, 
in their own way, the problem of class imbalance and 
contribute to improving the performance of standard 
classifiers when they are applied to the class-
imbalanced data. 

Classifiers are generally based on machine 
learning algorithms, and their performance is usually 
estimated according to the predictive accuracy of 
constructed models. However, this measure is not 
appropriate when the distributions are imbalanced 
and/or the costs of different errors vary greatly [4]. In 
support of this thesis, Chawla et al.[5] state that a 
typical mammogram dataset can contain 98% normal 
pixels and 2% abnormal pixels. The simple strategy 
of guessing, which always chooses the majority 
class, would provide a predictive accuracy of 98%. 
However, to achieve the goal of classification, the 
nature of application requires a fairly high rate of 
predictive accuracy of the minority class and allows 
for a small error rate in the majority class. Therefore, 
as is obvious, the standard measure of predictive 
accuracy is not appropriate in such circumstances. 
Many other measures showing the performance of 
the classifier are proposed in the literature. Their 
selection should be in accordance with the purpose 
and objectives of classification. 

In this introduction, we have mentioned some of 
the issues related to the classification in class and 
cost imbalanced datasets. One of the domains that is 
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sensitive to this type of issues is banking, especially 
credit risk assessment, because in many banks 
models of artificial intelligence take the role of 
decision-makers in the process of loan approval. 
Thereby, a poor credit risk assessment model, which 
does not take into account differential error 
misclassification costs, could lead to sub-optimal 
capital allocation [6]. In order to construct cost-
sensitive models, the objective of this study is 
exploring the impact of resampling techniques in 
combination with the feature selection technique to 
the classification results measured by the relative 
cost of misclassification. As a classifier, on which the 
impact of resampling techniques will be explored, the 
hybrid genetic algorithm with neural networks 
(HGA-NN), which performs feature selection and 
classification simultaneously, will be used [7]. 
Because of the pronounced asymmetry of the 
misclassification costs and their contribution to the 
financial performance of the financial institution, in 
the analysis of the classifier performance, the 
emphasis is on the analysis of the misclassification 
cost. With respect to the analysis, the algorithm 
optimized for the relative cost of misclassification 
will be proposed. 

The study is organized as follows. Section 2 
describes, in more detail, the problem of class 
imbalance in credit risk assessment and reviews the 
literature related to this problem. Section 3 describes 
techniques of class imbalance problem solving. 
Special emphasis is given to specifics of evaluation 
measures and techniques of validation to be used in 
terms of class imbalance. Section 4 describes the new 
technique for attributes selection and classification. 
Section 5 presents the results of the experiments, the 
performance evaluation and their comparison with 
the results presented in the literature. Section 6 
presents this study’s conclusions. 

2.   The Problem Description and the 
Literature Review 

Data with class imbalance often occurs in the field of 
classification. The main characteristic of this 
classification problem type is that one class’s 
examples significantly surpass the number of 
instances of other classes [3], [8]. The imbalance is 
expressed through the imbalance ratio (IR), which is 
defined as the ratio of the number of cases in the 
majority class to the number of examples in the 
minority class. In most cases, the class imbalance 
problem is associated with a binary classification, but 
it also appears in multiclass problems, in which there 
may be more minority classes, causing an even 
greater problem in the classification [3]. 

It is important to note that it is usually more 
difficult to obtain instances of real data for the 
minority class and that the collection of such data is 

associated with significant costs. In credit risk 
assessment, the minority class represents bad loans. 
The costs of misclassifying a client that subsequently 
fails (bad loan) are very different to the costs of 
misclassifying a client that does not fail. In the first 
case, the lender can lose up to 100% of the loan 
amount while, in the latter case, the loss is just the 
opportunity cost of not lending to that client. 
Therefore, the loan approval process aims to reject 
bad applicants and instances of bad loans are less 
frequently in real data. 

Because most of the standard algorithms for 
machine learning assume a balanced set of training 
data with approximately uniform cost of incorrect 
classification, in imbalanced sets, these algorithms 
generate suboptimal classification models. Usually, 
the majority cases are well classified, while minority 
instances are more often incorrectly classified. 
Therefore, the algorithms that achieve the best results 
with a balanced set do not necessarily achieve the 
best performance with imbalanced classification sets 
[9].  

Series of scientific studies with the aim to solve 
such problems is presented in the literature. Chawla 
et al. [5] state that their technique SMOTE can 
achieve better classifier performance (in ROC space) 
than it is achieved by changing the loss ratio with 
RIPPER techniques or changing the class priority 
with a naive Bayes classifier. Dal Pozzolo et al. [10] 
perform parallel testing of alternative strategies on a 
subset of the data and progressively abandon 
alternatives that are significantly worse. They 
conclude that the best strategy depends on the 
applied algorithm and the dataset used. Van Hulse 
and Khoshgoftaar [11] infer that a simple resampling 
technique, such as random undersampling, is 
generally the most effective to improve models’ 
performance. Their experiment is designed on the 
basis of imbalanced and noisy data. Chawla et al. 
[12] analyze the impact of relationships between 
classes on the misclassification cost. To optimize the 
relationships between classes before model 
construction they propose the envelope technique, 
which finds the necessary (optimal) relation between 
classes by repeating the resampling and optimization 
of evaluation functions such as F-measure, AUC, 
cost, cost-curves and cost dependent F-measure. 

Datasets that have a highly imbalanced class 
distribution represent a fundamental challenge in 
machine learning, not only in terms of construction 
of the model but also in terms of ways to measure the 
quality of the constructed models. There are many 
different measures of model evaluation used in class 
imbalance conditions, each with its own bias. There 
are also different strategies of cross-validation. 
Selected evaluation measures and cross-validation 
strategy must be consistent with the problem to be 
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analyzed [13], and their characteristics should be 
well known. Although there are different technique 
proposals to solve the problems of class imbalance, it 
can be observed from the literature review that a 
good technique has to consider: (1) collected data, 
(2) the classification method and (3) the performance 
measure.  

Because of the great diversity of the presented 
techniques and algorithms, as well as the diversity of 
the application domains, it is difficult to simply 
classify all existing approaches for reducing 
problems related to cost-sensitive classification on 
imbalanced data. From the literature review [14] 
[15], [16], it can be concluded that there is a 
relatively great interest in the study of this problem, 
but in the area of the credit risk assessment this 
subject is not adequately researched. The need exists, 
because instances of bad loans are less frequently in 
real data and the costs of misclassifying bad and 
good clients are very different. As well as in the 
previous research efforts, we did not find studies that 
research feature selection and resampling techniques 
in combination with misclassification costs. 
Therefore, the research presented below seeks to 
cover a perceived gap by exploring the impact of 
resampling techniques, combined with the feature 
selection technique, on the classification results, 
primarily based on the misclassification cost. The 
study creates a new technique optimized for the 
relative cost of misclassification in the domain of 
retail credit risk assessment. Thereby, small 
differences in model power can lead to significant 
economic impact for the users. Hence, research in 
this area assumes greater significance because a poor 
credit risk model could lead to sub-optimal capital 
allocation.  

3.   Class Imbalance Problem Solving 
Techniques  

Data mining and machine learning consider class 
imbalance mainly in two ways. One is by assigning 
different weights to the training examples 
(algorithmic approach), and the other is by 
resampling the original data (data approach) [5]. 
These approaches can also be used in combination 
with each other, i.e., the hybrid approach. 
Conclusions concerning which approach is better are 
not always the same, but, in most cases, the 
efficiency of data approaches was better [5], [11]. 
The data approach is more present because the 
technique of this approach is independent of the used 
classifier and can be easily applied to any problem. 
The vast majority of authors use resampling 
techniques to mitigate the problem of class 
imbalance [17] by balancing the number of samples 
in the minority and majority classes [2]. Regularly, 

resampling is carried out as long as the classes are 
not approximately equally represented. 

Random oversampling (ROS) of the minority 
class is the simple strategy of using random 
replication of positive examples to balance the class 
distribution. This technique increases the overfitting 
likelihood of minority class examples because it 
makes exact copies of the minority examples. To 
overcome the overfitting of minority class examples, 
Chawla et al. [5] have proposed a managed technique 
named Synthetic Minority Oversampling Technique 
(SMOTE). This technique generates artificial 
positive examples by interpolating attribute values of 
the existing closest examples. It does this by finding 
the k nearest neighbors of a minority class and then 
generating new synthetic examples in the direction of 
some or all of the nearest neighbors, which depends 
on the amount of the requested new examples [5]. 
Random undersampling (RUS) of the majority class 
is the resampling technique that removes the majority 
class examples from the sample as long as a minority 
class does not reach a defined percentage of the 
majority class.  

RUS and ROS have different drawbacks. RUS 
can potentially remove some important examples of 
the majority class, and ROS can lead to the 
overfitting of minority class examples [1]. López et 
al. [3] also concluded that the more sophisticated 
techniques are less general, were developed 
specifically for a particular set of problems, and, 
when compared to a large number of reference 
problems, might provide inferior performance. 

Sampling techniques are frequently used 
techniques for solving problems related to class 
imbalance and the different costs of incorrect 
classification, but they are not the only ones used. 
Techniques that fall into the algorithmic approach are 
also used to solve this type of classification problem 
[3]. The central issues in the algorithmic approach 
for cost-sensitive learning are: (i) how to take into 
account the costs of incorrect classifications during 
model construction and (ii) how to adapt the model 
to user requirements in the operation phase. The 
algorithmic approach affects the classification results 
in some of the following ways, i.e., through; (1) 
changes in the underlying algorithm, (2) unequal 
weight given to the class instances to guide a 
classifier to pay much more attention to the minority 
class, or (3) changes in the classification threshold. 

Hybrid approaches include techniques on the 
data and algorithmic level, as well as their 
combinations, so that the created model minimizes 
the misclassification costs. With the inclusion of 
hybrid techniques, the construction process of a 
classification model becomes more complex. 
Overall, the idea of the cost-sensitive classification is 
not to make the least amount of errors in the 
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classification or to achieve maximum accuracy, but 
to construct a model that will produce the least 
possible misclassification cost. Objectives, such as 
error minimization and cost minimization, are not 
necessarily the same; moreover, in imbalanced sets, 
they are usually not. 

3.1.   Evaluation measures  

The quality of the constructed classification model 
depends on the quality of the classification algorithm, 
the data quality and the selected evaluation measures. 
Specifically, we will not obtain the same model 
quality picture when measuring this quality 
according to measure A or B. Although each measure 
has shortcomings, using an array of measures 
provides a richer picture of model quality than if we 
used only a single measure. Which of the result 
evaluation measures will be used as the main one in a 
particular case depends on the nature of the problem 
and the objectives of classification.  

The results of classification and validation can 
be shown in a confusion matrix (CM), which is a 
useful tool for analyzing how well a classifier can 
recognize tuples of different classes [18]. A 
confusion matrix for two classes is shown in Table 1.  

Table 1. Confusion matrix for a two-class problem 

 
Predicted result Recognition 

rate Default Non-default 

Real 

Default true positives (TP) 
false negatives (FN) 

(Type I error) 
Sensitivity 

(Recall) 

Non-
default 

false positives (FP) 
(Type II error) 

 
true negatives (TN) Specificity 

  Precision  Accuracy (%) 
 

In order to compare two different models, we can 
compute diverse measures from the confusion 
matrix. Classification accuracy is the most common 
measure of performance that directs machine 
learning algorithms and, according to the confusion 
matrix (Table 1), is defined as:  
 

Accuracy (%)  =  (TP + TN) / (TP + FP + TN 
+ FN) *100. (1) 

Predictive accuracy might not be appropriate when 
the data are imbalanced and/or the costs of different 
errors vary markedly [1]. When the specified 
conditions are met, the Area Under the ROC Curve 
(AUC) can be used as a measure of model quality. It 
combines the FPR and the TPR ratios into one single 
measure. The ratios TPR (or sensitivity, or recall) 
and FPR (or 1-specificity) are calculated according to 
the following equations: 

 

TPR = TP / (TP + FN), (2) 
FPR = FP / (FP + TN). (3) 

 

 The ROC curve best shows the relationship 
between the TPR and the FPR ratios. The X-axis 
represents the FPR and the Y-axis represents the TPR 
[19]. The ROC curve treats the costs of a type I error 
(classifying a subsequently failing client as non-
failed) and a type II error (classifying a subsequently 
non-failed client as failed) the same [6]. Accordingly, 
the AUC is the classifier quality measure 
independent of the selected decision-making criterion 
and a priori probability [1]. The independence of the 
a priori probability and decision-making criterion is 
not always desirable. Indeed, if we want to construct 
a classifier that will be best adapted to the specific 
decision-making criterion, then we need the measure 
that would best express that criterion. Based on that 
measure, we will make the right decision about the 
best classifier. For a certain class distribution and 
costs, the classifier with the best AUC can be 
suboptimal. Therefore, in addition to the AUC, 
we use the F-measure and the relative cost of 
misclassification as additional measures of the 
classifier quality. 

While the ROC curve plots the relationship 
between the TPR and the FPR ratios, the F-measure 
is the ratio between the values TP, FP and FN. The 
F-measure balances the relationship between 
precision and recall, and the result is a number that 
reflects the "goodness" of the classifier for the 
minority examples. The F-measure is the harmonic 
mean of precision and recall and tends towards the 
lower of the two [20]:  

F-measure = (2 * precision * recall) / 
(precision + recall), (4) 

where the equation for recall is equivalent to the TPR 
and the equation for the precision calculation is 

precision = TP/(TP+FP). (5) 

There is a weighted measure of precision and recall: 

F-β = ((1+ β2) * precision * recall) / (β2 * 
precision + recall), (6) 

where β corresponds to the relative importance of 
recall versus precision. 

In this study, the emphasis is on the 
misclassification cost. The total relative cost of 
misclassification (RC) will be calculated according to 
the following equation [21] : 

 

RC = α (PICI) + (1- α) (P IICII), (7) 

where α is the probability of being a ‘bad’ client, PI 
is the probability of a type I error, CI is the relative 
cost of the type I error, PII is the probability of the 
type II error, and CII is the relative cost of the type II 
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error. The RC of each model is computed for seven 
cost ratios, while the best model for each ratio is the 
model with the lowest RC value. While the accuracy, 
as a conventional performance measure, ignores the 
inherent costs of type I and type II errors to profits, 
RC, on the other hand, takes into account costs of 
type I and type II errors, and provides a more suitable 
risk-based performance measure. Accordingly, RC 
takes better into account the objectives of the lending 
company. 

3.2.   Validation techniques  

As we noted, in imbalanced datasets, it is particularly 
important to use appropriate measures for the quality 
of the constructed model. Almost equally important 
is to select the most appropriate technique for model 
performance validation. Classifier performance 
validation is a necessary procedure to assess how a 
classifier will perform when it classifies new 
instances. The way this task is performed has a direct 
influence on the analysis of the quality of the 
constructed model [22]. 

Applying a random division of the instances 
over training and test folds may result in a problem 
known as dataset shift. The problem of dataset shift 
is defined as the case where training and test data 
follow different distributions. This is a common issue 
that can affect all types of classification problems. 
The issue is especially relevant when dealing with 
imbalanced classification because a misclassified 
example of the positive class can create a significant 
drop in performance. Stratified k-fold cross-
validation is a technique used usually for assessing 
how a classifier will perform when classifying new 
instances of the task at hand. This avoids prior 
probability shift because, with an equal class-wise 
distribution on each fold, the training and test set will 
have the same class distribution. 

After the application of a resampling technique 
for balancing the imbalanced dataset, the sample is 
not representative in relation to the population. The 
shift is intentionally induced. Therefore, the best 
representative of the entire data population is the 
original sample, before balancing. Regarding this 
fact, a stratified 10-fold cross-validation technique is 
used for learning on the balanced dataset, and the 
original dataset is used for the final model 
performance validation. 

 
 
 
 
 
 
 
 

4.   Model Development  

The class imbalance and different misclassification 
costs represent significant challenges for 
classification and have significant impact on some of 
the performance measures. From the results 
presented in [7], it is apparent that the HGA-NN 
algorithm achieves excellent results in terms of 
classification accuracy in retail credit risk 
assessment. To achieve equally good results 
according to the relative costs of misclassification, 
new techniques will be incorporated in this 
algorithm. The newly created algorithm optimizes 
performances in terms of the average relative cost of 
misclassification, as well as in relation to other 
measures of the classification quality inherent to 
class imbalance. 

4.1.   The extended HGA-NN algorithm 

The HGA-NN technique, presented in [7] utilizes the 
earlier experience of experts and the efficiency of 
fast algorithms for feature ranking, as well as the 
optimization capabilities of a GA. This three-step 
hybrid algorithm includes search space reduction, 
refining of the reduced feature subset, and 
incremental stages. Search space reduction quickly 
removes most of the irrelevant features. Refining of 
the reduced feature subset then further examines the 
reduced feature set. An incremental stage 
additionally improves the model’s performance. 

After a careful evaluation a lot of experimental 
results, some practical implementations and checking 
the findings in the literature, we designed the 
technique optimized for the cost-sensitive measure. 
Figure 1 shows the extended HGA-NN technique 
which optimizes the performance in relation to the 
classification quality measures inherent to class and 
cost imbalance.  

Our preliminary experiments and Marqués et al. 
[23] indicate that search space reduction should be 
applied on the original dataset and that only after 
search space reduction can we use some of the 
resampling techniques. Accordingly, resampling with 
some of the previously described resampling 
techniques, such as ROS, RUS or SMOTE, was 
performed after search space reduction and before 
the reduced feature subset refinement. Thus, the 
classification algorithm, which calculates the 
goodness of individuals in a population, uses a 
balanced dataset. This provides an environment that 
minimizes the weaknesses of most algorithms for 
classification, i.e., their bias to the majority class, 
while providing favorable conditions for fast feature 
selection algorithms. 
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Input:   originalDataset  
         expertFeatureSubset     // if exists 

Output:  modelPerformance 
 

// Search space reduction  
reducedFeatureSet.add(expertFeatureSubset) 

featureSelector = {GA-NN, InformationGain, GainRatio, Gini, Correlation,   

         ForwardSelection} 

 

// GA-NN based feature selection and parameter optimization 
bestPerformance = performGANN(originalDataset) 

reducedFeatureSet.add(bestPerformance.featureSubset()) 

bestParameters = bestPerformance.getParameters() 

featureMax = bestPerformance.featureSubset().size 

 

// Feature selection for all featureSelector except GA-NN 
for (int i = 1; i < featureSelector.length; i++) { 
     reducedFeatureSet.add(featureSelector[i].select(originalDataset, 

          featureMax))} 
samplingTechnique = {ROS, RUS, SMOTE} 

for (int i = 0; i < samplingTechnique.length; i++) { 
     // Resampling  
     balancedDataset = reSampling(samplingTechnique[i], originalDataset, 

           reducedFeatureSet) 

     // Reduced feature subset refinement 
     do { 
           population = createInitialPopulation(balancedDataset,  

      reducedFeatureSet) 

           performances = performanceCalculation(balancedDataset, 

        population, bestParameters) 

           bestPerformance = performances.getBest() 

           while (NOT convergenceCriterion) { 
       population = generateNewGeneration(population, performances) 

       performances= performanceCalculation(balancedDataset, 

        population, bestParameters) 

       if (bestPerformance.compare(performances.getBest())) { 
               bestPerformance = performances.getBest() 

       } 
           } // end while  
           if (generationsWithoutImproval <= 2) { 
           // Add designated solution to initial solutions   
              reducedFeatureSet.add(bestPerformance.featureSubset()) 

           } 
     // Incremental stage control 
     } while (generationsWithoutImproval <= 2) 
  } // end for  
  // Final model validation 
  filteredOriginalData = filter(originalDataset, 

       bestPerformance.featureSubset()) 

  modelPerformance = modelValidation(filteredOriginalData, 

        bestPerformance.getModel()) 

  return modelPerformance 
 

Figure 1. Pseudo-code of the extended HGA-NN technique 
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In doing so, regardless of the applied resampling 
technique, the resampling produces class balance in 
the learning data. The new algorithm, in all cases, 
first obtains a balance of 50:50 in the learning data, 
which is theoretically the best ratio for most 
algorithms for classification. Class balance is 
established because the matrix of the costs is 
unknown. Establishing a relationship other than 
50:50, without in an advance defined 
misclassification costs, with a conceptual aspect is 
not justified. Defining the misclassification costs is a 
very challenging and important task in real world 
financial environments and is outside the scope of 
this paper. With the matrix of costs, the banks 
determine their own attitude to risk. Ultimately, cost 
optimization and capital allocation depend 
significantly on these values. 

By applying the described resampling techniques, the 
initial objective, i.e., the equal treatment of different 
classes in the model construction, is reached. To 
assess how the model will perform when it classifies 
new instances, final model performance validation is 
performed on the representative sample for the 
population, i.e., on the original dataset. In addition, 
after the model construction, we can use the 
threshold-moving technique to adjust the output 
threshold toward inexpensive classes such that 
positive (high-cost) samples are unlikely to be 
misclassified. With this approach, we can relatively 
quickly additionally optimize model results in 
accordance with a specific (a posteriori defined) 
matrix of costs to obtain the best results for the target 
cost ratio.  

 
Table 2. Summary of parameters for the HGA-NN and extended HGA-NN used for a Croatian and German dataset 

 

Parameter 
Set up for dataset 

Croatian German 
Population initialization 

  population size  50 
  initial probability for a 
  feature to be switched on  0.6 

  maximum number of features  12 16 
  minimum number of features  5 6 

Reproduction 
  Fitness measure accuracy 
  Fitness function neural network 
    the type of neural network multilayer feed-forward network 
    network algorithm back-propagation 
    activation function  sigmoid 
    the number of hidden layers 1 
    the size of the hidden layer  (number of features + number of classes) / 2 +1 
     training cycles  500 50 
     learning rate  0.6 0.29 
     momentum  0.2 0.43 
   selection scheme tournament 
     tournament size 0.05 
   dynamic selection pressure  Yes 
   keep best individual  Yes 
   mutation probability 0.1 
   crossover probability 0.9 
   crossover type one point uniform 

Condition for completion 
  maximal fitness Infinity 
  maximum number 
  of generations  10 

  use early stopping No 
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The algorithm shown in Figure 1 is constructed using 
the Rapid Miner 5.1.15 and Weka 3.6.10 tools 
with the parameters shown in Table 2. Parameters are 
shown separately for a Croatian and German dataset. 
Rows in the table are merged for parameters that 
have the same values for both data sets. The 
parameters are not changed throughout the 
experiment for the HGA-NN and extended HGA-NN 
techniques. Extensions of the Rapid Miner tool were 
necessary to execute the algorithm. The standard 
Rapid Miner genetic algorithm has been extended so 
that it can accept, as part of its own initial population, 
the initial solutions generated by the other techniques 
and the domain’s experts. This extension has also 
enabled the introduction of the incremental stage of 
the algorithm.  
By keeping the same parameters for the HGA-NN 
and extended HGA-NN, the differences between the 
experimental results will be affected by the 
additional techniques that mitigate the impact of 
class imbalance and different misclassification costs 
on classification results; thus, their contribution to 
the results will be easy to quantify. 

4.2.   Results evaluation and comparison 

Comparison of the results obtained by using the 
standard HGA-NN technique and the results obtained 
by using the extended HGA-NN technique is 
possible because the parameters are not changed 
throughout the experiments. However, additional 
techniques that mitigate the impact of class 
imbalance and different misclassification costs on 
classification results are added. The above shows that 
the differences in the results are exclusively the result 
of the technique’s extension. To determine the 
overall quality of the new technique presented here, a 
comparison of its results and the results of other 
techniques reported in the literature will be 
performed. It is justified to expect that banks will 
want to optimize the cost function for some ratio and 
not the accuracy function. Because the best ratio for 
each bank is determined by the banks themselves, the 
most effective model for each bank depends on this. 
Because this is unknown, a comparison procedure for 
seven cost ratios will be presented to select the best 
model. 

Two statistical tests are considered to be most 
suitable for testing the existence of statistically 
significant differences in the results of several 
classifiers for several independent samples. The first 
is a very well-known parametric test: the analysis of 
variance (ANOVA) for repeated measures. The 
second is a rarely used, non-parametric alternative to 
the above test: the Friedman test [24]. Demšar [25] 
states that ANOVA can be conceptually inadequate 
and statistically uncertain because, as a parametric 
test, it is based on different assumptions (normality, 

homogeneity of variance) that often are not met due 
to the nature of the problem. The Friedman test, as a 
non-parametric version of ANOVA for repeated 
measures, does not have these limitations [25]. The 
price for this freedom is paid by a lower power 
Friedman's test compared with the parametric 
ANOVA. The Friedman test statistics are based on 
the average performance ranks (R) of classification 
algorithms for all datasets and are calculated as 
follows: 

𝜒𝐹2 = 12𝑁
𝑘(𝑘+1)

[∑ 𝑅𝑗2𝑗 − 𝑘(𝑘+1)2

4
], 

where      𝑅𝑗 = 1
𝑁
∑ 𝑟 𝑖

𝑗
𝑖 . (8) 

In Eq. (8), N is the number of different datasets (the 
ratio of costs) for which measurements were 
conducted, k is the total number of classification 
algorithms, and 𝑟𝑖

𝑗 is the ranking of the j-th algorithm 
of the i-th dataset. Statistics for the Friedman test are 
a chi-square with [k-1] degrees of freedom [25]. 
Hypotheses with the Friedman test are: 

H0: There is no difference in the distributions of 
ranks in repeated measurements. 

H0: M1 = M2 = ⋯ = Mk 

HA: The distributions of ranks in repeated 
measurements are different, i.e., at least one 
equality is not satisfied.  

If Friedman’s test gives a significant p-value, we 
perform the Nemenyi post hoc test. According to the 
Nemenyi post hoc test, the performance of two 
classifiers is significantly different if their average 
ranks differ by at least a critical difference (CD): 

𝐶𝐷 = 𝑞𝛼,∞,𝑘�
𝑘(𝑘 + 1)

12𝑁
, (9) 

where N is the number of different datasets, k is the 
total number of classification algorithms, and the 
value 𝑞𝛼,∞,𝑘 is based on the critical values used for 
the Turkey test [25]. 

5.   Empirical Analysis 

In this section, the objective is to analyze 
the classification results of the new technique in the 
domain of retail credit risk assessment. Classification 
performances are measured by  various measures of 
performance, focusing on the relative 
misclassification costs. Thereby, small differences in 
model power can lead to significant economic impact 
for the lending institution. The analysis was 
performed only on two datasets, i.e., Croatian and 
German, because lending companies don't present 
publicly their own retail datasets. As a result of such 
circumstances, a cost-sensitive classification on 
imbalanced data in the domain of the retail credit risk 
assessment is not adequately researched.  
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5.1.   Description of the experimental datasets 

Two real-world credit data sets have been taken to 
explore the quality of the new technique in the 
classification of imbalanced datasets in retail credit 
risk assessment. The total number of randomly 
selected instances in the Croatian dataset is 1000, 
including the 750 who successfully fulfilled their 
credit obligations, i.e., good credit customers, and 
250 who were late in performing their obligations 
and therefore are placed in a group of bad credit 
customers. The imbalance ratio is 3:1. The total 
number of features is 35, including 33 regular 
features and 2 (id, label) special features. The regular 
features contain 21 integers and 12 real values. The 
class label feature is binominal. The Croatian dataset 
have been described in detail in [21].    

The German credit dataset comprises 700 
instances of creditworthy applicants and 300 

instances of bad credit applicants. The imbalance 
ratio is 7:3. It contains 30 regular features of the 
integer data type and 2 (id, label) special features and 
can be viewed at <http://ocw.mit.edu/courses/sloan-
school-of-management/15-062-data-mining-spring-
2003/download-course-materials/>. All of the 
features with descriptive statistics are shown in [7].  

5.2.   Results on Croatian dataset 

The results in Table 3 show that, when the HGA-NN 
technique is used, the obtained model accuracy is 
higher; however, other performance measures show 
worse results. When the extended HGA-NN 
techniques are used, we can see that the HGA-NN 
ROS provides the best results for all other 
performance measures, except for accuracy. 

Table 3. Results of techniques on the Croatian dataset 

Technique Accuracy AUC F-score F-β TP FN FP TN 

HGA-NN 82.9a 0.7447 0.6274 0.5955 144 106 65 685 
HGA-NN RUS 76.1 0.7767 0.6283 0.7251 202 48 191 559 
HGA-NN ROS 78.7 0.7953a 0.6559a 0.7414a 203 47 166 584 
HGA-NN SMOTE 76.0 0.7827 0.6330 0.7372 207 43 197 553 

 aThe best result for each measure. 
 
As previously stated the misclassification cost of the 
minority class is usually higher than the cost of 
incorrect classification of the majority class. 
Therefore, the highest classification accuracy is not a 
cost-optimal result. Optimal cost depends on 
accuracy but also on the relation between the cost of 
type I and type II errors, which depends of economic 
cycles, capital availability on the market, bank 
preferences and other circumstances. In terms of 
cost, the prediction accuracy deterioration is justified 
as long as the reduction in cost, due to the reduction 
of type I errors, results in a lower increase in cost due 
to an increase in type II errors. The misclassification 
cost may be optimal with lower accuracy. 
 Since the costs of type I and type II errors are 
context specific, it is difficult to evaluate credit risk 

models based on one ratio alone. According to Eq. 
(7), the relative cost of misclassification is calculated 
and presented in Table 4 for each model and for 
seven ratios of type I and type II errors. For each 
ratio, the best model is the one with the lowest 
relative cost value. Table 4 also shows that the most 
accurate classification is the best classification for 
the bank, with respect to the relative cost of 
misclassification, only when the cost ratio of type I 
and II errors is equal. Already in the cost ratio 2:1 of 
type I and II errors, the most accurate classification 
may not be the most cost favorable. As the cost ratio 
increases, the basic, most accurate technique 
becomes worse, in terms of cost, in comparison with 
new techniques that have used some extensions. 

Table 4. Relative misclassification costs (RC) comparison on the Croatian dataset 

Technique 
Cost ratio (CI:CII) 

 1:1  2:1  3:1  4:1  5:1  8:1  10:1 

HGA-NN 0.1710a 0.2770 0.3830 0.4890 0.5950 0.9130 1.1250 
HGA-NN RUS 0.2390 0.2870 0.3350 0.3830 0.4310 0.5750 0.6710 
HGA-NN ROS 0.2130 0.2600a 0.3070a 0.3540a 0.4010a 0.5420 0.6360 
HGA-NN SMOTE 0.2400 0.2830 0.3260 0.3690 0.4120 0.5410a 0.6270a 
 aThe best result for each cost ratio. 
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If the bank wants to optimize its loan approval 
process with a cost ratio other than 1:1, the results of 
this experiment indicate that they should then use 
some type of cost-sensitive learning. In our case, the 
Croatian dataset results show that extended HGA-NN 
techniques give, from a cost perspective, better 
results than the standard technique. In addition, the 
HGA-NN ROS technique shows the best results for 

cost ratios of 2:1, 3:1, 4:1 and 5:1, and the HGA-NN 
SMOTE technique shows the best results for cost 
ratios of 8:1 and 10:1. Generally, cost-sensitive 
learning results in less average misclassification cost 
than the traditional, cost-insensitive approach. Since 
our focus here is on the impact of model’s 
performance on bank profitability, the best model for 
each ratio is the model with the lowest RC value. 

 

Figure 2. Comparison of relative costs of misclassification for the Croatian dataset 

 
Figure 2 clearly depicts that the standard HGA-NN 
technique has achieved the best accuracy of 
prediction, evident from the lowest relative cost for 
the cost ratio of 1:1. The most accurate model 
becomes marginally good, from a cost perspective, 
for the cost ratio of 2:1, and for all cost ratios above 
2:1, the model that is constructed without the use of 
resampling techniques in the Croatian dataset gives 
poorer results, i.e., higher relative costs. The cost line 
for this model is the steepest, which means that, with 
an increase in the relative cost ratio, the model shows 
the fastest growth in total relative costs. 

5.3.   Results on German dataset 

From the results shown in Tables 5 and 6, it can be 
observed, as in the Croatian dataset, that the model 
with the highest accuracy is obtained with the HGA-
NN technique; however, for this model, lower 
(worse) values of other performance measures are 
reported. Looking at the individual extended 
techniques, we can see that HGA-NN ROS gives the 
best results for all other performance measures, 
except for accuracy. 

Table 5. Results of techniques on the German dataset 

Technique Accuracy AUC F-vrij. F-β TP FN FP TN 

HGA-NN 78.6a 0.7148 0.6008 0.5606 161 139 75 625 
HGA-NN RUS 69.5 0.7317 0.6183 0.7269 247 53 252 448 
HGA-NN ROS 69.6 0.7495a 0.6355a 0.7641a 265 35 269 431 
HGA-NN SMOTE 69.6 0.7419 0.6284 0.7480 257 43 261 439 
aThe best result for each measure. 
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Table 6. Relative misclassification costs (RC) comparison on the German dataset 

Technique 
Cost ratio (CI:CII) 

1:1 2:1 3:1 4:1 5:1 8:1 10:1 
HGA-NN 0.2140a 0.3530 0.4919 0.6309 0.7699 1.1869 1.4649 
HGA-NN RUS 0.3050 0.3580 0.4110 0.4640 0.5171 0.6761 0.7821 
HGA-NN ROS 0.3040 0.3390a 0.3740a 0.4091a 0.4441a 0.5491a 0.6191a 
HGA-NN SMOTE 0.3040 0.3470 0.3900 0.4330 0.4760 0.6050 0.6909 

  aThe best result for each cost ratio. 

 

Figure 3. Comparison of relative costs of misclassification for the German dataset 

 
Figure 3 shows the comparison of the relative 
misclassification cost of the HGA-NN technique and 
the extended HGA-NN techniques for all constructed 
models of the German dataset. From the diagram, it 
is clear that the HGA-NN achieves the highest 
prediction accuracy. However, it is evident that this 
technique achieves the lowest relative cost only for 
the cost ratio of 1:1. The diagram also shows that the 
most accurate model becomes marginally good, from 
a cost perspective, with the cost ratio of 2:1, and that, 
for all cost ratios above 2:1, models constructed with 
the extended HGA-NN technique give better results. 

5.4.   Results discussion and comparison 

In most studies, the classifier performance is 
estimated by means of the predictive accuracy of the 
constructed models. The predictive accuracy is a less 
appropriate measure if the costs of different errors 
vary greatly[4] and if the classification aim is  
misclassification costs optimization.  Furthermore, an 
array of measures provides a richer picture of model 
quality than only a single measure. Accordingly, in 

this study, the results were measured by using: 
accuracy, AUC, F-measure, F-β measure and the 
relative cost of misclassification. The last one is used 
as the main classification algorithm quality measure 
because our goal is to optimize the misclassification 
cost and generating the higher profit, and return on 
assets. 

Therefore, the analysis of accuracy shows that 
the standard HGA-NN technique gives better results 
than the new extended HGA-NN technique, 
regardless of the extension used. The results were 
consistent in both datasets. Except accuracy, all 
experimental results obtained using the extended 
HGA-NN classifier are superior to those obtained 
using the standard HGA-NN classifier.  

From Tables 4 and 6, as well as from Figures 2 
and 3, which show the comparison of the relative  
misclassification costs of the HGA-NN and new 
extended HGA-NN techniques, it is clear that the 
resampling techniques, combined with the feature 
selection technique, contribute positively to the 
results in reducing the cost of misclassification. This 
contribution is more significant when the relative 
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cost ratio is higher. Therefore, taken together, the 
HGA-NN ROS technique gives the best results. For 
the results comparison of the presented techniques 
with results presented in the literature for the German 
credit dataset, the results of the HGA-NN and HGA-

NN ROS techniques will be used in accordance with 
Tables 5 and 6. The HGA-NN technique gives the 
most accurate prediction and the HGA-NN ROS 
technique results are the best for all other 
performance measures. 

 
Table 7. The classification accuracy comparison of the HGA-NN and HGA-NN ROS techniques with results from the 
literature on the German dataset 
 

Technique (algorithm)      Error probability         Accuracy 
Name Code P1 (%)a P2 (%)b Mean (%) 

 HGA-NN  ROS Alg1 11.67 38.43 69.60 
HGA-NN Alg2 46.33 10.71 78.60 
SVM[27] Alg3 37.00 18.00 77.00 
LogR[28] Alg4 50.66 11.69 76.62 
Bagging/MLP[29] Alg5 49.40 24.60 75.33 
Logit[30] Alg6 18.33 44.00 63.70 
RBF KASNP[31] Alg7 26.25 28.69 72.05 
FA MLP[32] Alg8 48.69 10.66 77.93 
BoostingSVM[33] Alg9 54.38 10.56 76.29 
logR[23] Alg10 43.00 13.86 77.40 

  aP1 - Type I error  
  bP2 - Type II error  
 

 Table 8. The relative misclassification costs comparison of the HGA-NN and HGA-NN ROS techniques with results 
from the literature on the German dataset 
 

Technique Cost ratio (CI:CII) 
1:1 2:1 3:1 4:1 5:1 8:1 10:1 

Alg1 0.3040 0.3390a 0.3740a 0.4091a 0.4441a 0.5491a 0.6191a 
Alg2 0.2140a 0.3530 0.4919 0.6309 0.7699 1.1869 1.4649 
Alg3 0.2370 0.3480 0.4590 0.5700 0.6810 1.0140 1.2360 
Alg4 0.2338 0.3858 0.5378 0.6898 0.8417 1.2977 1.6016 
Alg5 0.3204 0.4686 0.6168 0.7650 0.9132 1.3578 1.6542 
Alg6 0.3630 0.4180 0.4730 0.5280 0.5830 0.7479 0.8579 
Alg7 0.2796 0.3583 0.4371 0.5158 0.5946 0.8308 0.9883 
Alg8 0.2207 0.3668 0.5128 0.6589 0.8050 1.2432 1.5353 
Alg9 0.2371 0.4002 0.5633 0.7265 0.8896 1.3790 1.7053 

Alg10 0.2260 0.3550 0.4840 0.6130 0.7420 1.1290 1.3870 
      aThe best result for each cost ratio. 
 

Many authors, including Tsai and Cheng 
[26], indicate that the German credit dataset is a 
challenging benchmark for bankruptcy prediction. 
Therefore, for a reliable and effective examination of 
the performance of the prediction models in the area 
of credit risk, one should consider the German 
dataset to be a benchmark for evaluation. For that 
reason and because it is a very limited number of 
publicly available high dimensional retail credit 
datasets, the retail credit dataset used in this 
experiment is the German credit dataset. 
From the comparison of the results presented in the 
literature and the results of the HGA-NN and the 
HGA-NN ROS technique (Table 7), it can be 
observed that the HGA-NN technique achieves 

excellent results in respect to classification accuracy 
and 10-fold cross-validation. The comparison of the 
relative costs of misclassification (Table 8) shows 
that the new HGA-NN ROS technique achieves the 
best results. This is a result of: (a) the core algorithm, 
by which the technique makes simultaneous 
adjustment of: (1) data to the classification algorithm 
(feature selection) and (2) algorithm parameters to 
the data; and (b) the further extension which 
mitigates the negative impact of a class and cost 
imbalance to the cost efficiency. This is of particular 
importance in the domain for which the technique is 
developed and justifies additional efforts in its 
implementation. 
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Table 9. Relative costs of misclassification rankings for the German dataset 

  Technique 
Cost ratio (CI:CII) sum of 

ranks 
average 

R 
R2 

Ne
men

 
  1:1   2:1   3:1   4:1   5:1   8:1 10:1 

Alg1 8 1 1 1 1 1 1 14 2.000 4.000  
Alg2 1 3 6 6 6 6 6 34 4.857 23.592  
Alg3 5 2 3 4 4 4 4 26 3.714 13.796  
Alg4 4 7 8 8 8 8 8 51 7.286 53.082 a 

Alg5 9 10 10 10 10 9 9 67 9.571 91.612 a 

Alg6 10 9 4 3 2 2 2 32 4.571 20.898  
Alg7 7 5 2 2 3 3 3 25 3.571 12.755  
Alg8 2 6 7 7 7 7 7 43 6.143 37.735  
Alg9 6 8 9 9 9 10 10 61 8.714 75.939 a 

Alg10 3 4 5 5 5 5 5 32 4.571 20.898  
 aA significant difference compared to Alg1, with α = 0.05. 

 
 

The significance of result differences, measured by 
using the relative costs of misclassification, between 
the HGA-NN ROS techniques and the results 
presented in the literature on the German dataset was 
further tested by using the Friedman test. Therefore, 
in Table 9, the results of all algorithms are ranked for 
each cost ratio separately; the algorithm with the best 
score receives rank 1, the one with the second-best 
score receives rank 2, and so on. Substituting the 
values from Table 9 into Eq. (8), we get 𝜒𝐹2 =
39.561. 

The results obtained using the statistical tool R 
version 3.1.0 is: Friedman chi-squared = 39.561, df = 
9, and p-value <0.0001. Because the p-value is 
significant (α = 0.05), the Nemenyi test was applied. 
According to the Nemenyi post hoc test, the 
performance of two classifiers is significantly 
different if their average ranks differ by at least a 
critical difference. Substituting the parameters into 
Eq. (9), we obtain the critical difference CD = 5.12 
with α = 0.05. 

From Table 9, it is clear that the HGA-NN ROS 
algorithm, i.e., the one with the lowest Friedman 
rank, according to the Nemenyi post hoc test, 
performs significantly better than the following 
algorithms: Alg5, Alg9 and Alg4. According to the 
Holm post hoc test, Alg1 is significantly better than 
the mentioned algorithms, and Alg8, on the level of 
significance for α = 0.05. All experimental results 
confirm our hypothesis that resampling techniques 
combined with the feature selection technique have 
positive impact on the relative cost of 
misclassification in retail credit risk assessment. 

 
 
 
 
 
 
  

6.   Conclusions  

This paper explored the impact of resampling 
techniques combined with 
the feature selection technique on the classification 
results in the domain of retail credit risk assessment. 
The research was performed on two datasets, i.e., 
Croatian and German. Classification performances of 
the extended HGA-NN technique were measured by 
using different measures of performance: accuracy, 
AUC, F-measure, F-β measure and the relative cost 
of misclassification. The focus was on the costs of 
misclassification.  To assess the overall quality of the 
techniques presented here, an empirical comparison 
was performed with the results of other techniques 
reported in the literature. The Friedman test and 
Nemenyi post hoc test were applied to determine 
whether the result differences are statistically 
significant.  

The results show that, with respect to average 
misclassification costs, the HGA-NN ROS technique 
achieves better results than other techniques 
presented in the literature for the cost ratio 2:1 and 
above. The Friedman test and Nemenyi post hoc test 
confirmed the results on the German dataset. As 
small differences in model power can lead to 
significant economic impact for the user, the results 
demonstrate the potential of the new technique for 
dealing with credit risk cost-sensitive imbalanced 
data in terms of misclassification costs. Accordingly, 
the results justify the added modelling complexity, 
especially when the banks have a high level of risk 
aversion. Overall, if the bank optimizes its loan 
approval process for cost ratios above 2:1, the results 
of this research indicate that some type of cost-
sensitive learning can be very helpful. 
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Possible limitations of the study come from the 
fact that we conducted research on two datasets.  
This is the consequence of its focus to retail credit 
risk assessment. In this area, there is a very limited 
number of publicly available high 
dimensional datasets. Therefore, this limitation is 

difficult to overcome, but anyway, a research is 
needed. In addition, during this study, we recognized 
the need for a more thorough exploration of the 
relationship between type I and II errors in credit risk 
assessment because cost optimization depends 
significantly on this relationship.  
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