
Exploring Object oriented language and
migration with Zend

ALEN ŠIMEC

Polytechnic of Zagreb, Vrbik 8, 10 000 Zagreb, CROATIA
alen@tvz.hr, www.tvz.hr

JOSIP PERIĆ

Polytechnic of Zagreb, Vrbik 8, 10 000 Zagreb, CROATIA
jperic@tvz.hr, www.tvz.hr

LIDIJA TEPEŠ GOLUBIĆ

Polytechnic of Zagreb, Vrbik 8, 10 000 Zagreb, CROATIA
ltepes2@tvz.hr, www.tvz.hr

Abstract: - This paper refers to the research of novelties and differences in the newest and currently active
versions of PHP programming language. It gives some answers to the questions of usefulness and feasibility of
changing the version used in a certain web project. The attention has been mostly focused on describing
functionality with occasional evidence in the shape of a code.

Key - Words: PHP, engine, memory, exception, class, object, generator

1 Introduction
Rapid expansion of web technologies has required a

development of new approaches to data management.
The consequence of the demand of interactive and
dynamic systems is the emergence of a script language
also known by the acronym PHP (Hypertext
Preprocessor). Before PHP started being used, PHP web
sites had been mostly static with the capacity limited to
roughly show information in the form of a text of
images. Integration of PHP into web spaces has enabled
interaction with the users as well as processing and
application of data from user sources.

Even though it is being performed on the server side,
it has been imagined as a communication connection
between the client and the server in client-server
architecture. It has the characteristics of the code
openness and free availability. It has been written in C
programming language and it acts as a database
manager.

PHP has so far been published in six versions with
various editions inside of versions. The last available
version is PHP7, and this paper is going to be based on
the analysis of the newest and currently existent
versions, that is basic features that determine them and

separate them from the previous editions and mutually.
The goal of this paper is to highlight positive and useful
sides of the latest versions of this programming
language by applying a mostly descriptive method with
occasional use of induction, experiments, measurements
and analysis.

2 Zend Engine System Overview
Metadata is the most important part of the

information management infrastructure in data
repositories. The metadata is defined according to the
standards, specifications or their application profiles.

The fifth version of PHP programming language is
based on the exchange of mechanisms for script
implementation. The new version of Zend Engine with a
secondary suffix has, among other things, enabled the
code writing in a more automated way. It represents the
language core in a way that it sets predefined functions
for the development of PHP code. In addition, it
provides the language with standard services such as
resource and memory management. A novelty in this
field is the addition of expandable objective models
together with improvement of basic performances.

WSEAS TRANSACTIONS on COMPUTER RESEARCH Alen Šimec, Josip Perić, Lidija Tepeš Golubić

E-ISSN: 2415-1521 155 Volume 5, 2017

Expandable structures also pertain to writing
function arguments such as defining information about
the minimal and maximal number of parameters and
structures of transferred parameters. Object classes can
be implicitly demanded when calling which ensures the
reception of requested data. Otherwise, fatal error
occurs.

<?php
function transfer(Player $player, Club $club){
echo ''transferring '' . $player->name . '' to '' . $club-
>name ;
}
Code 1 –Defining function arguments

According to the stated function declaration, the first

entry parameter has to be a class Player object, and the
second one class Club. If a null default value is set for
an argument, then it is possible for it to be forwarded.
This way of defining arguments is being called type
hinting.

Additional code implementations, such as parameter
information, are being demanded from the author when
creating extensions. The header of the wanted structure
can be defined by two forms:
• ZEND_BEGIN_ARG_INFO()
• ZEND_BEGIN_ARG_INFO_EX()

The difference lies in the fact that the second
performance enables restrictions in the number of
mandatory parameters. There is a similar situation when
defining the parameters themselves where the following
functions are being differentiated:
• ZEND_ARG_INFO()
• ZEND_ARG_OBJ_INFO()

Zend_arg_obj_info() Function specifies the
parameter by marking the parameter class and the
possibility of setting NULL values.

PHP5 in this way frees the author of checking the
number of forwarded parameters by placing the load on
the side of Zend Engine.

Zend Engine changes have resulted in enormous
increase in speed, performances and memory
consumption. For example, a website launched on PHP7
can reach a doubled number of performed requests per
second during a half as long testing time in comparison
to the same one launched on PHP5. The stated statistical
values of handling requests are the best way of showing
progress in the newest PHP version. Despite the
obviously positive characteristics, it is necessary to
carefully approach the transition to PHP7 due to the
changes in functions and extensions, and especially in
specific cases of removing those. Moreover, many
services still do not support the changes made.

3 PHP scripting language and data
objects

The next influential extension that is being
introduced into the language are PDO objects that
enable consistency of application programming interface
between data base extensions. Such objects simplify the
creation of applications that are mostly dependent on
data base access and managing the saved data. By using
the advantages built into the fifth language version, the
script performance has been overridden by the original
C code in a way that the parts specific for the base have
been separated into a special extension.

The most remarkable benefit of using PDO objects is
the possibility of reusing. Beside reducing the number of
code lines, such implementation simplifies the change of
technologies provided that the substitute access also
supports the object-oriented paradigm.

For performing tasks of the interface through which
the communication with the bases is being performed,
has been structured with two key classes: PDO that is
being used for establishing communication and direct
communication and PDOStatement that refers to the
request and the result in the opposite direction. [4]

From the existing methods related to PDOStatement
it is necessary to emphasize:
• lastInsertId() –for the return value it gets the last

line inserted into the base
• columnCount() –it restores the number of columns

in the set of results
• rowCount() –it restores the number of lines in the

set of results
• fetch() –it restores the next line from the set of

results
• fetchAll() –it restores the field that contains all the

lines of the set of results
• fetchObject() –it fetches the next line in the form of

an object
• exec() –it is being used for adding, changing and

deleting lines
Beside the above stated functions, functions such as

prepare() and bindParam() that particularly emphasize
the multiple code usability are often being used. For
example, the prepare() method is being oriented at the
use of reserved places in a way that the request is being
defined one time, and then later used multiple times.

$query= $db->prepare("INSERT INTO players(name,

position) VALUES (:name,
:position) ");
$query->execute(array(':name'=>'John',

':position'=>'Striker'));
Fig. 2 – Use of prepare() method

In this way SQL attacks are being automatically
disabled. In the case of unnamed reserved places a

WSEAS TRANSACTIONS on COMPUTER RESEARCH Alen Šimec, Josip Perić, Lidija Tepeš Golubić

E-ISSN: 2415-1521 156 Volume 5, 2017

question-mark symbol is being placed where the value
parameter should be.

Often in combination with prepare() function come
bindValue() and bindParam(). Simplified request
creation represents a visible advantage of the stated
structure. The difference is being noted when giving
data to the reserved places. In the case of merging of
values it is about setting variable values to a
placeholder, while the merging of parameters refers to
the variable that is being transferred through a reference.
A common feature of both functions is the usage prior to
performed requests.

$query= $db->prepare("INSERT INTO players(name,
position) VALUES (?, ?) ");
$player = array(''John'',''Striker'');
$query->bindValue(1, $player[0]);
$query-bindValue(2, $player[1]);
$query->execute();
Fig. 3 – Use of bindValue() method

$query= $db->prepare("INSERT INTO players(name,
position) VALUES (?, ?) ");
$query->bindParam(1, $name);
$query->bindParam(2, $position);
$name = "John";
$position = "Striker";
$query->execute();
Fig. 3 – Use of bindParam() method

In the documentation of PHP programming language

it has been specifically stated that the actions on the
database cannot be performed by using only PDO
extensions and that it si necessary to use a specific PDO
driver in order to access the database server.

With the advent of Semantic Web, ontologies are

gaining importance mainly due to availability of formal
ontology languages. These standardization efforts
promote several notable uses of ontologies like assisting
in communication between people, achieving
interoperability (communication) among heterogeneous
software systems and improving the design and quality
of software systems. One of the most prominent
applications is in the domain of semantic
interoperability. While pure semantics concerns the
study of mean-ings, semantic elevation means to achieve
semantic interoperability and can be considered as a
subset of information integration (including data access,
aggregation, correlation and transformation). Semantic
elevation of proposed matching and merging framework
represents one major step towards this end.

3.1 Exceptions handling
Changes in exceptions handling in different versions

of PHP5.x, one of the modules that has undergone a
complete reconstruction is error handling. To be precise,
exceptions handling has relieved the developer from the
need of doing an additional check of return value of each
function. Similarly to the previously mentioned
separated database performance, exceptions and error
handling has also been separated from the software
logic.

The structure and the task of exceptions handling is
almost identical to the ones in programming languages
such as Java and C++. If the catching of exception is not
being defined, an error of uncaught error occurs. [5]
<?php
function provjeraSume($br1, $br2) {
if(($br1+$br2)<10){
throw new Exception("Suma mora biti veća ili jednaka
10");
}
return true;
}
try{
provjeraSume(10,2);
echo 'Suma je ispravna';
}
catch(Exception $ex){
echo $ex->getMessage();
}
?>
Fig. 4 – Exceptions handling

Taking into consideration the provjeraSume()
function (code 5), the exception will occur if numbers
whose sum is smaller than 10 are being sent as
parameters. Such situation development shall result in a
message “Suma mora biti veća ili jednaka 10”. In the
final finishing of the fifth version of PHP, finally block
has been added in case that the unexpected exception
occurs.

According to research, exceptions handling has still
not found wide application in PHP, but the peak of such
approach is yet to come.

Changes in exceptions handling in versions PHP7.x,

soon after the exceptions have been introduced into the
programming language their handling has been
improved. When developing a new handling system, the
focus was on fatal errors that have been stopping the
execution of script in the previous version. PHP7
enables the catching of such exceptions, excluding
uncatchable ones, such as lack of memory. Moreover,
any kind of uncaught exception shall continue to cause
the interruption in script performance. In order to
prevent that the existing PHP5.x code catches

WSEAS TRANSACTIONS on COMPUTER RESEARCH Alen Šimec, Josip Perić, Lidija Tepeš Golubić

E-ISSN: 2415-1521 157 Volume 5, 2017

exceptions that in any case crash its performance, fatal
errors in the new version do not inherit class Exception.
As a consequence, there is a new class Error from which
instances of manageable fatal exceptions are being
created. In this way changes in the structure and
hierarchy of exceptions themselves are being caused. In
order for the hierarchy not to be separated, a new
interface, Throwable, has been written that is being
implemented by both branches.

Just like any other exception, the exception of Error
nature can be caught and controlled land it allows for the
finally block to be executed. With this new hierarchy the
root interface can retrieve any exception instance. Class
Throwable defined within the catch block can catch
objects of both Exception and Error types. Even though
such structure enables reaction to various unpredicted
situations, the practice recommends use of specific
classes for individual exceptions handling.
try {
…
} catch (Throwable $ex) {
…
}
Fig. 5 – Class Throwable

Beside the above mentioned classes, there are also

classes that do not have the possibility of implementing
the Throwable interface. We are talking about user
created classes. An important thing about exceptions
handling is that exceptions contain information about the
position on which the object has been created.
Contradiction occurs in the fact that user objects do not
include automatic parameters for saving such
information.

However, there is an alternative way for the
implemented class to act according to some rules of
Throwable interface. The implemented class primarily
inherits classes Exception or Error and then it extends
through the interface inherited by Throwable.

interface PracticeThrowable extends Throwable{}
class PracticeException extends Error implements
PracticeThrowable{}
throw new PracticeException();
Fig. 6 –Creating a class for fatal error handling

The base class Error is divided into specific

subclasses. The first one in alphabetical order,
ArithmeticError refers to arithmetic errors such as
moving bits by a negative number or incorrect use of
intdiv() function that divides two numbers. The specific
arithmetic error that needs to be mentioned in this
context is division by zero for which there is a special
implementation of DivisionByZeroError class.
$value = 1 << -1; // it returns the arithmetic error due to
the negative moving of bits

intdiv(PHP_INT_MIN, -1); // it returns the arithmetic
error
$value = 1 % 0; // it returns DivisionByZeroError
because it is being divided by zero
Fig. 7 – Fatal errors

It is necessary to mention that division by zero with

the operator (/) results only with a warning, and the
result is being evaluated with a value NaN (not a
number).

AssertionError occurs in cases when the conditions
set by assert() method have not been met. Preconditions
for the use of function itself also need to be set. The
above mentioned preconditions refer to the initial
program settings. It is necessary to define the settings in
the following way:

ini_set('zend.assertions',1);
ini_set('assert.exception',1);
Fig. 8 –Initial values setup

It is also possible to change identical actions
manually, by making changes in the configuration of
php.ini data file. Zend.assertion variable can be found
with value -1 which implies that assertion code shall not
be generated. In the case of value 0, the code has been
generated but it shall not be executed in the executive
surroundings. In accordance with the code
above(kodx.x), it is necessary to adjoin value 1 to the
variable in order to fully use the offered functionalities.
The same change needs to be made to Assert.exception
variable which, with the default value 0, shows only
simple warnings when error occurs.

Assert structure is generally used to test a certain
code segment and to compare the results with the
expectations.

try{
 $var = 1;
 assert($var > 2, "The value is less than two");
}
catch(AssertionError $ex)
{
 echo $ex->getMessage();
}
Fig. 9 – Assert structure

Provided that the settings have been properly set, the

following code segment shall return an error with a
message: “The value is less than two.”

In the previous hierarchy errors related to variable
types, code TypeError, have also been highlighted. This
subclass throws the exception only in situations when
the given function parameters or the return value do not
correspond to their references in the method definition.

WSEAS TRANSACTIONS on COMPUTER RESEARCH Alen Šimec, Josip Perić, Lidija Tepeš Golubić

E-ISSN: 2415-1521 158 Volume 5, 2017

function operate(int $n1, int $n2)
{
 return $n1 + $n2;
}
try{
 $result = operate('first', 'second');
}
catch (TypeError $ex){
 echo $ex->getMessage();
}
Code 10 –TypeErrora overview

Considering that the function clearly asks for int
value, sending strings shall cause an error with a clear
message that parameters need to be real numbers. A
question can be sensed about what shall happen if
numeral strings occur instead of textual string. Add
operation shall then be performed, if the command
„declare(strict_types=1);“ is run above the existing code.

ParseError also belongs to fatal errors and they refer
to errors in syntax in data files included in the code. In
the second scenario, it can be an error in syntax within
the call eval() function. In the previous version of PHP,
such errors would cause the program crash. Advantages
of introducing this subclass can be seen when sending
relevant information in order to check their accuracy.

//Prva datoteka ("Prva.php")
<?php
$var='provjera'
//Druga datoteka
<?php
try {
 require "Prva.php";
}
catch(ParseError $ex){
 echo $ex->getMessage();
}
Fig. 11 –ParseErrora overview

The error lies in the included data file (Prva.php)
because the order of allocating a value to the variable
has not been concluded with the „ ; “ symbol.
try{
 eval("vr_dump(2);");
}
Fig. 12 – Example of ParseError error

Considering there is an error in syntax within the

evaluation function, ParseError occurs.

In exceptions handling it is not sufficient to know the
structure of code writing, but it is also necessary to have
strong theoretical background as well as good
organization. The programmer needs to use the instance
of a correct class that inherits Error or Exception class in
certain surroundings. Error is basically used for code
problems that require the programmer’s attention. Errors
caused in the engine of PHP belong to this group.
Objects of Exception class are being mostly used in
more harmless conditions where in parallel with
resolving the error another action can be performed and
the program performance can be continued.

Accordingly, the practice suggests that catching the
Error object should be minimized, that is, realized only
in critical conditions such as logging onto the system,
showing the critical message or performing the crucial
clearing. If the need for the program to support the
previous and the new version of PHP exists, the code
adjusts in a way that it especially catches Throwable and
Exception exceptions. The former one would ensure the
correct program reaction in PHP 7.x versions, while the
latter refers to PHP 5.x versions. Root changes in
exceptions handling require the programmer’s constant
attention due to frequent neglect of fatal errors. It is
being suggested to the beginners not to pair the
performances of catching various performances, but to
directly use the Throwable class. Another innovation in
this area of PHP7 is the multiple catching of exceptions
in one order via the operator „ | “ by which the object
types that the catch block catches are being separated.

3.2 Generators in handling with scripting

language
Generators refer to the syntax similar to the functions

with iterators, the difference being that the generators
return the optimal number of values instead of return
value. Beside the simplicity of writing and reducing the
number of code lines, the main advantage of the
generators is in the decline of memory utilization. The
excess of free memory enables the hardware to serve
even more requests through free resources. The reason
of such effect is to avoid creation of arrays in memory
so that the object of Generator class is being forwarded.
Moreover, that object implements the interface iterator
that enables the generator state manipulations functions.

<?php
$pocetak=microtime(true);
$polje = array();
$rezultat = '';
for($broj=1;$broj<2000000;$broj++)
{
 $array[]=$broj*0.456;
}
foreach($polje as $obj)

WSEAS TRANSACTIONS on COMPUTER RESEARCH Alen Šimec, Josip Perić, Lidija Tepeš Golubić

E-ISSN: 2415-1521 159 Volume 5, 2017

{
 $obj+=56.189;
 $rezultat .= $obj;
}
$kraj=microtime(true);
$vrijeme1= bcsub($kraj, $pocetak, 4);
$mem= memory_get_peak_usage(true);
$pocetak=microtime(true);
$rezultat = '';
function gen(){
 for($broj=1;$broj<2000000;$broj++){
 yield $broj*0.456;
 }}
foreach(gen() as $obj)
{ $obj+=56.189;
 $rezultat .= $obj;
}
$kraj=microtime(true);
$vrijeme2=bcsub($kraj, $pocetak, 4);
$mem1=memory_get_peak_usage(true);
$mem2=$mem1-$mem;
?>
Fig. 13 –Utilization of generators and testing

The key word in generator function is yield. Or
better to say, by writing the aforementioned command,
regular function turns into the generator one.

By starting the previous code (code 6) the effect of
the generator on execution time and used memory can
be compared. By adding the appropriate HTML code,
the requested values are being shown in a table.

 With Generator Without
Generator

Time 1,3264[s] 0,0979[s]

Memory 20971520[B] 54525952[B]

Table 1 - Details of generator testing

The saving of memory space with the use of a

generator with accompanying negative time
consequences can be seen from the above table.
Accordingly, the usefulness of generator functions can
be discussed in appropriate conditions. The main of the
favorable conditions is the need to reduce the memory
load. The most common application can be found in the
functions that implement the pass through a large list of
numbers.

The key rule of “collecting rubbish” in PHP
programming language is that the container cannot be
released if the number of references on it is larger than
zero. Accordingly, it is possible to determine which

parts are surplus by reducing the number of references
by one and by that check which containers do not have
the reference number in the set of integer numbers.
Considering that the goal is to reduce the unnecessary
starting of cycles, a temporary container (storage) for
saving all containers is being organized. Only when the
container is filled, the cycle begins for all the containers
inside the container (storage). The storage is being filled
even in the situation when the mechanism for rubbish
collection is shut down. However, if the storage fills up
then, the next records shall not be registered. The
unsaved records directly cause memory leakage.

The user himself can initiate the process of collecting
rubbish by using the gc_collect_cycles() function with a
return value of the number of collected cycles. The
forced call of the stated function is being suggested
immediately before the “rubbish collection” mechanism
shuts down because by this the risk of memory leakage
is reduced.

Starting the mechanism causes two obvious
consequences:
• reduction of memory consumption
• slowing performance

Even though contradictory consequences are being
shown, the work results are positive, especially for
scripts that are being started for a longer period. The
reason for the successful impact lies in the fact that the
reduction of memory use is many times bigger than
reduction of performance.

The idea of the makers of new version is to improve
the elements referring to flexibility, elegance and code
quantity. The necessity to discard limitations in the
listed features made them do a complete revision and
alteration of codes. Some changes are entirely new
elements in the field of this language, while the others
are just mostly positive upgrades.

Iterators, structures that enable the for-each loop to
pass through various kinds of data, such as lists, set of
results and even entire documents belong to innovations.
Related iteration classes are inherited for the purpose
mess reduction and code shortening.

Regarding data exchange, a step forward has been
accomplished by compiling JSON extension within PHP
programming language.

Besides the iterators, the namespace support has
been established to be able to manage the code
understanding in an easier way. By marking all the
methods of some library with the name of the
namespace, functions are being determined and reckless
errors occur less frequently. Certain functions are being
unambiguously determined with a key command
namespace.

Goto command that transfers focus from one to some
distant code line has been introduced. It represents a
contrast to the classic return of function value. A mark
that identifies the place of further code execution is
being entered after the command.

WSEAS TRANSACTIONS on COMPUTER RESEARCH Alen Šimec, Josip Perić, Lidija Tepeš Golubić

E-ISSN: 2415-1521 160 Volume 5, 2017

The library distribution has been improved by
activating PHAR, package for archiving and unpacking
a large number or data files. In this way the goal of
faster performing of applications through FTP protocol
has been achieved.

Beside the improvement in the field of MySQL and
object-oriented programming, this version removes
some errors from earlier versions related to XML
(eXtensible Markup Language).

Standardization has been described in only one XML
library and the cooperation is finally getting
characteristics of a united whole. Proper and necessary
XML tools that are entirely in compliance with W3
specifications have been provided to the user, that is, to
the programmer.

Changes and reading of XML documents lose the
complexity, while the data processing saves money and
spent resources.

The big news in this field is operator modifications.
So called “space number” operators are being
introduced. This name was given out of a practical
reason of similarities between those two terms. It is
about a triple comparison of variables in the sense that it
returns the value “-1” in case that the right variable is
bigger, “1” as a consequence of the bigger value of the
left variable and “0” if the given values are equal.

Operator Equality

$v1 < $v2 ($v1 <=> $v2) === -1

$v1 <= $v2
$v1 == $v2
$v1 != $v2
$v1 >= $v2
$v1 > $v2

($v1 <=> $v2) === -1 ||
($v1 <=> $v2) === 0
($v1 <=> $v2) === 0
($v1 <=> $v2) !== 0
($v1 <=> $v2) === 1 ||
($v1 <=> $v2) === 0
($v1 <=> $v2) === 1

Table 2 - Overview of new operators
In order to save time and code lines, a new structure

has been created for checking existence of non-NULL
values of some variable or return value.

$country = $_GET['country'] ?? 'unknown';
Code 14 – „??“ operator

Previous excerpt with “??” operator checks if the

value from country variable is being fetched and it
examines its stability and, in case of a negative results, it
responds with a default value.

Regarding functions, the programmers are able to
perform declaring in a more precise way by setting a
fixed type for a return value. The positive effect of the
stated functionality is the prevention of unwanted return
values. For example, for the following function return

value of integer type is obligatory and return of string or
some other type causes the fatal error “TypeError”.

function broj(): int {
 return 1;
}
broj();
Code 15 –Setting a fixed return value

According to the listed mechanisms we can already
spot the PHP developers’ effort to keep up with the most
advanced object-oriented languages. A step forward
represents the introduction of anonymous classes that
contribute to the shortening of performance and
accelerating the coding. It is about nameless classes that
are preferable in conditions when the class does not need
to be documented or it is only being used on a one-time
basis during the program execution. Anonymous classes
are being used in cases of developing a simple and one-
time object.

$obj = new class{
 public $msg = 'Greeting';
 public $num = 7;
};
Code 16 – Application of anonymous class

Except for direct allocation of the anonymous class
to the variable as in the previous code, it is possible to
get the identical result by using the function that creates
the anonymous class. However, such classes are not
entirely anonymous because they are automatically
being named and parsed into the global scope and they
can be reached again later.

Namespaces that the users were introduced to only in
PHP5.x versions are also being improved. Group
insertion of classes, constants and functions from the
same namespace in one command has been enabled.

It is necessary to also have in mind the removed
characteristics and pay attention to them. It is mostly
about tiny syntax parts of the programming language.
For a start, ASP-style tags have been removed and the
programmer is limited to the standard „<?php“ tag.
Hexadecimal numbers have been written as a string and
they are no longer recognized as a numerical value. The
use of multiple default blocks in switch structure from
the new version shall cause the fatal error. One of the
most prominent syntax changes is the removal of
“mysql” extension due to, among other things, lack of
support for object-oriented programming, transactions,
procedures. Thus, “mysqli” and “PDO” extensions have
survived for connection with the database.

4 Conclusion
The number of Internet users grows every day and so

does the filling of web sites with accesses and requests.

WSEAS TRANSACTIONS on COMPUTER RESEARCH Alen Šimec, Josip Perić, Lidija Tepeš Golubić

E-ISSN: 2415-1521 161 Volume 5, 2017

Allocation of active roles to the user has left a strong
influence on the server’s development, and by that on
programming languages that access the servers. New
ideas for improvement of performances and mostly for
speeding up the processing of received requests have
been constantly occurring.

Different business processes and important
transactions have been frequently performed through the
Internet in today’s rapid modern world, whereby the
security and satisfaction of the user becomes a primary
reference for further development and web-technologies
changes. Accordingly, even the shortest unavailability or
the simplest malfunction inside a financially directed
system, can cause enormous losses to some bigger or a
smaller organization.

The research has shown that by 2020 the Internet
traffic shall be increased by 100 times compared to
2005. Judging by this information, PHP shall necessarily
be developed among other programming languages.

Overall, the new versions shall strive to additionally
simplify the use and learning how to write a PHP
programming code and they shall achieve desirable
results of saving memory and speed of command
processing with new ideas.

5 Reference
[1] Ananthakrishna, R., Chaudhuri, S., Ganti, V.

(2002). Eliminating fuzzy duplicates in data
warehouses. In: Proceedings of the International
Conference on Very Large Data Bases, pp. 586–
597.

[2] Allamaraju S. (2010) RESTful Web Services
Cookbook: Solutions for Improving Scalability and
Simplicity. O'Reilly. United States of America.

[3] Castano, S., Ferrara, A., Montanelli, S. (2010).
Dealing with matching variability of semantic web
data using contexts. In: Proceedings of the
International Conference on Advanced Information
Systems Engineering, pp. 194–208.

[4] Dagiene V., Jevsikova T., Kubilinskiene S. (2013)
An Integration of Methodological Resources into
Learning Object Metadata Repository. Vol. 24,
No. 1,. Vilnius University Institute of Mathematics
and Informatics, pp. 13–34.

[5] Hernandez, M., Stolfo, S. (1995). The merge/purge
problem for large databases. In:Proceedings of the
ACM SIGMOD International Conference on
Management of Data, pp. 127–138.

[6] Lockhart J., (2015) Modern PHP: New Features
and Good Practices. O'Reilly. United States of
America.

[7] Mitchell L.J. (2016). PHP Web Services: APIs for
the Modern Web. O'Reilly. United States of
America.

[8] Porebski B., Przystalski K., Nowak L. (2011)
Building PHP Applications with Symfony,
CakePHP, and Zend Framework. Wiley
Publishing, Inc. United States of America.

[9] Prettyman S. (2016). Object Oriented Modular
Programming using HTML5, CSS3, JavaScript,
XML, JSON, and MySQL. Apress. United States of
America

[10] Šubelj, L., Jelenc, D., Zupančić, E., Lavbič, D.,
Trček, D., Krisper, M., Bajec, M. (2011). Merging
data sources based on semantics, contexts and
trust. IPSI BgD Transactions on Internet Research,
pp. 18–30

[11] Žitnik S., Šubelj L., Lavbič D., Vasilecas O., Bajec
M. (2013) General Context-Aware Data Matching
and Merging Framework. Vol. 24, No. 1, Vilnius
University Institute of Mathematics and
Informatics, pp. 119–152.

WSEAS TRANSACTIONS on COMPUTER RESEARCH Alen Šimec, Josip Perić, Lidija Tepeš Golubić

E-ISSN: 2415-1521 162 Volume 5, 2017

