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Abstract 

 

 In this paper two relatively simple analytical procedures for free and forced torsional 

vibration analysis of ship power transmission systems are developed. In the first, approximate 

procedure, the shaft line is modelled as a two-mass system and analytical solution of the 

differential equations of motion is given. In the second one, a multi degree of freedom (d.o.f.) 

problem of the complete propulsion system is solved by the Rayleigh-Ritz method. A special 

attention is paid to the determination of the contribution of each cylinder to the primary and 

secondary engine torques by taking into account the firing order. The application of the two 

procedures is illustrated in the case of a typical propulsion system of a merchant ship with a 

slow-speed main engine connected directly to the propeller by a relatively short shaft line. The 

obtained results are verified by a comparison with measurements. All classification societies 

require calculation of the propulsion system operating parameters, but they do not provide 

simplified formulae for vibration analysis. The outlined analytical procedures can be used for 

the estimation of torsional vibration of the shaft line in the preliminary ship design stage as well 

as for ships in service. 
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1. Introduction 

One of the most important prerequisites for safe navigation of ships at sea is a reliable 

design of the propulsion system and an efficient control of the corresponding vibration, [1]. 

Since the oil crisis in 1973, new types of long-stroke and slow-speed diesel engines with a small 

number of cylinders have emerged as the main propulsion system in merchant ships, [2, 3]. 

Although these engines are characterised by a remarkable fuel efficiency, the consequent high 

power output delivered per one cylinder has increased the amplitudes of the excitation forces 

that induce vibrations of the ship power transmission line. The frequency spectra of these forces 

overlap with natural frequencies of the main engine and the ship structure. This usually results 

in excessive resonant vibrations, which have a dangerous influence on the crew health and 

comfort, ship equipment and ship safety in general. Therefore, the examination of vibration 

characteristics and the vibration control in complex ship structures has become an imperative, 

[4-6]. A number of remedial solutions and systems for the control of engine induced vibration 

in ships have been developed, such as, for example, the installation of engine stays, [2, 3]. 

Given the fact that the propulsion system is one of the main sources of ship vibrations, 

in the middle of the last century the leading classification societies specified in their rules simple 

semi-empirical formulae for the estimation of propulsion system vibrations. By developing 

digital computers and numerical methods, these formulae have been replaced with guidelines 

for the so-called "direct calculation" of shaft line torsional vibrations, [7], [8], [9]. Nowadays, 

there are several software packages mostly based on the Finite Element Method (FEM), [10], 

applicable for this purpose. However, these tools are complex and require specialized 

engineering skills. 

Torsional vibrations of the propulsion system are still among the most dangerous for the 

shaft line, [11]. This is especially true in the case of five-cylinder low-speed engines, [12]. If 

the diameter of the shaft line is chosen solely according to the Classification Society Rules, the 

resulting torsional vibration stresses may still be significantly above the permissible limits. This 

problem can be overcome in one of the following ways: the flexible shafting system design, the 

rigid shafting system design, and by mounting a torsional vibration damper, [13]. The first two 

solutions are quite common, whereas the third one is not. 

In general, there are two approaches to analysing the shaft line vibrations. In the first 

and the more usual approach, the shaft line is treated separately from the rest of the ship for 

simplicity. Since the coupling between the shaft line vibrations and the vibrations of the ship 

hull is ignored, the problem of boundary conditions is avoided, [14]. In the other approach, the 
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propulsion system is modelled together with either the aft part of the ship hull, or with the 

complete ship structure, [6, 10]. 

The shaft line consists of the crankshaft, the intermediate shaft, the propeller shaft, and 

the optional couplings and gears. Torsional vibrations of the shaft line are excited by the 

pulsating torque generated by the reciprocating combustion engine, [15], as well as by the 

propeller beats in the non-uniform wake field, [16]. The problem of the shaft line torsional 

vibrations has been investigated since the 1950s, [17,18]. In spite of such intensive research 

some issues still remain open. These include the determination of the propeller damping, the 

cylinder damping, and the added inertia of the surrounding water to the polar moment of inertia 

of the propeller, [14]. Also, axial vibrations and whirling vibrations of the propulsion system 

have been a subject of some recent investigations, [19, 20]. 

An effort to simplify the numerical procedure for the estimation of free and forced 

propulsion system vibrations has been undertaken in [14]. The shaft line is modelled as a two 

mass system. However, the procedure is based on some intuitively introduced assumptions 

concerning both the resulting engine torque of cylinder excitations and the transfer of engine 

excitation to the shaft response, which are not entirely physically based. 

With regard to the state-of-the-art and the practical needs, two relatively simple 

analytical procedures for the estimation of torsional shaft line vibrations are described in this 

paper. In the first procedure, the propulsion system is condensed into a two d.o.f. system, 

encompassing the propeller mass and the crankshaft mass. The governing differential equations 

of motion are solved analytically. With the second procedure, the propulsion system is modelled 

as a multi d.o.f. system with lumped masses, ignoring the shaft inertia. The energy formulation 

is used, and the problem is solved by employing the Rayleigh-Ritz method. 

A special attention is paid to the evaluation of the cylinder excitation and the resulting 

engine torque by taking into account the firing order. Two cases are distinguished, i.e. the 

primary and the secondary engine excitation, depending on whether or not the ordinary number 

of the excitation harmonics is equal to the number of engine cylinders, respectively. The 

accuracy of the presented procedures is verified by a comparison of the calculated intermediate 

shaft stresses with the measured values, [14]. 

 

2. Condensed model of propulsion system 

2.1. Differential equations of motion 

The shaft line consists of three main shafts, i.e. the propeller shaft, the intermediate shaft 

and the crankshaft, with the corresponding lumped masses of the propeller, the flywheel and 
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the cranks of the crankshaft. Since the crankshaft is normally significantly stiffer than the 

propeller shaft or the intermediate shaft, the crankshaft masses and the flywheel mass can be 

condensed into one mass at the end of the intermediate shaft. Such a two d.o.f. model with nodal 

twist angles )(0 t  and )(1 t  is shown in Fig. 1, where 0J  is the propeller polar moment of inertia 

which includes the added polar moment of inertia due to the surrounding water, and 
1J  is the 

polar moment of inertia of the condensed crankshaft mass. 

The shaft is exposed to the action of the following torsional moments, Fig. 1.: 

1) Engine excitation torque 

 tMtM EE  cos)( , (1) 

where   is the engine angular speed and the fundamental excitation frequency. 

2) Propeller inertia moment and crankshaft inertia moment 

 000 )( JtMi  , 111 )( JtMi  . (2) 

3) Propeller damping moment and engine damping moment 

 0 0 0 1 1 1( ) , ( )d dM t c M t c   , (3) 

where c0 and c1 are the damping coefficients. 

4) Internal torsional moments, as a result of shear stresses over the shaft cross-section area 

 )()()( 0110 






 K

x
GItMtM , (4) 

where K is the equivalent torsional stiffness of the propeller shaft and intermediate shaft 
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The distribution of the approximate twist angle ( )t  and the cross-sectional torsional moment 

( )M t  along the shaft is shown in Fig. 1. 

In order to enable simpler formulation of the equilibrium conditions, all the angular 

displacements and torsional moments in Fig. 1 are presented as vectors in Fig. 2, according to 

the left hand rule. It can be seen that the torsional shaft model is analogous to a bar tensional 

model. In order to formulate the dynamic equilibrium equations of the shaft, it is split into two 
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parts, as shown in Fig. 2. The external and internal moments must be in equilibrium for each 

part of the shaft, i.e. 

 
0 0 0

1 1 1

( ) ( ) ( ) 0

( ) ( ) ( ) ( ).

d i

d i E

M t M t M t

M t M t M t M t

  

  
 (6) 

Substituting Eqs. (1) (2), (3) and (4) into (6) one obtains two differential equations of motion 

coupled by the stiffness K  

 
1 0 0 0 0 0

1 0 1 1 1 1

( ) 0

( ) ( ).E

K c J

K c J M t

   

   

   

   
 (7) 

The harmonic excitation torque (1) can be specified as the real part of the complex 

torque 

 ti

EE MtM  e)(
~

. (8) 

where 1i  is the imaginary unit. Accordingly, the complex twist angles are assumed in the 

same form 

 
tiAt  e

~
)(

~
00 , tiAt  e

~
)(

~
11 , (9) 

where 0

~
A  and 1

~
A  are now complex constants. 

The system of differential equations (7) in the complex domain reads 

 

0 0
1 0 0 0

1 1
1 0 1 1

0

( )
.E

c J

K K

c J M t

K K K

   

   

   

   

 (10) 

Substituting Eqs. (8) and (9) into (10), yields 

 

2 0

0

2 11 1

1 1 0

1 1
E

Jc
i

K K A
M

Ac J
i K

K K

  
                  
              

  

. (11) 
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2.2. Natural vibrations 

In case of natural vibrations there is no excitation, )0( EM . Furthermore, the influence 

of damping is considered to be negligible, 0 1( 0)c c  . The two twists angles are assumed in 

the form 

 t cos00  , t cos11  , (12) 

where  is a natural frequency. In this case Eq. (11) is reduced to the homogenous one 

  0

11

11

1

0

12

02
























































K

J

K

J

. (13) 

Natural frequencies   are determined from the condition 

 0)(Det 102

10

2











K

JJ
JJ

K



 . (14) 

Value  =0 is related to the rigid body motion. The second eigenvalue of (14) can be presented 

in an ordinary form 

 
J

K
 , (15) 

where according to Eqs. (5) and (14) 

 
10

10

KK

KK
K


 , 

10

10

JJ

JJ
J


  (16) 

is the equivalent torsional stiffness and the equivalent polar moment of inertia of the condensed 

model of shaft line, respectively, Fig. 1. 

From the first or the second homogenous equation in expression (13) one finds the ratio 

of the twist angles 

 
0

1

1

0

J

J





 (17) 

that determines the mode shape as a straight line, Fig. 3. The vibration node is specified by 

distances 0l  and 1l  from the shaft ends. Since lll  10  and 
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1

0

1

0






l

l
 (18) 

yields 

 l
JJ

J
l

10

1
0


 ,  l

JJ

J
l

10

0
1


 . (19) 

 

2.3. Forced vibrations 

 

The solution of the complex matrix equation (11) for forced vibrations reads 

 0

1

Det ( )

EM
A

K
 


, 

20 0

1

1

Det ( )

E

c J
i

MK KA
K

  

 


, (20) 

where 

 

   

2
2 0 1 0 1

0 1

2

0 1 1 0 0 1

Det( ) ,

,

.

R I

R

I

D iD

J J c c
D J J

K K K

D c J c J c c
K K

  

  
    

 

  
    

 

 (21) 

From Eqs. (15) and (16) one finds 

 
2 0 1

0 1

J J
J J

K
  , 2 0 1

0 1

J J
K

J J



 . (22) 

Furthermore, it is convenient to express the damping coefficients in the form 

 0 0 0 1 1 12 ,  2c J c J     , (23) 

where 0  and 1  are dimensionless damping coefficients. Substituting Eqs. (23) and the first 

and second equation of Eqs. (22) into the second and the third equation of Eqs. (21), 

respectively, yields 

 

22

0 0 1
0 1

0

22

0 0 1 0 1

0

1 4 ,

2 1 ,

R

I e

e

J J J
D

K J

J J J
D

K J

 


 


 

     
     

     

    
   

    

 (24) 
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where 

 0 0 1 1

0 1

e

J J

J J

 






. (25) 

is the equivalent dimensionless damping coefficient. 

 According to the definition (4) one obtains for the complex cross-sectional torsional 

moment 

 
0

1 0

1 2

( )t E

i
M K A A M

C iD




  


, (26) 

where 

 

2

0 1
0 1

0

2

0 1 0 1

0

1 4 ,

2 1 .e

e

J J
C

J

J J
D

J

 


 


 

     
     

     

   
   

    

 (27) 

In order to rationalize the fraction in Eq. (26), both the nominator and denominator are 

multiplied with C iD . This leads to 

 Et M
DC

iFE
M

22

~




 , (28) 

where 

 02E C D


 


, 02F C D


 


. (29) 

The cross-sectional torsional moment is a time varying function as a result of twist 

angles (9), i.e. 

 
ti

tt MtM  e
~

)(
~

. (30) 

Actual cross-sectional moment is the real part of (30), like the excitation torque (8), i.e. 

 )sincos()(
22

tFtE
DC

M
tM E

t 


 . (31) 

Expression (31) can be transformed into the amplitude form 
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 )cos()(
22

22





 tM

DC

FE
tM Et , (32) 

where  arctg F E   is the phase angle. Substituting (29) and (27) into (32) after some 

manipulations one obtains the relation between the amplitudes of engine excitation torque and 

shaft response moment 

 Et MM  , (33) 

where 

 

2

2

0

1
2 2 22 2 2

2 0 1 0 1

0

1 4

1 4 1e

e

J J

J






 


  

 
  

 


            
           

             

 (34) 

is the torque transfer factor from the excitation to the response. The damping term 0 14   from 

the first of Eqs. (27) is ignored in (34) as a small quantity of higher order in comparison to the 

other damping terms. 

In case of resonance   and Eq. (34) is reduced to 

 

2

0

0 1 0 1

0

1 4

2 1

res

e

e

J J

J




 







  
 

 

. (35) 

In the case of static engine torque  E EM t M , 0  and employing (25) one obtains from 

(34) 

 0 0 0 0
0

0 1 0 0 1 1e

J J

J J J J

 


  
 

 
. (36) 

Additionally, if 0 1 0    Eq. (34) is reduced to 

 0
0

0 1

J

J J
 


. (37) 

The physical meaning of expressions (36) and (37) is explained in Appendix A. 
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2.4. Simplified transfer factor of engine torque 

 A reliable determination of the propeller and the engine damping coefficients is a rather 

difficult task. Therefore, from a practical point of view, it is more convenient to operate with a 

unique damping coefficient of the propulsion system. It is an empirical approach and the value 

of the coefficient is estimated using the data acquired by measurements. 

 Let us now consider the influence of the above simplification on the accuracy in the 

case of a realistic example with 1 0J J . The transfer factor in resonance, Eq. (35), is given by 

 

2

0

0 1

1 4

2
res




 





. The following numerical examples: 

0 1

0 1

0 1

0.08,  0.02 :  5.064,

0.09,  0.01:  5.080,

0.1,  0 :  5.099,

res

res

res

  

  

  

  

  

  

 

demonstrate that the influence of the engine damping coefficient to the accuracy of the method 

is negligible. 

 Since the propeller damping is much larger than the engine damping, only the propeller 

damping can be taken into account with a somewhat increased value. By setting accordingly 

0   and 1 0  , Eq. (25) takes the form 

 

2

2

1
2 22 22 2 2

20 1 0 1

0 0

1 4

1 4 1
J J J J

J J









 

 
  

 


             
            

              

 (38) 

In resonance   and Eq. (38) is reduced to 

 
 

2

1

0

1 2
.

2
res J

J







  (39) 

For illustration, diagrams of the transfer factor  , Eq. (38), for the case 10 JJ   and 

different values of damping coefficient   are shown in Fig. 4. The values of   for any value 

of 0  converge to unity if /  approaches zero. On the contrary, values of   for 0  

converge to 0.5. The reasons for this are explained in Appendix A. In the former case the shaft 

rotates uniformly with a constant angular speed and the damping is changed into resistance, 
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while in the latter case the rotation is uniformly accelerated. The above two cases correspond 

to the propeller in water and propeller in air, Fig. 5. For these reasons, when performing engine 

tests on the test bed, a special water brake must be used in order to emulate the propeller 

resistance.  

In fact, if the damping coefficient   approaches zero in vicinity of 0  , the transfer 

factor   approaches the vertical asymptote 0   in the range between 0.5 and 1, as shown 

in Fig. 4. When   takes zero value uniform rotation suddenly turns into a uniformly accelerated 

rotation. This phenomenon occurs in case of fracture of the propeller shaft pin in an outboard 

engine, for example, due to a collision of the propeller with a solid. 

 

3. Simplified model of propulsion system 

3.1. The first torsional natural mode 

The shaft line consists of three main shafts, i.e. the propeller shaft, the intermediate shaft 

and the crankshaft where the corresponding lengths and diameters are shown in Fig. 6. The 

shaft line model is divided into segments between the propeller, flanges, flywheel and cranks 

of the crankshaft with lengths il . The polar moment of inertia of the shaft cross-section areas 

are designated by iI , and the polar moments of inertia of the propeller, flanges, the flywheel 

and cranks with the corresponding parts of the shaft as lumped masses by iJ . 

It is well known that the first torsional mode is dominant for the forced torsional 

vibration of ship power transmission lines. It can be assumed in the form of a static deformation 

as a piecewise linear function depending on the shaft torsional stiffness iGI , Fig. 7. The value 

of the twist angle 1  is assumed and values of the remained angles i ,i = 2, 3, ...n, are 

determined with respect to 1  depending on the segment length and stiffness. According to 

Fig. 7 one finds 

 

1 2
2 1

2 1

1 2
2 1 2 1

2 1

2 3 1 3
3 2 1

3 2 3 1

1 31 2
3 2 3 1

2 1 3 1

,

1 ,

,

1 ,

I l

I l

I l

I l

I l I l

I l I l

I lI l

I l I l

 

   

  

   

 

 
     

 

   

 
      

 

 (40) 



 

 

12 

or generally 

 

1
1

1

1
1

21

,

1 .

i
i

i

i
j

i

j j

I l

I l

lI

l I

 

 


 

 
   
 


 (41) 

The moment of inertia for the assumed mode is not self-equilibrated and therefore an 

additional moment due to rigid body rotation, r , has to be included 

 
0 0

0
n n

i r

i

i i

i

J J
 

    , (42) 

where cosi i t    and cosr r t   . From Eq. (42) one obtains 

 








n

i

i

n

i

ii

r

J

J

0

0



 . (43) 

Angle r is drawn in Fig. 2 and the actual twist angles rii    are indicated as well as the 

vibration node of the first torsional natural mode. 

 

3.2. Natural vibrations 

Differential equation of natural torsional vibrations reads 

 0
2

2

2

2











t
J

x
GI xx


, (44) 

where G is the shear modulus, xI is the polar moment of inertia of shaft cross-section and xJ is 

the mass polar moment of inertia per unit length. Natural vibrations are harmonic, i.e.

t sin , where   is the natural mode and   is the natural frequency. Hence, Eq. (44) is 

expressed in terms of the amplitude 

 0
d

d 2

2

2

 


xx J
x

GI . (45) 

In order to determine the natural frequency in case of a piecewise linear natural mode, Fig. 7, 

it is convenient to use Galerkin’s method. Accordingly, Eq. (45) is multiplied with   and 

integrated along the shaft 
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 0dd
d

d

0

22

0

2

2

 
l

x

l

x xJx
x

IG 


. (46) 

Furthermore, partial integration is used for the first term in (46) that leads to 

 0dd
d

d

0

22

0

2










l

x

l

x xJx
x

IG 


. (47) 

The first and the second term in Eq. (47) in fact represent twice the strain energy and kinetic 

energy, respectively. Thus, one arrives at the Rayleigh's quotient for the determination of the 

natural frequency 
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d
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d
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x
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





 
 
 






 . (48) 

In the considered case of the lumped mass model, the integration of terms in (48) can 

be performed per segments and one can write 

 i

i

i
i
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x l
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Ix
x

I
i

2
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d
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d




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

 
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
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



. (49) 
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1

2

1
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1

d ii

l
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x JxJ

i
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

. (50) 

By taking into account (41) Eq. (48) takes the form 
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 . (51) 

 

 

3.3. Forced vibrations 

The differential equation of motion for forced torsional vibrations reads 

 ),(
2

2

2

2

tx
t

J
x

GI xx 











, (52) 
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where ttx x  sin),(   is distributed external torsional moment with amplitude x  and 

forcing frequency  . The solution of Eq. (52) is assumed in the same form as the excitation, 

i.e.  

 txftx  sin)(),( . (53) 

Substituting (53) into (52) one obtains 

 xxx fJ
x

f
GI  2

2

2

d

d
. (54) 

The problem of the forced vibrations of the shaft line can be solved by the Rayleigh-

Ritz method. For this purpose the total energy equation is formulated 

  









l

x

l

x

l

x xfxfJx
x

f
IGE

00

22

0

2

dd
2

1
d

d

d

2

1
 , (55) 

where particular terms represent the strain energy, the kinetic energy and the work of external 

load, respectively. 

The response function can be found by the mode superposition method. Accordingly, it 

is assumed in the form 

 





0i

iiAf  , (56) 

where i  are natural modes. 

Coefficient 0A  and zero mode 10   are included to allow for the rigid body motion of the free 

shaft line. In spite of the fact that usually the excitation frequency is higher than natural 

frequency of the first elastic mode, 1 , experience shows that in the response spectrum the 

first mode is dominant. Therefore, due to practical reasons one can take only the first two terms 

of series (56) into account 

 BAf  . (57) 

The total energy of the vibrating system, Eq.(55), is equal to zero if the response function 

is exact. Otherwise, the energy has to be minimal. Substituting the approximating function (57) 

into Eq. (55) and setting 0 BEAE  two independent equations are obtained since 
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 0d
0


l

x xJ   (58) 

as a result of orthogonally of the two natural modes j  and 
k  of different indices j k , Eq. 

(56). From the first of those equations, it follows that 
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2
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d

d

 (59) 

and from the second equation, by taking relation (47) into account 
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22

d

d
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




. (60) 

Since the distributed mass and excitation are modelled as lumped quantities, integrals in 

Eqs. (59) and (60) of the continuous functions can be expressed by the summation of discrete 

quantities. Hence, one can write 

 
1

2

0

n

j

j

n

i

i

M

A

J





 






 (61) 
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






 

  
 




, (62) 

where jM  is the cylinder excitation torque, j  is the corresponding twist angle, and n  is the 

total number of cylinders. The numerator of (61) is the total engine torque, EM , and the 

numerator of (62) is the work of engine torque on an average twist angle of the crankshaft, 

EEM  . 
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By defining the constants A and B, Eqs. (61) and (62), the twist angle function f, 

Eq. (57), is determined, and one can write for the cross-sectional moment in the i-th shaft 

segment according to definition 

 )(
d

d

d

d
1

















 iii

i

i

i

iti BK
x

BGI
x

f
GIM 


, (63) 

where iii lGIK   is the shaft segment stiffness. Substituting Eq. (62) into (63), yields 

 Eiti MM  , (64) 

where 
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

  (65) 

is the modal transfer factor for undamped vibrations. 

In order to include damping in Eq. (65), it is necessary to take damping energy into 

account in Eq. (55) which is a rather complicate task. This problem can be overcome in a simple 

way by using analogy with the condensed shaft line model. The structure of Eq. (65) is the same 

as that of Eq. (38) if the damping coefficient 0 . The fraction in (65) 

 
Eiii

n

i

ii

i
K

J






)( 1

0

22









 (66) 

corresponds to the fraction of the polar moment of inertia in (38), i.e. 

 
0
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JJ
c


 . (67) 

Hence, one can write for the modal transfer factor of the simplified model of shaft line  
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where i  is given by Eq. (66). In the case of resonance   and one obtains 

 
 

2

res

1 (2 )

2 1
i

i




 





. (69) 

 

4. Engine excitation 

4.1. Cylinder torque 

Engine excitation originates from the pulsating gas combustion in cylinders. The gas 

pressure is variable and it induces variable gas forces and inertia forces of the crankshaft and 

connecting rod mechanism.  Both forces have radial and tangential components. The tangential 

component of the cylinder gas force and inertia force causes cylinder torque, as shown in Fig. 8 

for one shaft revolution, [12]. The cylinder tangential force can be expanded into Fourier series. 

The constant part of the tangential force contributes to the ship propulsion, while the variable 

part causes torsional vibrations of the shaft line. 

Instructions for the calculation of amplitudes of cylinder gas and mass forces are given 

by engine producers for each type of engine. The amplitudes must be summed up vectorially 

due to the different phase angles of different harmonics. Usually gas forces are successfully 

approximated by 25 harmonics, while for the approximation of the inertia forces 5 harmonics 

are sufficient. 

The variable part of the tangential force is specified for one cylinder as a specific force 

reduced to the piston area. It is given in the form of trigonometric series, [1] 

 
1

( ) sin( )v v

v

T t T t 


   , (70) 

where vT  is amplitude,   is the forcing frequency and v  is the phase angle of the ν-th 

harmonic. 

The cylinder torque is defined as 

 
1

1
( ) sin( )

2
C v v

v

M t SA T t 


   , (71) 

where AC is the piston area and S is the stroke. 
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4.2. Primary engine torque 

In the case of the condensed shaft line model it is assumed that the torque of each 

cylinder acts in the middle of the engine. The total engine torque is obtained as sum of torques 

of n cylinders, which are time shifted according to the firing order 

 
1

( ) ( ).
n

E k k

k

M t M t t


   (72) 

Within one period of shaft rotation, 2vT   , the time shift of the k-th cylinder is 

 ( 1) ,  1, 2,...k

T
t k k n

n
   . (73) 

Substituting Eqs. (71) and (73) into (72) one obtains 

 
1 1

1
( ) sin( 2 ( 1) )

2

n

E C v v

k v

M t SA T t k
n


  

 

     . (74) 

Introducing substitutions 

 , 2 ( 1)vt k
n


          (75) 

and employing the trigonometric identity 

 sin( ) sin cos cos sin         (76) 

Eq. (74) is transformed into the form 

 
1

1
( ) sin( ),

2

n

E C v v v v

k

M t SA T c t  


     (77) 

where 
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
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 

 






 (78) 

In such a way the influence of the time shift is transferred from the cylinder time functions, 

Eq. (74), to the cylinder torque amplitude, Eq. (77). This enables formulation of the engine 

torque as an algebraic summation of the cylinder torques for one excitation harmonic. 

If the ordinary number of an excitation harmonic coincides with the number of 

cylinders, i.e. if n   then na n , 0nb  , Eqs. (78). In this case Eq. (77) can be written in the 

form 

 
1

1 1
( ) sin( ) (1 ) sin( )

2 2
E C n v C vn v v v v

v

M t SA nT n t SA T c t    


        , (79) 

where vn  is the Kronecker symbol ( 1vn   if n  , 0vn   if n  ). As a result, the 

extracted first term in (79) is decisive and of the primary importance. According to (79) the 

amplitude of the engine torque, acting in the middle of the engine, reads 

 
1

2
E C nM SA nT . (80) 

 

4.3. Secondary engine torques 

In the simplified model of shaft line, the crankshaft is modelled with lumped masses, 

Fig. 6. The cylinder torques are distributed along the crankshaft as lumped dynamic loads and 

are time shifted. In order to be more precise, the secondary engine torques, which are generated 

in case n  , have to be derived from the very beginning. For this purpose the energy approach 

is more convenient. 

Starting from the differential equation of torsional vibrations (52), one can write for the 

total work of the external dynamic load within one period T 
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0 0

( , ) ( , )d d

T L

EW x t x t x t    . (81) 

In case of cylinder lumped excitation torques, ( )vM t , Eq. (81) can be written in the following 

form for the  -th harmonic  

 
( )

10

sin( ( )) sin( )d

T n

E Cv k j k

k

W M t t t t  


    , (82) 

where CvM  is the amplitude of the 𝜈-th cylinder torque equal for all cylinders, tk is the firing 

time shift, Eq. (73), and ( )j k  is the amplitude of the corresponding twist angle. The temporal 

index k = 1, 2... n, denotes the firing order number. The spatial index j denotes the position of 

the cylinder exposed to the k-th firing. 

Setting 

 ,  kt t       . (83) 

and employing the trigonometric identity (76), yields 

 2

0

( sin sin cos )d

T

v Cv n nW M A B t    , (84) 

where 
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



 (85) 

The first integral of trigonometric functions in (84) is 1 2I T , while the second one 2 0I  , 

due to the orthogonality of the integrating functions. Finally, taking into account the 

substitutions (73), (83) and (85), one arrives at 

 v Cv E vW M A





. (86) 
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where 
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1

cos(2 ( 1) )
n

j k

v

k E

A k
n

 




  . (87) 

On the other hand, the work of the resulting engine torque is 

 2

0

sin ( )d

T

v Ev E Ev EW M t t M


    
 . (88) 

Equating Eqs. (86) with (88), yields 
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1
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n

j k

Ev Cv

k E

M M k
n
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
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  . (89) 

 

5. Illustrative numerical example 

5.1. Characteristics of propulsion system 

A numerical example for the verification of the presented analytical procedures for 

torsional vibration analysis of a shaft line is taken from [14]. Power transmission system of a 

2600 TEU Container Ship, equipped with a slow-speed two-stroke seven-cylinder main engine, 

MAN B&W 7S70 MC-C type, and a five-blade propeller, is considered. The engine power is 

P = 21735 kW and the nominal speed N0 = 91 rpm. The main characteristics of the propulsion 

system are presented in Table 1. 

The model of the shaft line, which includes the propeller shaft, the intermediate shaft 

and the crankshaft, is shown in Fig. 9. The values of the main particulars are listed in Table 2, 

where the polar moment of inertia of shaft cross-section is 324DI  . The propeller polar 

moment of inertia is increased by 38% due to the added mass of surrounding water according 

to [21]. The polar moment of inertia Ji ,i = 0, 1...12, Fig. 12, include the lumped masses with 

the corresponding parts of the shaft mass.  

 

5.2. Natural vibrations 

The first natural frequency of the torsional shaft line vibration determined by the 

measurements and by different calculation procedures is listed in Table 3, [14]. The measured 

value is estimated by the resonant rotation speed technique. A detailed calculation of natural 

frequency is performed using the Finite Element Method (FEM), by an independent design 
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office, [14]. Four approximate values of natural frequency are obtained considering infinite and 

finite crankshafts, and two equivalent shaft diameter estimations, [14]. 

The discrepancies between the numerical results compared to the measured ones show 

that FEM analysis and simplified procedures taking finite crankshaft stiffness into account give 

underestimated values. In the case of assumed infinite crankshaft stiffness the obtained values 

are overestimated. Hence, the measured value of the natural frequency is bounded by the 

estimated values determined by the simplified procedures from [14]. 

In this paper the value of natural frequency is estimated for the condensed model of the 

propulsion system, Section 2.2, by employing formula (15). The equivalent stiffness and mass 

polar moment of inertia are K = 84.28 ∙ 106 Nm and J = 8.3 ∙ 104 kgm2 respectively. ( 0J in (16) 

includes 10 JJ   from Fig. 9, and 1J  the remaining of the moments of inertia.) As a result, one 

obtains  = 31.865 rad/s = 5.071 Hz that agrees very well with the measured value of 5.03 Hz. 

In order to estimate the first natural frequency of torsional vibration of the shaft line by 

the simplified procedure presented in Section 3, the approximate shape of the first torsional 

natural mode is determined in Table 4 according to Section 3.1. The natural mode is shown in 

Fig. 11. The natural frequency is calculated by Eq. (51) employing the shaft line parameters 

from Table 2. The value of the natural frequency of 5.059 Hz is very close to the measured 

value of 5.03 Hz, Table 3. 

 

5.3. Primary engine torque 

For the determination of the considered engine excitation the available data of one of 

the engine producers for a similar engine are used. The amplitude of the relative tangential force 

per piston area in Eq. (77) is given in the polynomial form 

 
2 3

vT A Bp Cp Dp    . (90) 

The values of the coefficients, A, B, C and D are tabulated for each the 𝜈-th harmonic. Symbol 

p in (90) designates the mean indicated pressure, which is determined by formula 
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, (91) 
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where p0 [bar] is given for particular engine at the nominal engine speed N0. Values of vT , Eq. 

(90), are in [N/mm2]. 

The values of the constants in Eq. (90) for the primary excitation harmonic 7n    

are the following: A = 6.192∙10-2, B = 1.486∙10-4, C = 1.193∙10-3, D = -3.524∙10-5. The value of 

p0 is 20 bar, Table 1. Diagrams of the indicated pressure p, Eq. (91), and the primary engine 

torque, ME, Eq. (80), as a function of engine speed, are shown in Fig. 10. The cylinder torque 

of the 1st order, which includes both gas force and inertia force, is also included in Fig. 10 as a 

reference for later use. 

 

5.4. Secondary engine torque 

Among large number of the secondary engine torques, n  , the torque of the 4th order 

is of particular interest according to the measured shaft line vibrations. The values of constants 

for the relative tangential pressure force, Eq. (90), are the following: A = 1.888∙10-1, 

B = 4.578∙10-3, C = 2.532∙10-3, D = -4.717∙10-5. 

The relative inertia force is determined by the formula 

 
2

2 2

OS S
vM v

C

m D
T k N

D
 , (92) 

where 

 4 2 6

4 ( 1.745 3.491 )10k      . (93) 

Using the data from Table 1 for quantities in Eq. (92), the amplitude of the resulting 

cylinder force CvT , consisted of vpT  and vMT , is determined by neglecting the phase angle 

between their vectors as a small quantity in the considered case. The cylinder torque, MC4, is 

determined by expression (80) and shown in Fig. 10. 

In the first consideration firing of one by one cylinder is assumed. The calculation of 

coefficient 𝐴𝜈, Eq. (87), is performed in Table 5, taking into account that index j = k. The 

values of the relative twist angle, j E  , are determined using the data from Table 4. 

In the second consideration, the given firing order is taken into account, Table 1. The 

values of the relative twist angle are rearranged in Table 6 according to the firing order. The 

calculation of the coefficient vA  is performed in Table 7. Since the engine torque, EvM , depends 

on vA , it is obvious that the firing order considerably increases the engine torque.  
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The value of vA  from Table 7 gives very large engine torque so that the calculated shear 

stresses in the intermediate shaft are not comparable with the measured values. The reason for 

this is that the gradient of the twist angle distribution along the crankshaft is about twice the 

average gradient of the twist angle determined by the FEM analysis, cal  and FEM  (secant 

slope) in Fig. 11, respectively. This is because in the calculation, the static deformation of the 

shaft has been assumed for the natural mode for the Rayleigh-Ritz procedure, whereas with the 

FEM analysis, a curved natural mode is obtained by solving a dynamic eigenvalue problem. 

Therefore the value of A  must be reduced accordingly. 

In order to determine the correct value of A , a relatively simple three mass of the shaft 

line can be used, Appendix B. In such a way the first elastic mode of the shaft line is represented 

by three linear pieces, as shown in Fig. B2. Based on the analysis given in Appendix B the 

coefficient A  must be reduced by a factor 

 
(3)

11

( )

11

1
0.5

1s
c






 


,  

where 
( )

11

s  and 
(3)

11  are twist angles at the crankshaft end determined by using the static mode 

shape, and by using the trilinear mode shape, respectively. By applying the correction factor 

the value of the coefficient A  in Table 7 reduces from 0.7157 to 0.3579. 

The engine torque, ME4, is determined by formula (89). The diagrams of ME4 is shown 

in Fig. 10. It is interesting to point out that the primary engine torque, ME, is very large since it 

is obtained by algebraic summing of the cylinder torques, MCv. However, the secondary engine 

torque, EvM , is even smaller than the cylinder torque, CvM , as a result of vectorial summation. 

The secondary engine torque depends on the variation of the twist angle along the crankshaft, 

while the primary engine torque is not influenced by the crankshaft deformation. 

 

5.5. Primary forced vibrations 

The torsional moment in the intermediate shaft, t EM M , is calculated for the 

condensed model of the propulsion system, Fig. 1, according to the analytical procedure 

presented in Section 2.3. The values of the transfer factor α, presented by Eq. (38), in which 

0 1 0( ) 2.213C J J J    , are determined by taking the damping coefficient γ = 0.055, based 

on MAN B&W experience, into account, Fig. 12. The engine excitation torque of the 7th order, 
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ME, is determined by Eq. (80). Shear stresses in the intermediate shaft, tM W  , where 

3

2 16W D   is the section modulus, are shown in Fig. 13.  

The measured values of the 7th order shear stress in the intermediate shaft at different 

engine speeds are also presented in Fig. 13. The resonance peaks in both the calculated and the 

measured case achieve almost the same value of 
max   60 N/mm2. In the subresonance domain 

the measured stresses are somewhat underestimated, while in the first part of the overresonance 

domain they are overestimated. 

Shear stresses determined by FEM analysis are also shown in Fig. 13. In the 

subresonance domain there are large discrepancies in comparison to the measured values. The 

resonance peak is very large since obviously a small value of damping coefficient is taken into 

account in order to be on the safe side. 

Due to the extremely large variation of the resonance stress curve shown in Fig. 13, it is 

rather difficult to evaluate visually the calculated results. Therefore, it is more convenient to 

compare the calculated engine excitation torque with that based on the measured stresses. The 

conversion of the measured stresses, τ, into the shaft torsional moment, Mt, and further on into 

the engine excitation torque, E tM M  , is performed in Table 8. The obtained values of the 

calculated engine torque, MEc, and the converted torque, MEm, are compared in Fig. 14. The 

calculated torque, MEc, is a smooth approximation of the piecewise curve MEm. Their values are 

almost equal at the resonance engine speed of Nr = 43.11 rpm. 

 

5.6. Secondary forced vibrations 

If the simplified model of the propulsion system for the calculation of forced vibrations 

is used, the transfer factor of the engine torque to the shaft cross-sectional moment, αi, is given 

by Eq. (68). Its values depend on parameter i , Eq. (66), which is a function of the modal twist 

angle E   at the position of the engine excitation torque, ME. The intermediate shaft, with index 

i = 2, Fig. 9, is considered now, and one obtains by substituting the previously determined 

values of particular parameters into (66), 2 3.381 E  . The dependence of 2  on the position 

of the excitation of a particular cylinder is shown in Fig. 15. If ME is imposed in the middle of 

engine (cylinder C4), the value of 2 = 2.434 is somewhat higher than that in the case of the 

condensed model, C = 2.213. Consequently, the values of the transfer factor α2 are somewhat 

lower, Fig. 12. 
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Shear stresses in the intermediate shaft, τ = ME4/W, are determined by employing ME4 

values from the diagram shown in Fig. 10. The stress distribution is shown in Fig. 16 and 

compared with the measured values. In the subresonance domain the calculated values follow 

the measured ones to some extent, while in the overresonance domain the calculated values are 

somewhat lower than the measured values. On the other hand, the calculated resonance peak 

stress is larger than the measured one. By closely inspecting the measured resonance curve it 

can be seen that the true peak of the response had not been captured due to the coarse frequency 

resolution. Discrepancies of the FEM results from the measured ones are quite large, especially 

in the resonance domain due to the small value of damping coefficient used. 

In order to increase the accuracy of the results determined by the simiplified model of 

propulsion system and to better estimate the measured stresses in the out of resonance domain, 

it would be necessary to appriximate the twist angle in Eq. (57) by taking more natural modes 

into account. However, in this case the analytical procedure turns into numerical one. 

Nevertheless, the most important objective of the analyis is to reliably estimate the resonant 

response. 

 

6. Conclusion 

All classification societies require calculation of the propulsion system operating 

parameters, but they do not provide simple formulae for the estimation of vibration response. 

An effort to overcome this shortcoming is presented in a recent publication. The shaft line had 

been modelled as a two d.o.f. system with the propeller mass on one end of the line and the 

lumped crankshaft mass at the other. The engine excitation torque and its transfer to the 

intermediate shaft are determined approximately, Appendix C. As a result, large discrepancies 

between the calculated and measured shear stresses in the intermediate shaft are obtained in the 

subresonance domain. Also, the applied value of the dimensionless damping coefficient is 

almost one half of the empirical value given by the engine producers. 

The investigation presented in this self-contained paper is motivated by the state-of-the 

art in this field. Two mathematical models are offered: one as two d.o.f. system with propeller 

mass and condensed crankshaft mass, and another multi-d.o.f. system with actual lumped 

masses. A special attention is paid to calculation of cylinder gas and inertia excitation and the 

formulation of the resulting engine torque by taking the firing order into account. Two cases 

are distinguished: the primary engine excitation if the ordinary number of the excitation 

harmonic coincides with the number of engine cylinders, and the secondary engine excitation 

if this is not the case. In the former case the engine torque is an algebraic sum of the cylinder 
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torques and it takes a large value. However, in the latter case the engine torque is a vectorial 

sum of the cylinder torques and is usually small but not negligible. 

The vibration of the propulsion system modelled by the condensed model are analysed 

by the analytical solution of the governing differential equations of motion. For this purpose, 

the torque transfer factor from the engine to the intermediate shaft is derived consistently. It 

captures both the case for the propeller in water and the propeller in air, and the primary engine 

excitation. 

The problem of the propulsion system vibrations simulated by a multi d.o.f. model is 

solved by the energy approach employing the mode superposition technique and the Raleigh-

Ritz method. A relatively simple formula for the transfer factor is derived which includes the 

modal stiffness and mass parameters. By this model it is possible to simulate both primary and 

secondary shaft line vibrations. It is found that the secondary dynamic response is influenced 

by both firing order and the crankshaft torsional deformation. 

The outlined analytical procedures for vibration analysis of propulsion systems could 

seem to be a bit theoretical and complicated. However, they are educative and the derived 

formulae for the first torsional natural frequency, engine excitation torque and the transfer factor 

are quite simple. Hence, the main results can be obtained quickly and without a computer. The 

correlation analysis of the calculated results with measured ones show a high accuracy of the 

presented procedures. Moreover, the derived formulae give more light into the physical 

background of torsional vibrations of propulsion system, which is not the case if a FE software 

is used. 

The above advantages make the presented analytical procedures for the estimation of 

propulsion system torsional vibrations a very valuable tool for applications in a preliminary 

ship design as well as for ships in service. 
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Appendix A 

Shaft response to propulsion engine torque 

 

 The propulsion torque is stationay and presented by the first term of the periodic 

impulsive total engine torque expanded into Fourier series. The governing differential 

equations of motion (7) take the following form: 

 
0 0 0 0

1 1 1 1

0,

.

t

t E

M c J

M c J M

 

 

  

  
 (A1) 

If damping is present the shaft rotation is uniform with constant angular velocity, 0 1    , 

while the angular accelerations are equal to zer0, 0 1 0   . Elimination of tM  from Eqs. 

(A1), yields  

 
0 1

1
.EM

c c
 


 (A2) 

By substituting (A2) into one of Eqs. (A1), one obtains 

 0 0 0

0 1 0 0 1 1

,t E E

c J
M M M

c c J J



 
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 
 (A3) 

where substitutions (33) are used. 

 If there is no damping, 0 1 0c c  , the shaft rotation is uniformly accelerated, 

0 1    . Following the above procedure, one arrives at the similar formulae to Eqs. (A2) 

and (A3), i.e. 

 0

0 1 0 1

1
,  M .E t E

J
M M

J J J J
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 
 (A4) 

 Transfer factors in Eqs. (A3) and (A4) are different due to different types of shaft 

motion. They can take the same value only in some special cases. 
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Appendix B 

Three mass model of shaft line 

 

By using a three mass model of the shaft line it is possible to capture also the natural 

frequency of the second elastic torsional mode. For this purpose, the shaft line is modelled by 

two beam finite elements with torsional properties, as shown in Fig. B1. The matrix equation 

of the finite element assembly for the natural vibration analysis reads: 

  
0 0

0 1 2

2 2

0 0

2

1 1

2 2

0

K K J

K K K J

K K J



 
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       
     
        
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,  (B1) 

where 

 0 2
0 2 1 0 2

0 2

, ,
I I

K G K G K K
l l

K     (B2)  

are the elements of the stiffness matrix. 0K  is the equivalent stiffness of the propeller shaft and 

the intermediate shaft, Eq. (5). The determinant of the sum of matrices within parenthesis in 

Eq. (B1) must vanish 

 6 4 2 0Det A B C D         (B3) 

where 

 0 1 2A J J J   

 0 1 2 1 2 0 0 2 1B J J K J J K J J K     

  0 1 2 1 0 2

2

2 0 1

2

2 0( )C J K K K J K K J K K K       

 0 1 2 0

2 2

2 0 2D K K K K K K K   .  (B4) 

Taking into account that 1 0 2K K K   the coefficient D vanishes, and the remaining parts of 

the determinant (B3) can be presented as 

  2 4 2 0Det A B C      .  (B5) 

The first value 0 0   is related to the shaft line rotation as a rigid body. The biquadratic 

equation in (B5) is relevant for the determination of the two natural frequencies of the elastic 

modes 

 4 2 0b c    ,  (B6) 

 

where 
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 0 1 2 2

0 1 2

K K K K
b

J J J


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 0 1 2
0 2

0 1 2

J J J
c K K

J J J

 
  . (B7) 

Finally, one obtains from (B6) 

 

2

1,2
2 2

b b
c

 
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 
 . (B8) 

By choosing the twist angle 1  as the referent one, the values of the remaining two nodal 

angles are determined from the first and third of Eqs. (B1) 
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.  (B9) 

The corresponding data for the three mass model of the considered shaft line are the 

following: 

 

0 2

0 2

0 1

4 4

2 2

2

2

14.77 m, 13.69 m,

0.01535 m , 0.04482 m ,

151450 kgm , 98504 kgm , 85157 kgm .

l l

I I

J J J

 

 

  

  

The value of 0J  includes 0J  and 1J  from Table 2. The resulting mass polar moment of inertia 

of the moments ,  with 2,3,...11iJ i  , in Table 2, is split into two nodal values 1J  and 2J  

according to the position of the centre of gravity. 

 By substituting the above data into Eqs. (B2), (B7), and (B8) one obtains the following 

values of the natural frequencies: 1 24.867 Hz,  12.591 Hz   . The first natural frequency 

is included in Table 3 and it somewhat underestimates the measured value, like the FEM result 

does. The second natural frequency is much smaller than the FEM value of 19.383 Hz. 

 The first two elastic torsional natural modes determined by employing Eqs. (B9) are 

shown in Fig. B2 and compared with the FEM modes. The agreement of the two mode shapes 

can be considered qualitatively acceptable. 

 If the second natural frequency is determined by the Rayleigh’s quotient, (Eq 48), using 

the corresponding natural mode obtained by the three mass model, Fig. B2, its value is increased 

to 2 17.88 Hz  , which is in a closer agreement with the FEM value.  
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Appendix C 

Comment on the state-of-the-art in estimation of torsional propulsion system 

vibrations 

 

In the recent reference [14] torsional vibrations of a propulsion system are analysed by 

two simplified models, i.e. one with an infinite crankshaft stiffness and the other with a finite 

stiffness of the crankshaft. Both models are two-mass systems similar to the condensed shaft 

line model shown in Fig. 1. In case of natural vibrations some tolerable differences of natural 

frequencies are present, Table 2. 

However, concerning the forced vibrations, the 1st order cylinder torque (whose 

frequency is the engine angular speed) is taken into account for simplicity. The value of the 

cylinder torque is noticeably lower than the engine torque of the 7-th order, as can be seen in 

the diagrams shown in Fig. 10. This shortage is traditionally compensated by using the 

displacement magnification factor of the single mass system in order to achieve a better 

agreement with the measured shear stress values. 

In the case of a single d.o.f. system, shown in Fig. C1, one has to distinguish the 

magnification factor, x , of the static displacement, stx , to the amplitude of the dynamic 

displacement, x , and the transfer factor F , of the amplitude of the external excitation force, 

eF , to the amplitude of the elastic spring force, FS, [22]. These factors read 
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where   is the forcing frequency and 0  is the natural frequency. Diagrams of x  and F  are 

shown in Figs. C2 and C3, respectively. 

By comparing the diagram of the magnification factor of the single d.o.f. system x , 

Fig. C2, used in [14] with the transfer factor for the two d.o.f. system,  , presented by Eq. (38) 



 

 

34 

and shown in Fig. 4, a difference is obvious. In the subresonant domain, the values of x  are 

increased as   increases, whereas the values of   first decreases and then increases with 

increasing frequency. 

Based on the above remarks one can conclude that the results obtained by the 

mathematical model for the estimation of torsional vibrations of the propulsion system 

presented in [14] can be used as a first approximation. 
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Table 1. Characteristics of propulsion system 

 

E
n
g
in

e 

Number of cylinders n = 7 

Nominal speed N0 = 91 rpm 

Mean indicated pressure p0 = 20 bar 

Stroke S = 2800 mm 

Cylinder bore diameter DC = 700 mm 

Oscillating mass per cylinder mOS = 7972 kg 

Connecting rod ratio 𝜆 = 0.488 

Flywheel moment of inertia JF = 14455kgm2 

Crank shaft diameter DCS = 840mm 

Firing order 1725436 

P
ro

p
el

le
r 

Diameter Dp = 7.42 m 

Number of blades z = 5 

Mass mp = 33700 kg 

Moment of inertia in air Jpa = 107200 kgm2 

Propeller shaft diameter Dps = 675 mm 

Intermediate shaft diameter Dis = 595 mm 

 

 

Table 2. Main particulars of shaft line 

 

i 

Length of shaft 

segments, 

li [m] 

Shaft diameter, 

Di [mm] 

Polar moment of 

inertia of shaft 

cross-section, 

Ii [m
4] 

Polar moment of 

inertia of lumped 

masses, 

Ji [kgm2] 

0 - - - 149000 

1 7.516 675 0.02038 2450 

2 7.254 595 0.01230 15300 

3 0.903 839 0.04865 7800 

4 1.240 822 0.04482 22800 

5 1.609 822 0.04482 22800 

6 1.653 822 0.04482 22800 

7 1.774 822 0.04482 22800 

8 1.774 822 0.04482 22800 

9 1.653 822 0.04482 22800 

10 1.716 822 0.04482 22800 

11 1.370 822 0.04482 962 

∑ 28.462   335112 
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Table 3. Comparison of the first natural frequency of the shaft line 

 

No. Method   [Hz] 

Discrepancy related 

to measurement 

  [%] 

1 Measurement 5.03±0.1 – 

2 Detailed FEM analysis 4.858 -3.42 

3 Infinite crankshaft stiffness,  

1st simplification, Ref. [14] 

5.269 +4.75 

4 Finite crankshaft stiffness,  

2nd  simplification, Ref. [14] 

5.330 +5.96 

5 Finite crankshaft stiffness,  

2nd  simplification, Ref. [14] 

4.798 -4.61 

6 Infinite crankshaft stiffness,  

1st simplification, Ref. [14] 

4.854 -3.50 

7 Three mass model, Appendix B 4.867 -3.24 

8 Present condensed model 5.071 +0.81 

9 Present simplified model 5.059 +0.57 

 

 

Table 4. Calculation of shaft line parameters 

 

i 
i

i

I

l
 



i

j j

j

I

l

2

 
i , Eq. (41) iiJ  rii  

 

2

iiJ   

0    0 -1.64 401035 

1 368.793  1 2450 -0.64 1005 

2 589.756 589.756 2.599 39767 0.959 14058 

3 18.561 608.317 2.649 20666 1.009 7939 

4 27.666 635.983 2.724 62119 1.084 26787 

5 35.899 671.883 2.822 64338 1.181 31815 

6 36.881 708.763 2.922 66618 1.281 37429 

7 39.581 748.344 3.029 69065 1.389 43962 

8 39.581 787.925 3.136 71512 1.496 51021 

9 36.881 824.805 3.236 73792 1.596 58070 

10 38.286 863.092 3.340 76159 1.700 65871 

11 30.567 893.659 3.423 3293 1.783 3057 

∑ 1262.452   549779  742049 
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Table 5. Determination of coefficient Av, Eqs. (87), n = 7, 𝜈 = 4, Fig. 11, firing order: one by 

one 

 

Coordinate 

i 

Cylinder 

 

Coordinate 

j = k 

Relative twist 

angle j E   

 

Phase angle

2 ( 1)j
n


    

cos   cos
j

E





 

4 C7 1 0.780 0.000 1.0000 0.7800 

5 C6 2 0.850 3.590 -0.9010 -0.7658 

6 C5 3 0.922 7.181 0.6235 0.5748 

7 C4 4 1.000 6.463 -0.2225 -0.2225 

8 C3 5 1.077 14.362 -0.2225 -0.2396 

9 C2 6 1.149 17.952 0.6235 0.7164 

10 C1 7 1.224 21.542 -0.9010 -1.1028 

∑     av = 0 Av = -0.2595 

 

Table 6. Relative modal twist angle of crankshaft rearranged according to cylinder firing 

order 1725436, Fig. 11 

 

Coordinate i 4 5 6 7 8 9 10 

Cylinder C7 C6 C5 C4 C3 C2 C1 

Firing order k 2 7 4 5 6 3 1 

Coordinate j 1 2 3 4 5 6 7 

Relative twist 

angle, j E   
0.780 0.850 0.922 1.0 1.077 1.149 1.224 

 

 

Table 7. Determination of coefficient 𝐴𝜈, Eqs. (87), n = 7, 𝜈 = 4, firing order 1725436 

 

k ( )j k E   2 ( 1)j
n


    cos   

( )
cos

j k

E





 

1 1.224 0.000 1.0000 1.2240 

2 0.780 3.590 -0.9010 -0.7028 

3 1.149 7.181 0.6235 0.7164 

4 0.922 10.771 -0.2225 -0.2051 

5 1.0 14.362 -0.2225 -0.2225 

6 1.077 17.952 0.6235 0.6715 

7 0.850 21.542 -0.9010 -0.7658 

∑   av = 0 Av = 0.7157 
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Table 8. Conversion of measured stress in intermediate shaft into engine excitation torque, 

condensed model 

 

Item 

i 
N [rpm] 

Measured   

[N/mm2] 

Based on 

measurement 

tM  [MNm] 

α 

(γ=0.055) 

MEm 

[MNm] 

1 24.7 3.81 0.1576 0.6729 0.2342 

2 27.2 4.83 0.1997 0.7510 0.2659 

3 30.7 6.37 0.2634 0.9172 0.2871 

4 34.5 9.63 0.3983 1.2579 0.3166 

5 38.3 16.69 0.6903 2.1180 0.3259 

6 39.5 23.93 0.9897 2.7135 0.3647 

7 41.5 43.06 1.8033 4.8500 0.3718 

8 42.9 53.32 2.2053 6.9370 0.3179 

9 43.1 55.37 

(60.00)* 

2.2901 

(2.4816) 

6.9193 

(7.5) 

0.3350 

0.3350 

10 43.9 42.36 1.7520 5.7958 0.3023 

11 44.4 35.77 1.4794 4.8657 0.3040 

12 45.0 29.71 1.2288 3.9149 0.3139 

13 46.1 19.76 0.8172 2.7788 0.2941 

14 47.1 15.22 0.6295 2.1581 0.2917 

15 49.0 11.33 0.4686 1.4866 0.3152 

16 50.5 9.77 0.4041 1.1811 0.3421 

17 52.2 8.58 0.3548 0.9510 0.3731 

18 55.0 6.20 0.2564 0.7190 0.3565 

19 57.1 5.84 0.2415 0.5984 0.4036 

20 58.2 5.87 0.2428 0.5488 0.4424 

21 59.9 5.50 0.2275 0.4851 0.4690 

22 62.1 4.77 0.1973 0.4199 0.4698 

23 64.2 4.64 0.1919 0.3707 0.5176 

24 66.4 4.13 0.1708 0.3290 0.5191 

25 68.0 3.98 0.1646 0.3034 0.5424 

26 70.6 3.99 0.1650 0.2684 0.6146 

27 71.8 4.34 0.1795 0.2545 0.7051 

28 74.6 4.18 0.1729 0.2264 0.7636 

29 75.8 4.32 0.1786 0.2159 0.8272 

30 78.1 4.02 0.1662 0.1979 0.8399 

31 80.2 3.85 0.1592 0.1835 0.8675 

32 81.7 3.86 0.1596 0.1742 0.9159 

33 83.3 3.81 0.1576 0.1652 0.9540 

34 86.0 3.77 0.1559 0.1515 1.0286 

35 87.5 3.71 0.1534 0.1447 1.0597 

36 89.6 3.60 0.1489 0.1360 1.0945 

37 91.2 3.47 0.1435 0.1299 1.1043 

38 91.7 3.34 0.1381 0.1281 1.0778 

39 92.9 3.28 0.1356 0.1239 1.0941 

40 93.8 3.27 0.1352 0.1209 1.1179 

* Resonant peak of spline through discrete measured values, [14] 
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