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Huang and Pashler (2007) suggested that feature-based attention creates a special

form of spatial representation, which is termed a Boolean map. It partitions the visual

scene into two distinct and complementary regions: selected and not selected. Here, we

developed a model of a recurrent competitive network that is capable of state-dependent

computation. It selects multiple winning locations based on a joint top-down cue. We

augmented a model of the WTA circuit that is based on linear-threshold units with

two computational elements: dendritic non-linearity that acts on the excitatory units

and activity-dependent modulation of synaptic transmission between excitatory and

inhibitory units. Computer simulations showed that the proposed model could create a

Boolean map in response to a featured cue and elaborate it using the logical operations

of intersection and union. In addition, it was shown that in the absence of top-down

guidance, the model is sensitive to bottom-up cues such as saliency and abrupt visual

onset.

Keywords: boolean map, feature-based attention, lateral inhibition, neural network, winner-take-all

INTRODUCTION

In the literature on visual attention, significant progress has been made in characterizing the
principles of selection. Visual attention can be allocated flexibly to a circumscribed region of space,
the whole object or feature dimensions such as color and orientation (Nobre and Kastner, 2014).
Indeed, early work suggested that a restricted circular region of space is a representational format of
attentional selection. Posner (1980) proposed that attention operates like a spotlight that highlights
a single circular region of space with a fixed radius. All locations that fall inside the spotlight are
selected, and everything outside is left out. An extension of this proposal, which is called the zoom-
lens model, suggests that the spotlight of attention can change its radius depending on the spatial
resolution that one wants to achieve (Eriksen and St. James, 1986). If high resolution is required,
the spotlight can be narrowed to capture details in the selected region, whereas the radius of the
spotlight can be widened when a lower resolution is sufficient.

Other studies point to an object as a unit of selection. Duncan (1984) showed that it is
easier to report two attributes if they appear on the same object, relative to the scenario
in which each attribute appears on a different object. This finding implies that the object is
selected as a whole and has been replicated many times using different stimuli and behavioral
paradigms (Scholl, 2001). This effect cannot be explained by spatial attention because objects
were spatially superimposed, that is, they shared the same locations. More recently, it was shown
that attention can also be allocated to a visual feature such as color or direction of motion
independent of spatial location (Saenz et al., 2002, 2003). Single-unit recordings have shown that
feature-based attention is accompanied by the global location-independent modulation of neural
response in a range of areas in the visual cortex. Attentional modulation was described as a
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multiplicative gain change that increases responses of neurons
that are selective to attended feature values and decreases
responses of neurons that are tuned to unattended feature values
(Treue andMartinez-Trujillo, 1999;Martinez-Trujillo and Treue,
2004).

Object-based attention, however, is not necessarily
detached from spatial representation. There is behavioral
and neurophysiological evidence that object-based attention
involves selection of all spatial locations that are occupied by the
same object. Specifically, it was suggested that attention selects
a grouped array of locations (O’Grady and Müller, 2000). In
other words, attention spreads from one spatial location along
the shape of the object and highlights all locations that belong
to the object (Richard et al., 2008; Vatterott and Vecera, 2015).
Neurophysiological studies showed that object-based selection
is indeed achieved by the spreading of the enhanced firing rate
along the shape of the object (Roelfsema, 2006; Roelfsema and de
Lange, 2016).

In a similar way, feature-based attention might involve the
selection of all locations that are occupied by the same feature
value, as shown by Huang and Pashler (2007). They proposed
that attention is limited because it may access only one feature
value (e.g., red) per dimension (e.g., color) at any given moment.
However, the accessed feature value is bound to space in parallel,
without capacity limits. Feature-based attention is allocated in
space via the formation of a binary or Boolean map. When a
conscious decision is made to attend to a specific feature value,
the Boolean map indicates all spatial locations that are occupied
by the chosen feature value because they are labeled by a positive
value (e.g., 1), while all other locations are labeled with zero. In
each selection process, selected locations need not be contiguous
in space, but they must share the same feature value. After a
Boolean map is formed, it is possible to operate on its output
by applying the set operations of intersection and union. Recent
work suggests that a spatial representation, such as a Boolean
map, might mediate perceptual grouping by similarity (Huang,
2015; Yu and Franconeri, 2015). Moreover, the idea has been
recently applied successfully in the computer vision literature on
developing algorithms for saliency detection (Zhang and Sclaroff,
2016; Qi et al., 2017).

Figure 1 illustrates a Boolean map that is formed in
response to three different stimulus configurations and sequential
application of two top-down feature cues. Figure 1A shows a
simple stimulus that consists of red and green squares. An
observer might attempt to isolate only red or only green items. To
do so, a top-down cue should be supplied to the feature map that
encodes the desired feature value. For example, when attention is
directed to the red color, the top-down cue highlights all locations
that are occupied by red squares. The Boolean map picks up on
this feature cue and forms a spatial representation in which cued
locations are labeled with 1 (white) and non-cued locations are
labeled with 0 (black). In terms of a neural network, these labels
correspond to the active (excited) and inactive (inhibited) states
of the corresponding nodes in the network (Boolean Map – 1).
Later, the observer might wish to switch to green color (Boolean
Map – 2). Again, in a response to a new feature cue, the Boolean
map now shows all locations that are occupied by green squares.

Figure 1B shows a typical stimulus that is used in visual search
experiments. It consists of red and green horizontal and vertical
bars. The task is to find a red horizontal bar. This is an example
of a conjunction search task in which two feature dimensions
should be combined to find the target object. According toHuang
and Pashler (2007), the conjunction task is solved in two steps. In
the first step, a Boolean map is formed by top-down cueing of
red items, irrespective of their orientations. In the second step,
only horizontal items are cued. However, since red items have
already been selected, the second Boolean map will correspond
to the intersection of red and horizontal items. There is only
one item that satisfies these selection criteria: the target. In this
way, visual search is substantially faster compared to the strategy
of sequentially visiting each item by moving the attentional
spotlight across the visual field. It is also possible to reverse the
order of the applied feature cues. In the first step, horizontal items
might be cued, and the intersection is formed by highlighting
red items in the second step. Importantly, there is behavioral
evidence that observers indeed implement such a subset selection
strategy in conjunction search tasks (Egeth et al., 1984; Kaptein
et al., 1995). Moreover, Huang and Pashler (2012) showed that
the same strategy is used in the perception of spatial structure in
a stimulus that is composed of multiple items that differ in several
dimensions.

Figure 1C illustrates an example of the union of two Boolean
maps. As in the previous example, the observer starts by
cueing red items and creating a Boolean map that consists of a
representation of their locations. In the second step, the observer
wishes to combine red with horizontal items. Therefore, in the
second step, one should cue horizontal items but simultaneously
maintain locations of the remaining items in memory. The
resulting new Booleanmap now represents the locations of all red
and all horizontal items that were found in the image. Computing
with Boolean maps might not be restricted to only two steps,
as Figure 1 suggests. It is possible to incorporate more feature
dimensions, such as motion, texture, or size, that can also be
engaged in creating Boolean maps that are more complicated.

Feature-based spatial selection, as illustrated by the Boolean
map, provides a strong constraint on the computational models
of visual attention because it requires simultaneous selection of
arbitrarily many locations based on an arbitrary criterion that
is set by the observer. Computational models of attention often
rely on a winner-take-all (WTA) network to select a single,
most salient location from the input image (Itti and Koch, 2000,
2001). TheWTA network consists of an array of excitatory nodes
that are connected reciprocally with inhibitory interneurons.
This anatomical arrangement creates lateral inhibition among
excitatory nodes that lead to the selection of a single node that
receives maximal input and the suppression of all other nodes,
which receive non-maximal input. However, when faced with
the input where multiple (potentially many) nodes share the
same maximal input level, the typical WTA network tends to
suppress all winning nodes due to a strong mutual inhibition
among them instead of selecting them together. For example,
Usher and Cohen (1999) showed that, under the conditions of
strong recurrent excitation and weak lateral inhibition, the WTA
network reaches a steady state with multiple active winners.
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FIGURE 1 | Illustration of the Boolean map that was created in response to the input image (Stimulus) after the first feature cue was applied to the spatial

representation (Boolean Map – 1) and after the second feature cue was applied (Boolean Map – 2). (A) Boolean maps that were created by two-color cues: red in the

first step and green in the second step; (B) intersection of two Boolean maps, where red is cued in the first step and horizontal orientation in the second step; (C)

union of two Boolean maps, where red is cued in the first step and horizontal orientation in the second step.

Importantly, activation of the winning nodes decreases linearly
toward zero as their quantity increases. In other words, this
network design suffers from the capacity limitation. This is a
useful property in modeling short-term memory and frontal
lobe function (Haarmann and Usher, 2001) but it is inadequate
for understanding how the Boolean map might arise in a large
retinotopic map, as exemplified by Figure 1.

Another problem is that the dynamics of the WTA network
are not sensitive to transient changes in the input amplitude.
Due to strong self-excitation and the resulting persistent activity,
the WTA network settles into one of its memory states (fixed
points). Importantly, each memory state is independent of
later inputs. If self-excitation is weakened, the network will
become sensitive to input. However, at the same time, it will
lose its ability to form a memory state and will behave like
a feedforward network (Rutishauser and Douglas, 2009). One
way to solve this problem is to apply an external reset signal
to the network before a new input is processed (Grossberg,

1980; Kaski and Kohonen, 1994; Itti and Koch, 2000, 2001).
However, this is not sufficient in the context of feature-based
attention. An intersection or union operation between two
Boolean maps requires that the currently active memory state
(formed after the first feature cue) be updated by taking into
account new input (the second feature cue). Therefore, the
dynamics of the WTA network should allow uninterrupted
transition between memory states that are governed by external
inputs. In other words, the WTA network should be capable
of state-dependent computation (Rutishauser and Douglas,
2009).

To summarize, a WTA network that is capable of computing
with Boolean maps should simultaneously satisfy two
computational constraints:

1. It should be able to select together all locations that share
a common feature value. This should be achieved without
degrading the representation of the winners.
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2. It should exhibit state-dependent computation, in which
new inputs are combined with the current memory state to
produce a new resultant state (e.g., intersection or union).

Here, we have developed a new WTA network that satisfies
these constraints and provides the neural implementation of the
Boolean map theory of attention (Huang and Pashler, 2007).

MODEL DESCRIPTION

The aim of the current work is to provide an explanation of how a
Boolean map may be formed in a recurrent competitive network
that can implement feature-based winner-take-all (F-WTA)
selection. To this end, we have extended the previously proposed
network model based on the linear-threshold units (Hahnloser,
1998; Hahnloser et al., 2003; Rutishauser and Douglas, 2009).
Concretely, the model circuit is presented in Figure 2. It consists
of a single inhibitory unit, which is reciprocally connected to a
group of excitatory units. In addition to these basic elements,
we introduce two processing components into the WTA circuit
to expand its computational power. The first is a dendritic non-
linearity, which prevents excessive excitation that arises from
self-recurrent and nearest-neighbor collaterals. We modeled the
dendritic tree as a separate electrical compartment with its
own non-linear output that is supplied to the node’s body
(Häusser and Mel, 2003; London and Häusser, 2005; Branco and
Häusser, 2010; Mel, 2016). The second is modulation of synaptic
transmission by retrograde inhibitory signaling (Tao and Poo,
2001; Alger, 2002; Zilberter et al., 2005; Regehr et al., 2009).
This is a form of presynaptic inhibition, where postsynaptic
cells release a neurotransmitter that binds to the receptors that
are located on the presynaptic terminals. Retrograde signaling
creates a feedback loop that dynamically regulates the amount of
transmitter that is released from the presynaptic terminals. Here,
we have hypothesized that such interactions occur in recurrent
pathways from the excitatory nodes to the inhibitory interneuron
and back from the interneuron to the excitatory nodes. In the
excitatory-to-inhibitory pathway, retrograde signaling enables
the inhibitory interneuron to compute the maximum instead
of the sum of its inputs. Computation of the maximum arises
from the limitation that the activity of the inhibitory interneuron
cannot grow beyond the maximal input that it receives from
the excitatory nodes. Furthermore, retrograde signaling in the
inhibitory-to-excitatory pathway enables the excitatory nodes
that receive maximal input to protect themselves from the
common inhibition. In this way, the network can select all
excitatory nodes with maximal input, irrespective of their
quantity or arrangement in visual space.

At first sight, it might appear strange to propose that
an excitatory unit can inhibit its input by releasing a
neurotransmitter that binds to the presynaptic terminal.
However, several signaling molecules have been identified to
support such interactions, including endogenous cannabinoids
(Alger, 2002). Moreover, Zilberter (2000) found that glutamate
is released from dendrites of pyramidal neurons in the rat
neocortex and suppresses the inhibition that impinges on them.
In addition, similar action has been found for GABA (Zilberter

FIGURE 2 | Feature-based winner-take-all (F-WTA) circuit. Connections

between excitatory (red circles) and inhibitory (blue disk) units are modulated

by retrograde inhibition (curved blue arrows). Self-excitation and

nearest-neighbor excitation are mediated by the dendrites of the excitatory

units. The same motif is repeated for all excitatory nodes in the recurrent map.

et al., 1999), which suggests that conventional neurotransmitters
can engage in retrograde signaling.

To situate the proposed F-WTA circuit in a larger neural
architecture that describes the cortical computations that
underlie top-down attentional control, we have adopted the
model that was proposed by Hamker (2004). He showed
how attentional selection of a target arises from the recurrent
interactions within a distributed network that consists of model
cortical area V4, the inferotemporal cortex (IT), the posterior
parietal cortex (PPC), and the frontal eye fields (FEF). Figure 3
illustrates part of these interactions that are involved in feature-
based attentional guidance. Top-down signals that provide
feature cues originate in the IT, which contains a spatially
invariant representation of relevant visual features. The IT
sends feature-specific feedback projections to the V4, where
topographically organized feature maps for each feature value are
located. For simplicity, we consider only maps for two colors (red
and green), and two orientations (vertical and horizontal). We do
not explicitly model IT and V4 dynamics. Rather, they serve here
as a tentative explanation of how input to the F-WTA network
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FIGURE 3 | Neural architecture for the top-down guidance of attention by feature cues, following Hamker (2004). Input is processed in retinotopically organized

feature maps for colors and orientations. These maps also receive top-down signals, which provide feature guidance. In this example, input image is taken from

Figure 1B and red color is cued by the top-down signals. Therefore, the activity of the nodes in the Red map is enhanced (white discs) relative to the activity in all

other feature maps (gray discs) because latter receives only feedforward signals. Black discs represent inactive nodes. In the feature maps, this indicates the absence

of a feature at a given locations. The F-WTA network sums output of all feature maps. Its activity represents all locations occupied by the cued feature. Parentheses

contain reference to cortical areas thought to be involved in proposed computations. R, red; G, green; H, horizontal; V, vertical.

arises within the ventral visual pathway. Also, we omitted the
contribution of the FEF and its spatial reentry signals to the V4
activity.

We hypothesize that the feature-based WTA network resides
in the PPC, where it receives summed input over all feature maps
from the V4. Top-down guidance is implemented by a temporary
increase in activity in one of the V4 feature maps. For example,
when the decision is made to attend to the red color, the IT
representation of red color sends feedback signals to the RedMap
in the V4. Top-down signals to the feature map are modeled as
a multiplicative gain of neural activity, which is consistent with
neurophysiological findings (Treue and Martinez-Trujillo, 1999;
Martinez-Trujillo and Treue, 2004; Maunsell and Treue, 2006).

The following neural network equations represent the
quantitative description of the model. Each unit is defined by
its instantaneous firing rate (Dayan and Abbott, 2000). The time
evolution of the activity of excitatory node x at position i in the
recurrent map is given by the following differential equation:

τx
dxi

dt
+ xi =

[

Ii (t) + αf (xi + xi+1 + xi−1) − β 1g
(

y− xi − Ty

)]+
.

(1)

The time evolution of the activity of inhibitory interneuron y is
given by

τy
dy

dt
+ y =

[

β 2

∑

i

g
(

xi − y− Tx

)

]+

. (2)

Parameters τx and τy are integration time constants for
excitatory and inhibitory nodes, respectively. We assume that
inequality τx > τy holds, which accords with the observation in
electrophysiological measurements that inhibitory cells exhibit
faster dynamics than excitatory cells (McCormick et al., 1985).
The second term on the left-hand side of Equations (1) and
(2) describes the passive decay that drives the unit’s activity
to the resting state in the absence of external input. Firing
rate activation function [u]+ is a non-saturating rectification
nonlinearity, which is defined by

[u]+ = max (u, 0) . (3)

Following Hamker (2004), we assume that feedforward input Ii
at time t to the excitatory node xi in the F-WTA network is given

by the sum over activity in all V4 feature maps I(m)
i ,

Ii (t) =
∑

m

I
(m)
i G(m) (t). (4)

In Equation (4), m denotes available feature maps with m ∈
{

red, green
}

in the simulation that is reported in section
Simulation of the Formation of a Single Boolean Map and m ∈
{

red, green, horizontal, vertical
}

in the simulation that is reported
in section Simulation of the Intersection and Union of Two
BooleanMaps. ParameterGm refers to the feature-specific, global

multiplicative gain that all units I
(m)
i within the same feature

map m receive via top-down projections. As shown in Figure 2,
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these projections arrive from the feature representation in the
IT. Multiplicative gating is generally consistent with previous
models that describe the effect of feature-based attention on
the responses of neurons in the early visual cortex (Boynton,
2005, 2009). Equation (4) ensures that the F-WTA network is
not particularly sensitive to any feature value. Rather, it signals
the behavioral relevance of locations in a spatial map. Here, the
relevance can be set according to differences in the bottom-up

input I(m)
i that arise from competitive interactions in the early

visual cortex. Alternatively, relevance can be signaled by the top-
down feature cues Gm that change the gain of all locations that
are occupied by the same feature value.

Dendritic output f(u) is described by the sigmoid response
function

f (u) =
Sd

1+ e−λ(u−Td)
(5)

where λ and Td control the shape of the sigmoid function and Sd
is its upper asymptotic value. We set λ to a high value to achieve
a steep rise of the dendritic activity immediately after its input
crosses the dendritic threshold, which is denoted as Td. Such
strong non-linearity is justified by experimental data, which show
all-or-none behavior in real dendrites (Wei et al., 2001; Polsky
et al., 2004). In Equation (1), parameter α controls the strength
of the impact that the dendritic compartment exerts on the soma.

Self-recurrent xi and nearest-neighbor collaterals xi−1 and
xi+1 arrive on the dendrite of the excitatory node, which is
consistent with the anatomical observation that most recurrent
excitatory connections are made on the dendrites of the
excitatory cells (Spruston, 2008). Nodes at the edge of the
network receive excitation only from a single available neighbor.
That is, node x1 receives excitation only from x2, and xN
receives excitation only from xN−1. Nearest-neighbor excitatory
interactions enable feature cues to spread activity enhancement
automatically to all connected locations that contain a given
feature value. This is not essential for the simulation of Boolean
maps but we included it in our model because recurrent
connections among nearby neurons are prominent feature of the
synaptic organization of the cortex (Douglas and Martin, 2004).
Also, we wanted to show that the proposed model is capable of
simulating object-based attention (Roelfsema, 2006; Roelfsema
and de Lange, 2016). Moreover,Wannig et al. (2011) found direct
evidence for activity spreading among neurons that encode the
same feature value in the primary visual cortex.

The output of the presynaptic interactions g(u) is defined by
the rectification non-linearity of the form

g (u) = [u]+ = max (u, 0) . (6)

In Equation (1), the term − g(y − xi − Ty) describes the
output of the presynaptic terminal that delivers inhibition from
interneuron y to excitatory node xi (Figure 4A). However, we
did not explicitly model the dynamics of retrograde signaling.
We assumed that the release of the retrograde transmitter occurs
simultaneously with the activation of the postsynaptic node and
that it is proportional to its firing rate. Therefore, it is represented
by the term− xi.

FIGURE 4 | Retrograde inhibitory signaling (blue curved arrows) from

excitatory node xi to the presynaptic terminal of inhibitory interneuron y (A)

and from the inhibitory interneuron to the presynaptic terminal of the excitatory

node (B). Both terminals compute half-wave rectification g(u) of their input.

Terminals release respective inhibitory (A) or excitatory (B) neurotransmitter

(straight horizontal arrows) only when they receive net positive input.

Function g(u) ensures that the presynaptic terminal will
release the inhibitory transmitter only when the electrical signal
from node y exceeds the inhibitory retrograde signal -xi and
the threshold for presynaptic activation, which is denoted as
Ty. In other words, node xi will be inhibited only if y > xi +
Tx. If this is not the case, node xi will effectively isolate itself
from the inhibitory influence of node y. This is always the case
for the winning node because x(t) > y(t) for t > 0. Moreover,
this result extends to all other nodes whose input magnitude
is sufficiently close to the maximal input. The strength of the
inhibition is determined by parameter β1. In a similar vein, in
Equation (2), the term−g(xi – y – Tx) describes the action of the
retrograde signal that is released from inhibitory interneuron y
on the presynaptic terminal that delivers excitation from node xi
(Figure 4B). Here, parameter Tx describes the threshold for the

Frontiers in Psychology | www.frontiersin.org 6 March 2018 | Volume 9 | Article 417

https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org
https://www.frontiersin.org/journals/psychology#articles
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activation of the presynaptic terminal of the excitatory node and
β2 determines the strength of the excitation.

We have proposed a model of a one-dimensional network,
although it attempts to simulate phenomena that occur in 2-D,
as illustrated by Figure 1. We have chosen to work with the 1-
D version of the network simply because we want to focus on
the analysis of its temporal dynamics and its ability to combine
information over time. Without loss of generality, the computer
simulations that are reported in section Computer Simulations
should be considered as a cross-section of a 2-D network.

For simplicity, the thresholds that control the activation of
the excitatory and inhibitory nodes are all set to zero and are
omitted from the model description. Parameters were set as
follows: τx = 5; τy = 2; α = 1; β1 = 1; β2 = 10; Sd = 1;
λ = 100; Td = 0.1; Tx = 0.1; and Ty = 0.1. Parameters were
chosen in a way to simultaneously achieve intersection and
union. Systematic variations on the parameters α, β1 and β2

showed that intersection is observed when 1 ≤ (α, β1) ≤ 5. In
contrast, union is observed when 0.8 ≤ (α, β1) ≤ 1. Parameter
β2 can be set to any value above the default without changing the
results.

MODEL EXTENSIONS

The network that is defined by Equations (1) and (2) is chosen
in a way that achieves the desired behavior with the minimal
number of computational elements. This simplicity heuristic is
important for understanding model properties without adding
extra neuroscientific complexity (Ashby and Hélie, 2011).
However, at the same time, this approach sacrifices anatomical
and biophysical plausibility of the proposed model. In this
section, we present several extensions and generalizations of the
basic model that bring it closer to satisfying the neurobiological
constraints.

Inhibitory Pool
The model has just one inhibitory interneuron for computational
convenience, which is not realistic. It is known that excitatory
neurons outnumber inhibitory neurons by a factor of four in the
cortex (Braitenberg and Schüz, 1991). However, it is possible to
design an F-WTA network with a pool of inhibitory interneurons
and the appropriate ratio between excitatory and inhibitory
nodes that achieves the same behavior as the original model.
An extended F-WTA network is presented in Figure 5A. Here,
each inhibitory interneuron receives input from a subset of
the excitatory nodes. We depicted each excitatory subset as a
vertical arrangement of four nodes that do not overlap in their
projections to the inhibitory pool. Therefore, each excitatory
node projects to just one inhibitory node. Naturally, this does
not need to be the case. It is possible that each excitatory
node projects to more than one node without compromising
the network output. Importantly, all inhibitory interneurons are
mutually connected. In addition, each inhibitory interneuron
projects its output to all excitatory nodes (denoted by thick
blue arrow). As in the original model, we assume that all

inhibitory and excitatory nodes are endowed with the capability
of retrograde signaling on their synaptic contacts.

Within the pool of inhibitory nodes, retrograde signaling
enables computation of the MAX function, as in the original
model. To see this, consider the inhibitory node that receives
maximal input. Due to the retrograde signaling, it will reach a
steady state that corresponds to the computation of the MAX
function over input from its excitatory subset. Moreover, it will
not receive inhibition from the other members of the pool. All
other inhibitory nodes, which receive less excitatory support, will
be silenced because their retrograde signaling is not sufficiently
strong to prevent lateral inhibition from the winning node.
However, if there are multiple inhibitory nodes with the same
level of activity, they will remain active together. Finally, the
winning nodes send inhibition to all excitatory subsets. Since
excitatory nodes also engage in retrograde signaling, the nodes
that receive maximal input will block inhibition and remain
active. Therefore, the network output will look much like the
original model because the MAX computation on the inhibitory
nodes makes irrelevant the number of them that are active
simultaneously.

Localized Inhibition
An important shortcoming of the previous model is that it
assumes that inhibitory projections extend across the whole
network of excitatory units. This is clearly not the case in
real neural networks, where the spatial spread of inhibition is
limited. To account for this property, we have constructed a
more elaborate version of the basic model, which is shown in
Figure 5B. It contains a new pool zj of excitatory nodes with long-
range projections. The zj nodes receive input from the subset
of the xi nodes. Additionally, each zj node sends its projection
to at least one yj node from the pool of inhibitory nodes.
The number of z nodes must equal the number of inhibitory
nodes yj so that they can be indexed by the same subscript
j. Again, we assume that the zj nodes are equipped with the
ability of retrograde signaling on their synapses. Therefore, they
also compute the MAX function over all their inputs, including
feedforward input from the corresponding subset of xi nodes and
recurrent input from other zj nodes. In this design, the maximum
level of activity that is sensed by the xi nodes in one part of the
network is easily propagated via zj nodes to all other parts of the
network. Furthermore, zj nodes transfer this activity to inhibitory
nodes. Therefore, each inhibitory node will eventually receive the
maximal level of activity and apply it to the subset of xi nodes
to which it is connected. In this design, it is not necessary for
inhibitory nodes to interact with one another. The excitatory
nodes xi that receive maximal input will block inhibition by
their retrograde signaling and remain active in the same manner
as described in the previous section. In this way, the proposed
circuit achieves the same result as the original model.

Output Functions
The model employs threshold-linear output functions for the
soma and the logistic sigmoid function for dendrites. This
is inconsistent with the observation that somatic output also
saturates and is also often modeled by the sigmoid function.
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FIGURE 5 | Two variations of the F-WTA circuit design that are computationally equivalent to the basic circuit that is shown in Figure 2. (A) Circuit with a set of

inhibitory nodes, which are denoted as yj . Each yj receives input from a subset of excitatory nodes. Inhibitory nodes compete with one another and the winning node

encodes the maximum of its input. It delivers inhibition to all excitatory nodes in the same way as single inhibitory node y in the basic circuit. (B) Circuit with an

additional set of excitatory nodes zj with long-range horizontal projections. These nodes propagate the locally computed maximum level of activity to all parts of the

network. Therefore, the whole set of zj converges to a global maximum. Furthermore, they contact inhibitory nodes yj that deliver inhibition to a subset of excitatory

nodes xi .

However, in normal circumstances, neurons operate in a linear
mode that is far from their saturation level (Rutishauser and
Douglas, 2009). To provide a more systematic approach to the
output functions that are used in the model, we introduce a
piecewise-linear approximation to the sigmoid function sq(u) of
the form

sq (u) =







0 if u ≤ 0
u if 0 < u < Sq
Sq if u ≥ Sq

(7)

where Sq denotes the upper saturation point, which can be set
differently for different computational units q ∈

{

c, d, p
}

, which
correspond to the somatic, dendritic, and presynaptic terminal
outputs, respectively. With the output function sq(u) applied to
all computational elements of a single node, the model equations,
namely, Equations (1) and (2), can be restated as

τx
dxi

dt
+ xi = sc [Ii (t) + αsd (xi + xi+1 + xi−1 − Td)

− β 1sp
(

y− xi − Ty

)]

(8)

and

τy
dy

dt
+ y = sc

[

β 2

∑

i

sp
(

xi − y− Tx

)

]

. (9)

An important constraint of the model that is defined by
Equations (8) and (9) is that saturation point for the dendritic

output Sd should be chosen to be smaller than Sc, which is the
saturation point of the somatic output. In this way, feedforward
input Ii can be combined with the dendritic output without
causing saturation at the output of the node. In contrast, if
dendrites are allowed to saturate at the same activity level as
the node, the dendritic output will overshadow the feedforward
input. Consequently, the network will lose its sensitivity to
the input changes. This is undesirable with respect to the
requirements that are imposed by the sequential formation of the
multiple Boolean maps. Therefore, the choice between the linear
or the sigmoid output function for the node is not important if
the dendritic output is restricted to a smaller interval relative to
the output of the node itself.

LINEAR STABILITY ANALYSIS

Fixed Points
Fixed point is found iteratively starting from the set of nodes
receiving maximal input, xM . We assume that the winning nodes
and inhibitory interneuron are activated above their thresholds,
so we set [u]+ = u. Next, we observe that the winning nodes do
not receive inhibition from the interneuron y since xM(t) > y(t)
for t > 0. This holds because the activity of the inhibitory node is
bounded above by xM + Tx > y where Tx is a positive constant.
Then, retrograde signaling ensures that g(y − xM − Ty) = 0
for all times t. Consequently, nodes receiving maximal input are
driven solely by excitatory terms. Since the recurrent excitation
is bounded above by its asymptotic value Sd, dendritic output
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function f(u) in Equation (1) is replaced with Sd. This yields the
following approximation to the steady state of the winning nodes:

xM ≈ IM + αSd. (10)

After the xM , inhibitory interneuron y also reaches its steady state
because its activity is driven primarily by the input from xM . As
the activity of y grows, terms g(xi − y − Tx) in Equation (2)
vanish for all nodes that do not receive maximal input xi where
i /∈ M. In contrast, the presynaptic terminals of xM are above the
threshold for their activation just before y reaches equilibrium,
that is, g(xM − y− Tx) > 0. Therefore, the output function of the
presynaptic terminal g(u) can be replaced by u. Then, Equation
(2) is solved as

y =
β2k (xM − Tx)

β2k+ 1
, (11)

where k is the number of xM . When β2 is chosen to be sufficiently
large, and/or there are many nodes with maximal input xM , then

y → xM − Tx. (12)

Continuity of the function defined by Equation (2) implies that
y cannot grow above xM − Tx, that is, y(t) > xM(t) − Tx cannot
hold at any time t unless y(t0)= xM(t0)− Tx at some earlier time
t0 < t. However, equality y(t0) = xM(t0) − Tx implies that dy/dt
= 0 at time t0 because g(xM(t0)− y(t0)− Tx)= 0. In other words,
node y loses all its excitatory drive when it reaches xM − Tx. This
is true irrespective of the number k of xM . Thus, node y computes
the maximum over its input.

The xM nodes, together with the inhibitory node, create a
quenching threshold (QT) for the network, which is defined by

QT = y− Ty = xM − Tx − Ty. (13)

Grossberg (1973) introduced the concept of the quenching
threshold to describe the property of contrast enhancement in
recurrent competitive networks. Nodes whose activity is above
QT are enhanced and stored in the memory state, while all nodes
whose activity is below QT are suppressed and removed from
the memory representation. In the same manner, the remaining
excitatory nodes converge to one of two states, depending on
whether they exceed QT or not:

xi/∈M ≈

{

Ii + αSd if xi ≥ QT
0 if xi < QT.

(14)

QT and its relationship with the activity of the winning and
non-winning nodes and inhibitory interneuron is illustrated
in Figure 6. According to Equations (10), (11), and (14), the
fixed-point linearly combines input and recurrent excitation. As
maximal input increases or decreases, the fixed point will move
up or down and track these changes. Moreover, the input may
cease, and the winning nodes will settle into the activity level that
is provided by the recurrent excitation alone, which is expressed
as αSd. In other words, the network remembers who the last
winner was. The same is true in the case where the winner is
determined by transient cues that are applied sequentially on a
sustained input. This is a protocol that is used in the computer
simulations that are reported in section Computer Simulations.

FIGURE 6 | Relationship among the steady state of the winning node x1,

inhibitory node y, and all other excitatory nodes in the network, x2 … xn. The

activity of the winning node is given by the sum of its feedforward input I1 and

the output of its dendrite mediating self- and nearest neighbor excitation,

which is expressed as αSd . Inhibitory node y approximately converges to x1 –

Tx . It sets the quenching threshold (QT) that separates excitatory nodes into

two sets. Nodes x2 … xn are spared from inhibition if their activity is above the

QT (dashed line); otherwise, they are silenced to zero (solid line). QT equals y –

Ty (or x1 – Tx – Ty ) because the activity of the inhibitory node must exceed the

threshold on its presynaptic terminals that contact the excitatory nodes.

Linearization Near Fixed Points
To simplify the stability analysis, we consider an F-WTA network
with two excitatory nodes and one inhibitory node: [x1, x2, y].
This system has three fixed points: x1 is the only winner, x2 is
the only winner, and both excitatory nodes are winners. To which
fixed point the network will converge depends on the relationship
between inputs I1 and I2.

Local stability of the fixed point is estimated from the
eigenvalues of the Jacobian matrix, which is the matrix of partial
derivatives of the system of equations. If the real parts of all
eigenvalues of the Jacobian are negative, the fixed point will be
asymptotically stable (Rutishauser and Douglas, 2009). However,
before we can compute the Jacobian matrix, we note that a
linear-threshold function is continuous, but not differentiable.
To sidestep this problem, we follow the approach that was
described by Rutishauser et al. (2011) of inserting dummy terms
that correspond to the derivate. That is, we need three separate
dummy terms: ci and pxi, which correspond to the somatic and
presynaptic output functions of excitatory node i, and a set of pyi
dummy terms that describe the presynaptic output function of
inhibitory node y. The dummy terms are defined as.

ci = pxi = pyi =
d

du
[ui (t)]

+
=

{

0 if ui (t) ≤ 0
1 if ui (t) > 0.

(15)

Based on the above definition of the dummy
terms, we have constructed the Jacobian matrix of
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the system that consists of Equations (1) and (2):

J =





τ−1
x

(

c1
(

αD1f + β1py1
)

− 1
)

τ−1
x c1αD2f τ−1

x c1β1py1
τ−1
x c2αD1f τ−1

x

(

c2
(

αD2f + β1py2
)

− 1
)

τ−1
x c2β1py2

τ−1
y β2px1 τ−1

y β2px2 −τ−1
y

(

β2
(

px1 + px2
)

− 1
)



 (16)

where D1f and D2f denote the partial derivatives of the sigmoid
function with respect to x1 and x2. Now, we examine the Jacobian
matrix at the three fixed points that are mentioned above. If x1
is the only winner, then c1 = 1. However, Dx1f ≈ 0 because
the recurrent excitation of the winning node approaches its
asymptotic value, which is Sd. In addition, py1 = 0 because the
winning node blocks inhibition from node y, as discussed above.
Node x2 is inhibited below its somatic threshold, that is, c2 = 0.
Presynaptic signaling by inhibitory node y blocks excitation from
x1 and x2 is inactive, so px1 = px2 = 0. Consequently, the Jacobian
matrix at the fixed point reduces to a diagonal matrix of the form

JW1 = JW2 = JW12 =





−τ−1
x 0 0
0 −τ−1

x 0
0 0 −τ−1

y



 . (17)

All eigenvalues of the JW1 are negative, and the fixed point is
asymptotically stable. In the case when x2 is the sole winner, the
same arguments are applied to set the dummy terms, thereby
leading to the same diagonal matrix JW2 as shown in Equation
(17). Moreover, if both excitatory nodes are winners, then c1
= c2 = 1, Dx1f = Dx2f ≈ 0 and px1 = px2 = 0. Again, the
Jacobian matrix JW12 is diagonal. Thus, all three fixed points are
asymptotically stable.

The same analysis can be generalized to a network of arbitrary
size and arbitrarily many fixed points. Retrograde signaling and
dendritic saturation will ensure that the Jacobian matrix of any
size will be diagonal and that the network dynamics will be
independent of the network parameters, namely, α, β1, and
β2. Local stability analysis suggests that the system behaves
much like a feedforward network that is driven by the input.
However, an important difference is that the F-WTA network
has memory states like the recurrent network (Usher and Cohen,
1999; Rutishauser and Douglas, 2009).

COMPUTER SIMULATIONS

We performed a set of computer simulations to illustrate the
model behavior. We employed a vector of 200 excitatory units
and one inhibitory unit. Differential Equations (1) and (2)
were solved numerically using MATLAB’s ode15s solver. The
simulations were run for 250 time steps. In subsequent figures,
we followed the convention that activity of the node at position
i as a function of time is depicted by a shade of gray, with white
representing the maximal value and black representing zero.

Simulation of the Formation of a Single
Boolean Map
First, we demonstrate how a Boolean map arises in the F-
WTA network in response to the presentation of the color
cue, as illustrated by Figure 1A. In Figure 7A, we recreate a

similar stimulus condition in the 1-D map. The input consists
of red and green items of equal sizes, which are intermixed
in space on a black background. Input magnitude I was set
to 1 in both maps and to 0.2 in the empty space around
items to represent spontaneous activity in the absence of visual
stimulation. Initially, the top-down or attentional gain is set to
Gm

= 1 in both feature mapsm ∈
{

red, green
}

. At t = 50, the red
color is attended, which is reflected in the input to the network
by increasing the gain for all nodes in the Red map (Gred

=

2) and simultaneously reducing the gain in the Green map by
the same factor (Ggreen

= 1/Gred
= 1/2). Top-down gain is also

applied to the empty space between items, which is consistent
with the finding that feature-based attention spreads across the
whole visual field (Saenz et al., 2002, 2003; Serences and Boynton,
2007). The duration of the top-down cue is 50 simulated time
steps. For simplicity, top-down signals are suddenly switched on
and off without exponential decay. At t = 150, the green color is
cued in the same way.

At the beginning of the simulation, before the top-down
signals are applied, the F-WTA network simply selects all
presented items together, irrespective of their color. Next, when
the red color is cued by applying top-down signals to the
corresponding feature map, the network responds to the new
input by selectively increasing and sustaining the activity of
nodes that encode locations of red items in the input and
suppressing locations that encode green items. That is, the
network creates a Booleanmap by highlighting the spatial pattern
that is associated with the red color. Furthermore, due to a
self-excitation, the network maintains locations of the cued
feature value in working memory after the top-down signals
cease to influence the feature map. When the observer decides
to switch attention to another feature value, the network can
select the locations of the new feature value and suppress the
locations that are associated with the previously cued value
without requiring an external reset. Namely, the network is
sensitive to input changes even though it also exhibits activity
persistence.

Importantly, the activity level at selected locations is invariant
with respect to the number of active nodes. At the beginning
of the simulation, the number of active nodes was four times
larger than after the cue was delivered. However, the active nodes
remained at the same activity level as they were at the beginning
of the simulation. This is a consequence of retrograde inhibitory
signaling in recurrent pathways. It prevents unbounded growth
of inhibition due to the dynamic regulation of its strength. To
illustrate this point further, we run another simulation with items
that are almost double in size (Figure 7B). Even though the total
size of the cued items is increased, the activity of the cued nodes
converges to the same level as before. In this simulation, we also
checked that the network successfully operates even if we remove
gain reduction from the non-attended feature map.
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FIGURE 7 | (A) Simulation of the Boolean map formation in the F-WTA network in response to the sequential presentation of two color cues (red appeared between

50th and 100th and green appeared between 150th and 200th simulated time unit). (B) The same simulation with larger items and without gain modulation applied on

the unattended feature map.

Next, we determined the minimal feature gain that must be
applied on the input to produce the desired behavior. When
the gain modulation is applied simultaneously on attended
feature map GA and on unattended feature map GNA (where
GNA

= 1/GA), we found that GA
≥ 1.7 is sufficient for creating

a Boolean map and switching to another one. In contrast,
when the gain modulation is not applied on the unattended
feature map, as shown in Figure 7B, the feature gain in the
attended map should be set to GA

≥ 2 to achieve the same
behavior.

Figure 8 illustrates that the F-WTA network can support
space- and object-based attention alongside feature-based
attention. When the spatial cue is applied to a single location
in one of the feature maps, the network responds by selecting
only this location. Neighboring nodes are not selected even

though they are reciprocally connected to the cued node. The
reason is that they receive weaker input relative to the cued
node. Furthermore, recurrent excitation that arrives from the
cued node is bound by the dendritic non-linearity. Thus, it
is not sufficiently strong to keep them active. Interestingly,
when the spatial cue is removed, the network activity starts
to propagate from the cued node toward the boundary of the
whole item. In this case, the network selects not just the cued
location, but all locations that are connected to it. Therefore,
the F-WTA network exhibits object-based selection, which is
consistent with neurophysiological studies that show spreading
of enhanced activity along the shape of the object (Roelfsema,
2006). This property arises because the removal of the cue
equalizes the input magnitude along the object, which allows
activity enhancement to propagate via local lateral connections.
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FIGURE 8 | Simulation of space- and object-based attention in the F-WTA

network.

In addition, this simulation shows that spatial attention can be
easily oriented toward a new location in a single jump without
the need for attentional pointers that move attention across the
map (Hahnloser et al., 1999).

Simulation of the Intersection and Union of
Two Boolean Maps

Figure 9 illustrates that the model can sequentially combine two
Boolean maps when the network is cued by top-down signals
from two separate feature dimensions. In this simulation, we
have employed a visual input that consists of red and green
horizontal and red and green vertical bars, like those that are
illustrated in Figure 1B. First, the F-WTA network is cued to
select red bars, irrespective of their orientation. In the second
step, it is cued to select horizontal bars, irrespective of their
color. However, green vertical bars are already suppressed and
the top-down signal that is supplied to them is not sufficient
to override the inhibition that arises from red vertical bars.
The net result is the selection of a subset of red horizontal
bars. In other words, the network activity converges to an
intersection between a set of red bars and a set of horizontal
bars, thereby resulting in the selection of red horizontal
bars.

Next, we examined how the network achieves the union of
two Boolean maps (Figure 10). Here, we assumed that the input
consists of two non-overlapping components: colored squares
that activate color maps but do not activate orientationmaps, and
achromatic horizontal and vertical bars that activate orientation
maps but do not activate color maps, as shown in Figure 1C.
Red-colored items occupy locations between 1 and 100 and
oriented bars occupy locations between 101 and 200. This closely
resembles the stimulus that is used by Huang and Pashler (2007)
to demonstrate the union of color and texture. Taken together,
the data show that the union of two Boolean maps is possible
only when two top-down cues overlap in time or when the second
cue closely follows the withdrawal of the first cue. In Figure 10,
the cue for the red map is applied in the interval [50, 100] and
the cue for the horizontal map is applied in the interval [110,
160]. In this case, the F-WTA network converges to the union
of red and horizontal items. However, when top-down cues do
not overlap, as shown in Figure 11, the second cue overrides the
network activity that remains from the first cue. We suggest that
this property partly explains why the union is difficult to achieve,
as observed by Huang and Pashler (2007).

In addition, we examine the boundary conditions on the
choice of the feature gain parameter. We parametrically vary the
feature gain in steps of 0.1 starting from G = 2 and moving
below and above to determine when the ability to form the
intersection or union breaks down. When the gain modulation is
applied simultaneously on attended (GA) and unattended (GNA)
feature maps, we find that GA should be chosen from the interval
[1.5, 2.1] to achieve the intersection between two maps. When
GA < 1.5, the network fails to segregate cued from non-cued
locations in the first step. In contrast, whenGA > 2.1, the network
successfully segregates cued from non-cued locations in the first
step. However, the gain is too high, so all horizontal items are
selected together in the second step. That is, the representation of
red horizontal items is merged with the representation of green
horizontal items. When GNA

= 1 throughout the simulation,
GA should be chosen from the interval [1.8, 2.0] to achieve
intersection.
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FIGURE 9 | Simulation of the intersection of red and horizontal items.

With respect to the union of two maps, the feature gain
GA should be chosen from the interval [1.4, 2.0] when GNA

= 1/GA and from the interval [1.6, 2.0] when GNA
= 1.

When GA is chosen below the suggested intervals, feature
gain is too weak, and the second cue will not be able to
raise the activity level of the nodes that represent horizontal
items above the quenching threshold. Therefore, the network
ends up with the Boolean map of red items that is formed
in the first step. When GA is chosen above the suggested
interval, the network switches between the representation

of the red items in the first step to the representation of
the horizontal items in the second step. In this case, the
feature cue is too high, and the activity of the nodes that
represent horizontal items simply overrides the activity of
the nodes that represent the red items. These constraints
are derived from the situation in which the two top-down
cues overlap in time. As shown above, temporal lag of
the second cue relative to the first cue also destroys the
ability of the network to form the union of two Boolean
maps.
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FIGURE 10 | Simulation of the union of red and horizontal items.

Simulation of Bottom-Up Spatial Selection
Finally, we have shown that when there is no top-down
guidance, the network selects the most-salient locations based
on the bottom-up salience that is computed within feature maps
(Figure 12). We did not explicitly model competition among
maps, but it is reasonable to assume that in a scene with many
multi-featured objects, their input magnitudes (i.e., saliencies)
will be different. Therefore, we arbitrarily assigned different input
magnitudes to different items. As shown in Figure 12A, the F-
WTA network selects the most salient object if the difference in

inputmagnitude between the twomost active nodes is sufficiently
large. However, when this difference is small, as shown in
Figure 12B, the F-WTA model chooses two most salient items
together. Furthermore, in both examples, the network activity
retains the input amplitude of the winning item (or items),
thereby illustrating the ability to compute the functionmaximum
(Yu et al., 2002).

The precision of saliency detection depends on the threshold
for the activation of synaptic receptors on the inhibitory
interneuron. In all reported simulations, it was set to Ty = 0.1.
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FIGURE 11 | Breakdown of union of red and horizontal items when the delivery of top-down cues for red and horizontal items is separated by a large temporal gap.

If smaller values were chosen, the network would improve in
terms of precision and be able to separate the two objects that
are presented in Figure 12B. However, this comes at the price of
losing the ability to form a union of two Booleanmaps. Therefore,
there is a trade-off between the precision of saliency detection and
the ability to form Boolean maps.

An important aspect of stimulus-driven attentional control
is attentional capture by peripheral cues. Behavioral studies
have shown that the abrupt onset of a new object in a visual
scene can automatically capture attention even if it is irrelevant

for the current goal (Theeuwes, 2010). Figure 13 illustrates the
sensitivity of the F-WTA network to abrupt visual onset. To
simulate this effect, we have made the additional assumption
that the network receives input not only from a sustained
channel that is comprised of feature maps in V4 but also from
a transient channel that responds vigorously only to changes in
input (Kulikowski and Tolhurst, 1973; Legge, 1978). Thus, when
the abrupt onset is accompanied by a strong transient signal that
exceeds the activity level of the currently attended item, the F-
WTA network temporarily switch activity toward the location of
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FIGURE 12 | Selection of the most salient item in the absence of top-down guidance. (A) When the most salient item is sufficiently distinctive from other items, the

F-WTA network selects it. (B) When the saliency of all items is relatively low, the F-WTA network may select more than one item because it has a limit on the precision

by which it separates inputs of different magnitudes.

the onset (Figure 13A). Here, the input at the locations that are
occupied by the winning item in the center of the map was set
to IW = 2. Input to all other items was set to Ii = 1. Finally, the
transient input that appears on the sides of the map was set to
IT = 4. It is sufficient to set IT ≥ IW + 0.8 to achieve sensitivity
to abrupt onsets. Moreover, the same relation holds even if we
choose a larger value for IW .

Next, when abrupt onset produces only weak transient signals
(IT = 2) that do not satisfy the inequality that is stated above
(IW = 2), the activity in the F-WTA network resists abrupt onset
and stays on the previously attended item (Figure 13B). This
observation is consistent with behavioral findings that abrupt
onset can be ignored (Theeuwes, 2010), perhaps by attenuating
the response of the transient channel. Another possibility is that
the top-down gain for the attended location can be increased
so that it exceeds the activity of the transient channel. In this
case, intense focus on the current object prevents attentional
capture, which is consistent with the psychological concept of the
attentional window (Belopolsky and Theeuwes, 2010).

DISCUSSION

We have proposed a new model of the WTA network that
can simultaneously select multiple spatial locations based on a
shared feature value. We named the model the feature-based
WTA (F-WTA) network because the unit of selection is not a
point in space or object, but rather an abstract feature value
that is set by the top-down signals. We have demonstrated how

the F-WTA network implements the central proposal of the
Boolean theory of visual attention that there exists a spatial map
that divides the visual space into two mutually exclusive sets.
One set represents all locations that are occupied by the chosen
feature value. The other set contains all other locations, which
are not of interest. The Boolean map controls spatial selection
and access to the consciousness (Huang and Pashler, 2007).
Moreover, we have shown that the network successfully integrates
information across space and time to form the intersection or
union of two maps that are defined by different feature cues.
Previous models of the WTA network are not capable of such
integration because they require that the current winner be
externally inhibited to allow attentional focus to move from
one location to another (Kaski and Kohonen, 1994; Itti and
Koch, 2000, 2001). Another possibility to move activity across
locations in the network is to introduce dynamic thresholds
that simulate habituation or fatigue in individual neurons. In
this case, current winner loses its competitive advantage due
to the raise of its threshold. This allows non-winners to gain
access to working memory (Horn and Usher, 1990). However,
both approaches are not suitable for forming the intersection
or union of a set of previous winners and a set of later
winners.

Another important property of the F-WTA network that sets
it apart from previous models of WTA behavior is the ability to
select and store arbitrarily many locations in the memory. This
is achieved by inhibitory retrograde signaling, which effectively
isolates winning nodes frommutual inhibition. First, the amount

Frontiers in Psychology | www.frontiersin.org 16 March 2018 | Volume 9 | Article 417

https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org
https://www.frontiersin.org/journals/psychology#articles
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FIGURE 13 | Sensitivity to abrupt visual onsets. (A) When the transient signal that is produced by the abrupt onset of a new object is sufficiently strong, it temporarily

draws attention to itself. (B) When the transient signal is weak, attention resists abrupt onset and stays on the item that was selected at the beginning of the simulation.

of inhibition in the network is significantly reduced because the
inhibitory interneuron computes the maximum instead of the
sum of the recurrent input that it receives from the excitatory
nodes. Second, the winning excitatory nodes release their
retrograde signals and block inhibition from the interneuron.
Consequently, arbitrarily many winners can participate in
representing the selected locations without degrading their
activation. In other words, there is no capacity limit on the
number of objects that can be simultaneously selected. This
is consistent with recent behavioral findings that suggest that
our ability to select multiple objects is not fixed. Rather, spatial
attention should be considered a fundamentally continuous
resource without a strict capacity limit (Davis et al., 2000, 2001;
Alvarez and Franconeri, 2007; Liverence and Franconeri, 2015;
Scimeca and Franconeri, 2015).

In addition, the network is sensitive to the sudden appearance
of a new object in the scene, which suggests that it can also
be guided by bottom-up feature cues (Theeuwes, 2013). We
hypothesize that the network receives strong input from the
transient channel. Such input overrides the network’s current
memory state, thereby making it sensitive to abrupt onsets.
Moreover, the transient channel can be activated by any type
of change in the spatiotemporal energy of the input, and not
just by the sudden appearance (or disappearance) of objects. For
example, it will be activated by a sudden change in the direction of
motion (Farid, 2002). When the network simultaneously receives

transient input from different locations, they all will be selected
together. In this way, the network achieves temporal grouping of
synchronous transient input. That is, the network can discover
spatial structures that are defined purely by temporal cues (Lee
and Blake, 1999; Rideaux et al., 2016).

Biophysical Considerations
As noted above, the model of the F-WTA network rests
upon three key computational elements: the dendrite as
an independent computational unit, retrograde signaling on
synaptic contacts, and computing the maximum over inputs.
Here, we review supporting neuroscientific evidence that
suggests that all three biophysical mechanisms are plausible
candidates for computation in real neural networks.

There is a growing body of evidence that the excitatory
pyramidal cell should not be viewed as a single electrical
compartment. Rather, it consists of multiple independent
synaptic integration zones arranged in a two-layer hierarchy
(Häusser and Mel, 2003; London and Häusser, 2005; Branco and
Häusser, 2010; Mel, 2016). Using a detailed biophysical model
of the pyramidal neuron, Poirazi et al. (2003) showed that its
output is well approximated by a two-layer neural network. In
the first layer of the network, dendrites independently integrate
their synaptic input and produce sigmoidal output. In the second
layer, the dendritic output is summed at the soma to produce
the neuron’s firing rate. Importantly, the somatic and dendritic
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Marić and Domijan Feature-Based Spatial Selection

output functions need not be the same (Jadi et al., 2014). For
example, Behabadi and Mel (2014) showed that the soma of the
model neuron generates nearly linear output, while the dendritic
output is sigmoid. In our model, the dendrite conveys recurrent
excitation to the node. Due to the dendritic non-linearity, there is
no risk of unbounded activity growth in the node. Furthermore,
the dendritic output is summed with the external input at the
soma of the node. By using a linear output function at the soma,
we have ensured that the F-WTA network remains sensitive to
input fluctuations.

Synaptic transmission can be dynamically regulated in an
activity-dependent manner, as shown by the existence of
depolarization-induced suppression of inhibition (DSI) (Pitler
and Alger, 1992) and depolarization-induced suppression of
excitation (DSE) (Kreitzer and Regehr, 2001). DSI (DSE)
refers to the reduction in inhibitory (excitatory) post-synaptic
potentials following depolarization of the postsynaptic cell.
These processes have been observed in various brain regions,
including the cerebellum, hippocampus, and neocortex. A
retrograde messenger that is released from postsynaptic cell due
to its depolarization mediates DSI and DSE. After release, the
retrograde messenger binds to the receptors at the presynaptic
axon terminals and suppresses the release of the transmitter.
Based on these properties, Regehr et al. (2009) suggested that
a possible physiological function of DSI and DSE is to provide
negative feedback that reduces the impact of the synaptic input
on the ongoing neural activity.

The model behavior rests upon the assumption that the
inhibitory interneuron computes the maximum instead of the
sum of its inputs. There is some direct physiological evidence
that real cortical neurons indeed compute the MAX function.
For example, Sato (1989) examined responses of neurons in the
primate inferior temporal cortex to the presentation of one or two
bars in their receptive field. He concluded that the responses to
two bars that were presented simultaneously were well described
by the maximum of the responses to each separately. In a
similar vein, Gawne and Martin (2002) recorded the activity
of neurons in primate V4 and found that their firing rate in
response to the combination of stimuli is best described by
the maximum function over the firing rates that are evoked by
each stimulus alone. Furthermore, Lampl et al. (2004) directly
measured membrane potentials in the complex cells of the cat
primary visual cortex and found evidence for the MAX-like
behavior in response to the pair of optimal bars.

Indirectly, the importance of the MAX-like operation
in cortical information processing can be appreciated by
considering the many computational models of visual functions
that have employed it in simulating rich and complex
datasets. For example, Riesenhuber and Poggio (1999) employed
hierarchical computation of the MAX function in a model of
invariant object recognition. Spratling (2010, 2011) used it in
simulating a large range of classical and non-classical receptive
field properties of V1 neurons. Moreover, Tsui et al. (2010) used
MAX-like input integration to explain diverse properties of MT
neurons and Hamker (2004) used it in his model of top-down
guidance of spatial attention. Furthermore, Kouh and Poggio
(2008) developed a canonical cortical circuit that is capable of

many non-linear operations, including computation of the MAX
function. Here, we have shown that a single inhibitory node that
is endowedwith retrograde signaling can compute themaximum.

Based on the proposed model, we have derived two
testable predictions. The cortical network that is involved in
spatial selection will contain inhibitory interneurons that can
compute the MAX function. Moreover, both the excitatory
and inhibitory neurons in this network will be endowed with
the anatomical structures that support retrograde signaling
(presynaptic receptors and postsynaptic transmitter release sites).

Comparison With Other WTA Network
Models
Several models of biophysical mechanisms have been proposed
for implementing WTA behavior in a neural network, including
linear-threshold units (Hahnloser, 1998; Rutishauser and
Douglas, 2009), non-linear shunting units (Grossberg, 1973;
Fukai and Tanaka, 1997), and oscillatory units (Wang, 1999;
Borisyuk and Kazanovich, 2004).

A simple model of a competitive network that is based on
linear-threshold units has been extensively studied. Stability
analysis revealed that this network requires fine-tuning of
the connectivity to achieve stable dynamics that can perform
cognitively relevant computations, such as choice behavior
(Hahnloser, 1998; Hahnloser et al., 2003; Rutishauser et al., 2015).
Recently, Binas et al. (2014) showed that a biophysically plausible
learningmechanism could tune the network connections in a way
that keeps the network dynamics in the stable regime. Here, we
have shown how dendritic and synaptic non-linearities ensure
that the network dynamics near fixed points depends only on
the time constants of the nodes and not on the parameters that
control recurrent excitation and lateral inhibition. Therefore, a
precise balance between excitation and inhibition is not necessary
for achieving a stable memory state. Moreover, the network is
sensitive to the input and can iteratively combine the current
memory state with new input to form the intersection or union
of them.

An important problem for WTA networks that are based on
the linear-threshold or sigmoid output functions is that they
lack a mechanism for controlling inhibition between the winning
nodes. Therefore, they have limited capacity to represent multiple
winners. Usher and Cohen (1999) showed that their activation
decreases up to the point of complete inactivation as the number
of winning nodes increases. This is due to the increased amount
of mutual inhibition. The problem cannot be solved simply by
reducing the strength of the lateral inhibition because it is not
known in advance howmany locations will be cued. On the other
hand, feature-based spatial selection requires that the network
be able to adjust automatically the amount of inhibition to
accommodate the selection of a very small or very large number
of winners.

Grossberg (1973) proposed a recurrent competitive map
model that was based on shunting non-linear interaction between
the synaptic input and the membrane potential. The output of
the model depends on the exact form of the signal function
that is used to convert membrane potential into the firing rate.
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When the signal function is chosen to grow faster than linear,
the network exhibits WTA behavior. By contrast, when the signal
function is sigmoid, the network can select multiple winners if
they have similar activity levels. The most important property
of this model is the existence of the quenching threshold. All
nodes whose activity is above QT are enhanced and all nodes
whose activity is below QT are suppressed. This behavior is
similar to the operation of the F-WTA network that was proposed
here. However, an important difference is that in the shunting
model, QT is fixed and dependent on the parameters of the
network. In contrast, the feature-based WTA network exhibits
dynamic QT that depends on the input to the network and not
on its parameters. In this way, the F-WTA network rescales its
sensitivity to the input fluctuations.

More recently, a version of the recurrent competitive map
was applied in modeling object-based attention (Fazl et al.,
2009). It was shown that sustained network activity in the
model PPC encompasses the whole object as an attentional
shroud around it. Such spatial representation of a single object
supports view-invariant object recognition within a larger neural
architecture, namely, ARTSCAN. In an extension of the model,
Foley et al. (2012) proposed two separate competitive networks
that account for distinct properties of object- and space-based
attention. A network with strong inhibition is limited to the
selection of a single object. The other network utilizes weaker
inhibition to support multifocal spatial selection. To increase the
capacity of this network to represent multiple objects, Foley et al.
(2012) suggested that the amount of lateral inhibition could be
controlled externally. As the number of objects that should be
selected together increases, the lateral inhibition should become
weaker to counteract the effect of the larger number of nodes that
participate in the competition. In contrast, the F-WTA network
does not require such external adjustments of the strength of
the lateral inhibition to accommodate the selection of arbitrarily
many objects of arbitrary size. Moreover, in the F-WTA network,
object-based and multifocal spatial attention coexist within the
same circuit. Whether the network exhibits object-based spatial
selection depends on the type of cue that is presented to the
network and not on its parameters.

Wang (1999) proposed a model of object-based attention
that relies on the phase synchronization and desynchronization
among oscillatory units. At each location of the recurrent
map, there is a pair of excitatory and inhibitory units with
distinct temporal dynamics that creates a relaxation oscillator.
Excitatory units are also mutually connected with their nearest
neighbors and with a global inhibitor. The network is initialized
with random phase differences between oscillators at different
network locations. The activity of the global inhibitor further
enforces phase separation among excitatory units. However,
local excitatory interactions among nearest neighbors oppose
global inhibition and result in phase synchronization that spreads
among nodes that encode the same object. The net result of
these interactions is temporal segmentation and selection of one
active object representation at a time in a multi-object input
image. Importantly, the network can switch its activity from
one object representation to another. However, this transition
is generated internally by the oscillator dynamics. It is not

possible to drive the object selection by external cues such
as top-down gain control or bottom-up cues such as abrupt
onsets. Moreover, it is not possible to enforce simultaneous
selection of more than one object by a joint feature value
because the global inhibitor will desynchronize all nodes that
encode non-connected items. Therefore, it is not clear how
synchronous oscillations could support feature-based attentional
selection. Taken together, it is still an open issue whether they
are relevant for perception and cognition (Ray and Maunsell,
2015).

Limitations
The proposed model of spatial selection successfully simulates
the formation of the Boolean map and its elaboration by the
set operations of intersection and union but does not fully
implement all aspects of the theory that was proposed by Huang
and Pashler (2007). Precisely, it does not explain why attention
is limited to only one feature value per dimension or how the
observer sequentially chooses one feature value after another
or combines feature dimensions into intersections or unions
of Boolean maps. It is likely that this severe limitation arises
from some form of the WTA network. However, this constraint
requires a more elaborate model of the interactions among the
spatially invariant representation of the feature values in the IT
cortex and the interactions between the IT and the prefrontal
cortex, where decisions and plans are made.

In all simulations that are reported here, we kept items
segregated in space. This was not the case in the stimuli that
were used by Huang and Pashler (2007). They employed a matrix
of colored squares that were connected to one another. This
is because activity spreading can occur among adjacent nodes
even if they encode different feature values. Activity spreading
is observed after top-down signals stop favoring one feature
value over the other. In this case, all feature maps contribute
equally to the input of the F-WTA network and the network is
no longer able to discriminate between selected and unselected
feature values. One way to solve this issue is to assume that
the top-down signals are constantly present during the whole
trial. In this way, the activity magnitude on the cued locations
is kept above that on the non-cued locations. Therefore, non-
cued locations are treated as background noise and suppressed,
despite their proximity to the cued locations. Another possibility
is to impose boundary signals that act upon recurrent collaterals
of the nodes in the F-WTA network in a way that is similar
to how activity spreading is stopped in the network models of
brightness perception (Grossberg and Todorović, 1988), visual
segmentation (Domijan, 2004), and figure-ground organization
(Domijan and Šetić, 2008).

Finally, input to the network does not follow the distance-
dependent activity profile that is usually observed in the visual
cortex. However, this is not a critical issue for the model’s
performance because the precision of selection depends on the
thresholds for presynaptic terminal activation, namely, Tx , and
Ty. If they are set to very small values, the network will tend
to select the centers of the objects when the input pattern is
convolved with a Gaussian filter. In contrast, if they are set to
larger values, the network will be able to select extended parts of

Frontiers in Psychology | www.frontiersin.org 19 March 2018 | Volume 9 | Article 417

https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org
https://www.frontiersin.org/journals/psychology#articles
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the objects and possibly even the whole objects. In the same way,
the model achieves resistance to the input noise. As thresholds
are set to larger values, the network can tolerate a larger amount
of noise. However, this comes at a cost of less-precise selection, as
demonstrated by the simulation that is shown in Figure 12.

CONCLUSIONS

We have demonstrated how the feature-based WTA network
achieves spatial selection of all locations that are occupied by the
same feature value without suffering from capacity limitations.
The network responds to the top-down cue by storing in
memory spatial pattern that corresponds to the cued feature
value, while non-cued feature values are suppressed. In this way,
we have shown how the Boolean map is formed. In addition,
we have shown that it is possible to create more complex spatial
representations that involve the intersection or the union of two

or more Boolean maps. In this way, the F-WTA network goes
beyond the capabilities of previous models of the competitive
neural network, which cannot integrate information across space
and time. Our work suggests that dendritic non-linearity and
retrograde signaling are biophysically plausible mechanisms that
are essential for model success.
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