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Abstract

Parties that collaborate on projects need to synchronize their efforts. For

this reason they seek a decreased rescheduling variability of the time ar-

rangements. Proactive–reactive scheduling is important in such situations.

It predominantly achieves synchronization through a shared baseline sched-

ule and deviation penalties. As the latter currently introduce an unreal-

istically high level of inflexibility, the solution methods never proactively

update the baseline schedule. We propose threshold-based cost functions

for the deviation penalties to enable a more realistic modeling of aspects of

project collaboration. These functions introduce a greater degree of flexibil-

ity through the notion of planning horizons for the activities. This results

in the possibility of profitable proactive changes to the baseline schedule.

We present two metaheuristic approaches for the case of stochastic dura-

tions: rollout-based and iterative policy search. Both these approaches use

such opportunities to achieve substantial cost–performance improvements

in comparison to the best existing method. This enhancement comes at the

price of an increased computational burden and the greater complexity of

the solution space.

Keywords: Project scheduling, Proactive scheduling, Rollout poli-

cies, Approximate dynamic programming, Stochastic RCPSP



1 Introduction

Most of the research in the field of resource-constrained project scheduling

problems (RCPSP) focuses on deterministic problems. The research into

stochastic variants has intensified in the last 15 years, most often dealing

with the durations of the activities as the only source of uncertainty. This

research has been pushed in two directions: pure reactive and proactive–

reactive scheduling. The surveys can be found in (Herroelen & Leus, 2005)

and (Li & Womer, 2015).

Pure reactive scheduling is most often concerned with optimizing the

expected schedule makespan or other regular performance measures under

the assumption of known probability distributions of the random variables.

The solution is not a static schedule as in the case of deterministic problems

because the solution has to successfully deal with all the possible scenarios.

Instead, the project is examined as a multistage decision process and the

schedule is created in stages. The policies control the project execution to

achieve the desired end (Möhring, Radermacher, & Weiss, 1984).

In addition to the necessity of dealing with uncertainties, real-world

projects are rarely executed completely in-house due to the increase in the

complexity of products and services. In such an environment, synchroniza-

tion among project collaborators becomes important. However, pure reac-

tive scheduling is very sensitive to the uncertainty realizations because the

system reacts to them just-in-time. This means that no precise forecasts of

future decisions can be made in order to enable meaningful synchronization

between the project collaborators.

In proactive–reactive scheduling, the baseline schedule is created in the

proactive phase, before the execution of the project. It must absorb as

much of the execution variability as is seen to be appropriate according

to the chosen robustness measure. Such a schedule is used as the central

point for time-arrangements and information sharing between the collabo-
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rators. During the execution of the project, the central authority can use

the reactive procedure to improvise a solution based on the uncertainty re-

alizations received from the project execution sites. However, cost penalties

are incurred for deviations from the baseline schedule that guides the pre-

execution planning and preparation of activities. The two commonly used

notions of robustness in proactive scheduling are quality and solution ro-

bustness (Demeulemeester & Herroelen, 2011). Quality robustness aims to

maximize the probability of completing the project in time. Solution ro-

bustness focuses on reducing the variability of the rescheduling, which then

improves the fulfillment of the time-arrangements. These two criteria are

usually in competition with each other, making the problems that combine

them bi-criteria problems. This is usually resolved by scalarization, using

monetary cost parameters (Brčić, Kalpić, & Katić, 2014). In the rest of this

paper we assume the validity of such monetary scalarization.

Current research in proactive–reactive scheduling has succeeded in cre-

ating procedures for finding an initial, static baseline schedule of reasonable

quality. Reactive procedures have been instrumental in carrying out activity

starts during project execution. However, due to computational tractabil-

ity, the majority of current approaches in reactive procedures are based on

open-loop policies. Such policies are optimized at time zero using only the

information available at the time, which makes them static. Information is

made available during the project execution and it can be used to proactively

change future time-arrangements and adapt activity starting in order to get

better overall performance. Closed-loop policies are approaches based on

dynamic programming that enable taking advantage of the incoming infor-

mation (Li & Womer, 2015). Proactive baseline-rescheduling with predictive

start times was done only in (Davari & Demeulemeester, 2017) under the

assumption of fixed penalties for changes to the baseline schedule and using

conflict-based policies, which leaves room for improvement.
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In this paper, we focus on uncertain activity durations with known joint

probability distribution. We present our work on a special class of robust-

ness measures, cost-based flexibility (CBF)—a family where the rescheduling

costs depend on the temporal distance of the changes in the baseline schedule

(Brčić et al., 2014). The main contributions of this paper are:

• A new robustness measure, threshold cost-based flexibility (TCBF),

which is a generalization of the existing schedule stability measure

from Leus and Herroelen (2004). The motivation for this approach

is that baseline predictions during the project execution can become

not only suboptimal, but even infeasible, as demonstrated in Section

3.2. Existing schedule stability measures penalize all adjustments to

the baseline regardless of their distance into the future, which makes

adjustments ineffective. Our new setting enables modeling situations

where near-future predictions need to be stable and far-future predic-

tions are allowed more flexibility in adjustments. This enables the

creation of new proactive-reactive methods that function as hybrids

between the proactive-reactive and pure reactive approaches.

• Two metaheuristic approaches, flexible rollout and iterative online

simulation-based descent, which are the first approaches to search within

a policy class that does the non-conflict-based proactive rescheduling.

Both methods are formalized under the general rollout framework from

Goodson, Thomas, and Ohlmann (2017) by defining novel, complex

decision rules. The rollout framework is utilized as a metaheuristic

on top of the existing top-performing open-loop policy method from

Deblaere, Demeulemeester, and Herroelen (2011). This is done in or-

der to get a closed-loop policy that enables proactive rescheduling, of

which the base heuristic itself is incapable. Rollout, as an approximate

dynamic programming (ADP) approach, enables us to efficiently deal

with the curses of dimensionality, especially regarding the substantially
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increased dimensionality of the decision space.

• Theoretical and experimental demonstrations that the two metaheuris-

tic approaches are more effective than the top-performing method from

Deblaere et al. (2011).

The remainder of this paper is organized as follows: Section 2 gives an

overview of related work. Section 3 provides a formal problem definition,

giving a detailed description of the new robustness measure that brings

possibilities for proactive rescheduling. Our solution methods are defined

in Section 4, and Section 5 validates our ideas through an experimental

comparison with the top-performing method. We offer some conclusions

and sketch future research directions in Section 6.

2 Related Work

Under stochastic pure reactive approaches, Möhring et al. (1984) modelled

a general stochastic scheduling problem as a stochastic dynamic program

(SDP). Creemers (2015) presented a SDP-based model for finding glob-

ally optimal closed-loop policy for SRCPSP. Such exact procedures are in-

tractable due to the curses of dimensionality, so research focuses on ADP

methods (Bertsekas & Tsitsiklis, 1996; Powell, 2011). Stork (2001) used pol-

icy search on different open-loop policy families. Rostami, Creemers, and

Leus (2016) introduced generalized pre-processor policy family that domi-

nates over several commonly used policy families. Rollout algorithms, as

one of the ADP approaches, were introduced in (Bertsekas, Tsitsiklis, &

Wu, 1997; Bertsekas & Castanon, 1999). General rollout framework for

SDPs was presented in (Goodson et al., 2017). Rollout was used for solving

SRCPSP to minimize expected makespan in Li and Womer (2015).

According to Demeulemeester and Herroelen (2011, p. 159), the majority

of proactive scheduling procedures described in the literature commonly
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measure solution robustness using the stability measure defined in (Leus

& Herroelen, 2004). It is expressed as the expected sum of the weighted

absolute deviations of the realized schedule from the initial baseline schedule.

We shall refer to this measure as the symmetric stability measure. There is

a method (Lambrechts, 2007) for proactive rescheduling under uncertainty

in resource availability that uses the symmetric stability measure, but it

achieves only moderate results (Demeulemeester & Herroelen, 2011). The

cause might lie in an inherent inflexibility in the objective function (Brčić

et al., 2014).

An approach based on a generalization of the symmetric stability mea-

sure was proposed in Deblaere et al. (2011). We shall refer to that measure

as the asymmetric stability measure because it introduces differing costs for

negative and positive deviations. They presented an integrated procedure

for proactive and reactive scheduling, which forms the basis for our work.

A new family of open-loop execution policies, resource-based policies with

release times (RPRT), was introduced. It is parametrized by the vector

of priorities π and the vector of release times τ for non-dummy activities.

The RPRT heuristic at each time-point t uses a parallel schedule generation

scheme to start activities in order of the priorities π if their release times are

greater than or equal to t. They also used an efficient method, based on the

news-vendor problem, for finding the proactive baseline schedule in a local

search procedure simulation-based descent (SBD). A substantial domination

in terms of performance was shown in comparison to the STC+D procedure

(Van de Vonder, Demeulemeester, Leus, & Herroelen, 2006) under fairly

general conditions. To the best of our knowledge, this is the best perform-

ing solution. However, once established, the baseline schedule is static until

the end of project execution, with all further decisions being exclusively the

reactive starts of activity executions.

Davari and Demeulemeester (2017) proposed a method that enables
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proactive rescheduling of the baseline schedule under uncertainty in activity

durations. They defined proactive and reactive RCPSP (PR-RCPSP) where

objective function extends on the symmetric stability measure and adds a

penalty for each change to the baseline. The assumption is that the number

of reactions is directly related to the robustness of the schedule and that it

also damages business credibility of the contractor. This approach focuses

on conflict-based policies that reschedule the baseline only if the conflict

with the baseline schedule occurs. The solution is found by solving the SDP

with an approach that is hit by the curses of dimensionality, as explained in

Section 4.

Above listed research assumes availability of information about uncer-

tainty in the form of probability distribution. There are methods that only

assume that uncertainty takes values from known closed intervals. Artigues,

Leus, and Nobibon (2013) used heuristic robust optimization to find pure

reactive policy that minimizes the maximum absolute regret in projects with

uncertain activity durations. Stability approach with regular measures in

machine scheduling problems is used in (Y. N. Sotskov & Lai, 2012; Y. Sot-

skov & Werner, 2014). Digraphs are used instead of schedules with start

times. This approach in offline procedure constructs a set of potentially op-

timal digraphs. Online procedure uses incoming information and the afore-

mentioned set to construct the final schedule. In contrast, our stochastic

approach uses baseline schedules with predictive start times and does not

assume regularity of perfomance measure.

3 Problem Description

The problem under consideration here is the cost-based flexible stochastic

RCPSP (CBF-SRCPSP) from Brčić et al. (2014), defined by a tuple

(V,E,Ω, F , p, R,B,D, δ, J−1). V = {0, ..., n + 1} is a set of n + 2 non-

preemptive activities, 0 and n + 1 being dummy start and end activities.
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V ′ = V \ {0, n+ 1} is the set of non-dummy activities. Precedence relations

are defined as the transitive closure of relation E ⊂ V ×V , where an activity

cannot be started before its predecessors are completed. 0 precedes and n+1

succeeds all other activities in V . (Ω,F , p) is the probability space that

encodes the information about the uncertainty. Ω ⊂ Nn+2
0 is a bounded

sample space and F = 2Ω is the set of all possible events. p is the joint

probability distribution of the activity durations and is represented by a

random vector d : Ω→ Nn+2
0 , where the dummy activities have a duration of

zero. R = {R1, ..., Rr} defines a set of r renewable resources and B ∈ Nr is a

vector of resource availabilities. Single-mode activity demands on resources

are given by the matrix D ∈ N(n+2)×r
0 , where (∀r ∈ R)(∀i ∈ V )Di,r ≤ Br.

δ ∈ N0 is the project due date. J−1 is the objective function and it is defined

in the following subsection.

3.1 MDP formulation

We model CBF-SRCPSP as an MDP model suitable for ADP. Stages k =

−1, ..., L are points where decisions can be made. Stage k = −1 is for of-

fline calculations, before the project start. Other stages take place during

the project execution. At each timepoint, stages take place in a sequence

until the timepoint-terminating decision “next” is made. Then, the follow-

ing stage takes place with the next timepoint. The number of stages L,

though potentially infinite in the general case, is by definition bounded for

terminating policies. In this paper, we work with terminating policies.

3.1.1 States

A state at stage k, Sk = (tk, Ak, Uk, sk,Hk) stores: the current time tk,

the set of active activities Ak, the set of unstarted activities Uk, the current

baseline schedule sk, and the base heuristic Hk. The baseline schedule holds

the realized start times of the started activities and the predictive start times
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of the unstarted activities. The initial state is S−1 = (−1,∅, V,−,−) at the

time t = −1 (prior to the project start) with baseline schedule and base

heuristic unset (’–’).

3.1.2 Decisions

Let Feas(Sk) ⊆ Uk be a set of all precedence- and resource-feasible activities

at the state Sk. Also, let X (Sk) be the set of feasible decisions at the state

Sk. It is defined as:

X (Sk) = {(ik, ξk, H̄k)|ik ∈ {Feas(Sk) ∪′ next′}, (∀j ∈ V \ Uk)ξj = sj}

ik is the activity to be started, or the timepoint-terminating decision

“next“. ξk ∈ N|V |0 is the new baseline that must not reschedule already

started activities, and H̄k is the new base heuristic. For the initial state

S−1, additional constraint is i−1 =′ next′. The decision uk made at state

Sk is an element of X (Sk). Markov policy µ = (δµ−1, ..., δ
µ
L) is a sequence of

decision rules, where each decision rule δµk (Sk) : Sk → X (Sk) specifies action

choice from state Sk.

3.1.3 Transition process

Let Fk+1 ⊆ Ak be the random information that is revealed after making the

decision uk at state Sk. It is the set of activities that have just finished with

the execution. For simplicity, we shall assume that ik 6=′ next′ ⇒ Fk+1 =

∅ and that non-dummy activities have positive durations. The transition

function from the current stage k to the next stage k + 1 is defined as:

SM (Sk, uk, Fk+1) :=



tk+1 := tk, Ak+1 := Ak ∪ {ik} \ Fk+1,

Uk+1 := Uk \ {ik}, ξikk := tk,

sk+1 := ξk,Hk+1 := H̄k if ik ∈ Uk
tk+1 := tk + 1, Ak+1 := Ak \ Fk+1,

Uk+1 := Uk, sk+1 := ξk,Hk+1 := H̄k, if ik =′ next′

(1)

8



The decision process runs until the terminating state SL where UL = ∅

marks the end of project execution. Transition function can be decomposed

as SM (Sk, uk, Fk+1) = σ(Suk = ψ(Sk, uk), Fk+1) for computational efficiency.

Post-decision transition function ψ performs all the parts of calculations for

SM that do not involve Fk+1. Stochastic transition function σ performs

the remaining calculations using Fk+1 to complete the transition from post-

decision state Suk to pre-decision state Sk+1.

3.1.4 Cost function

Decisions made at the initial state S−1 do not incurr costs. Immediate cost

function g(Sk, uk) denotes the cost of making the decision uk at the state

Sk. It is defined as:

g(Sk, uk) =
∑
i∈Uk

zi
(
sik, ξ

i
k, tk

)
+ 1ik=′next′ · q+(tk + 1) + 1ik=n+1 · q−(tk) (2)

The cost of exceeding the due date is incurred as the stage cost q+(t) =

β+ · 1t>δ with each time-step. A bonus for completing the project before

the due date, q−(t) = β− ·max(0, δ − t), β− ≤ 0, is assigned at the end of

the project execution. These last two elements are the components of the

quality robustness. The first element in immediate cost, the summation of

zi evaluations, is the component of our CBF robustness measure.

The objective function, or cost-to-go function, J for policy µ at stage

k from state Sk can be written as:

Jµk (Sk) = E[
L∑
j=k

g(Sk, uk = µ(Sk)]). (3)

We search for the policy µ∗ which minimizes the cost-to-go function.

Optimal cost-to-go function J∗k and policy µ∗ can be found using recursive

Bellman’s equations:

µ∗(Sk) = argminuk∈X (Sk)E[g(Sk, uk) + J∗k+1(SM (Sk, uk, Fi+1))] (4)
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(a) TCBF

(b) Symmetric stability

(c) Asymmetric stability

Fig. 1. Pricing situation for activity i and two alternative actual baseline

times, x1 and x2, from the perspective of the current time-point t

3.2 The TCBF measure

As already discussed, the majority of proactive scheduling procedures de-

scribed in the literature commonly measure solution robustness using the

symmetric stability measure (Demeulemeester & Herroelen, 2011, 159). By

their definitions, symmetric and asymmetric stability measures do not al-

low for proactive rescheduling, since they assume at most one change to

the baseline time per activity, during the start of activity execution. We

can extend their definitions to allow intermediate changes to the baseline.

However, even the extended symmetric stability measure introduces a form

of inflexibility into the system in such a way that taking advantage of the

proactive rescheduling does not have a positive utility (Brčić et al., 2014).

Both measures, due to their structure, insist equally on respecting near-

and distant-future arrangements by penalizing changes irrespective of their

temporal distance.

For these reasons, we introduce a new robustness measure as a com-

ponent of the objective function J−1, with the form proposed in Brčić et
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al. (2014). The robustness measure is the TCBF, which is defined by the

activity rescheduling cost function zi : N× N× N→ R:

zi(x, y, t) :=

 |y − x| · c
+
i , if x < t

min {max {hi − (min{x, y} − t) , 0} , |y − x|} · c−i , otherwise

(5)

where (∀i ∈ V \{0, n+ 1}) c−i , c
+
i ∈ R+, hi ∈ R++∪{∞}. Dummy activities

are considered completely flexible, which means that they incur no costs for

rescheduling. Note that x is the actual baseline time, y is the new intended

baseline time, and t is the time-point at which the update is being made.

Figure 1 compares the symmetric and asymmetric stability measures

with the TCBF for one activity. The TCBF is a generalization of asymmetric

stability measure from Deblaere et al. (2011), where changes to the elements

scheduled in the future are penalized with a threshold.

Such a mechanism captures the idea that for each activity, there is a flex-

ibility in a form of temporal distance or planning horizon. Executing system

can effortlessly or costlessly adapt to any changes beyond the horizon, as the

system has not undertaken any committing actions regarding that activity

(for example, starting with the preparations). The pricing according to the

defined activity rescheduling cost function in (5) is depicted in Fig. 1(a).

All the changes to the baseline schedule made at time t (the graph’s origin)

are penalized depending on the size of the change (the distance between

the actual and the updated values, dampened by the threshold) and the

temporal distance of the change. Let us look at the cost calculation

according to the TCBF for two cases of rescheduling that are common in

the literature. We assume that we start the execution of activity i at the

time-point t. This amounts to changing the baseline time for i to y = t. If

the actual baseline time was x = x1, then the cost of idling (that is, waiting)

under the unit price c+
i has to be paid for the time interval between x1 and
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(a) Time-point t = 0 (b) Time-point t = 8

Fig. 2. Stochastic Gantt charts of a situation where TCBF enables proactive

change.

t.

This case can be seen in the left half of Fig. 1(a), where the project-

execution system already waits for the start of execution according to the

actual baseline schedule. On the other hand, if the activity i was originally

planned for a future time step x = x2, only the part of the time interval

between t and the actual baseline time that intersects the planning horizon

is penalized with the unit price c−i . This situation can be seen in the right

half of Fig. 1(a).

Activity with an actual baseline time in the future can also be resched-

uled to any future time-point, without starting the activity. The cost is paid

only for the part of the time interval that intersects the planning horizon.

This type of change is the basis of proactive rescheduling.

Figure 2 shows a simple situation where TCBF enables proactive change.

The project has 6 non-dummy activities. The seventh activity is the finish

of the project. Each activity has a horizontal bar that shows the cumulative

distribution functions of the start (left-most curve) and end times (right-

most curve) for the activity. The left edge of the bar marks the minimum

activity start time while the right edge marks the maximum end time. The

top edge of the bar marks the cumulative probability of one, and the bottom
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edge marks the cumulative probability of zero. Bold dashed lines represent

the predicted start times in the baseline schedule. Hatched areas represent

planning horizons for inflexible activities that have not yet been started.

The activity label is shown to the left of its corresponding bar.

Figure 2(a) shows the stochastic Gantt chart created by the simulation

of the RPRT heuristic that incorporated all the available information at

the beginning of the project (t = 0). The baseline schedule was created so

as to minimize the expected deviation costs with respect to the cumulative

distribution function (CDF) of start times. At the time-point t = 8 we

have more information than we had at t = 0: activity 5 has finished with

the execution at t = 4 and activity 1 has still not finished at t = 8. The

stochastic Gantt chart in Fig. 2(b) has the predictive stochastic part for

times t > 8 and the realized deterministic part for t ≤ 8. The previously

set baseline times are no longer optimal for activities 2, 3, and 6. Moreover,

they are infeasible, since they do not overlap with their corresponding bars.

Only activity 3 is inflexible and, ideally, we could change its old baseline

time to the new optimum. Such a change will be made only if the sum of

the rescheduling cost and the expected cost of the new time is lower than

the cost of the old time. As the actual baseline for activity 3 is at the edge

of the planning horizon, we shall proactively reschedule its baseline time at

no rescheduling cost. In the case of planning horizons of infinite length, the

rescheduling cost could offset the benefits of proactive rescheduling.

Davari and Demeulemeester (2017) took a qualitatively different ap-

proach and extended symmetric stability measure by adding a fixed penalty

for each change to the baseline. Hence, the activities still have infinite plan-

ning horizons, but in this case the number of reactions is reduced by batch

updates to the baseline schedule. This is valid under assumption that the

number of changes is directly related to the performance. However, in this

paper we did not make such an assumption.
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4 Solution Methods

CBF-SRCPSP, as a generalization of the deterministic RCPSP, is NP-hard.

It could be solved exactly by using methods for solving SDPs as explained

in Brčić et al. (2014). This was done in (Davari & Demeulemeester, 2017)

for a related problem, PR-RCPSP.

However, all exact solving approaches are hit by the three curses of di-

mensionality: in the state space, in the random information space, and in

the control space (Powell, 2011). To deal practically with these problems,

we devised metaheuristic algorithms based on approximate dynamic pro-

gramming that deal with each of the curses by making the following choices:

• state space: we do not calculate the whole cost-to-go vector, as the

state space is huge, and we use approximations of the cost-to-go vector;

• random information space: calculations of the expected values are

replaced with sampling and simulation using scenarios;

• feasible control space: complex decisions at a single time-point are

broken up into a sequence of simple decisions. A search for proactive

changes to the baseline takes advantage of the form of the TCBF to

restrict the search over feasible control space.

RPRT is fast and high-performing greedy heuristic for which optimal

baseline predictions can be efficiently calculated in an external procedure,

as demonstrated in Deblaere et al. (2011). We decided to use rollout meta-

heuristic over RPRT in order to enable proactive rescheduling, hence sig-

nificantly increasing the dimensionality of decision space. However, that

decision space can still be efficiently searched with the help of auxiliary pro-

cedure (Section 4.1) that uses the properties of RPRT heuristic and TCBF

measure to find the optimal predictive times. All our approaches have of-

fline and online calculation phases. The offline phase (k = −1) calculates
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the base heuristic and the initial baseline schedule of satisfactory quality

using the prior activity-duration distribution. The online phase (k ≥ 0)

collects the information revealed during the project execution to update the

activity duration distribution and improve the policy decisions of the base

heuristic. The following definitions, adapted from (Goodson et al., 2017) to

our problem, are necessary for investigating performance properties.

Definition 1. Let S be (pre- or post-decision) state in state space S. A

heuristic H(S) is any method to select decision rules in stages k, k+1, ..., L.

The resulting heuristic policy, denoted µH(S) = (δ
µH(S)

k , ..., δ
µH(S)

L ), is the

sequence of these decisions rules δ
µH(S)

j (Sj) : Sj → X̄ (Sj), where X̄ (Sj) ⊆

X (Sj) is the restricted set of feasible decisions at the stage j.

Definition 2. For heuristic H(·) and rollout policy µ, we say µ is rollout

improving if for k = 0, 1, ..., L,

E

 L∑
j=k

g(Sj , δ
µ
j (Sj))|Sk

 ≤ E

 L∑
j=k

g(Sj , δ
µH(Sk)

j (Sj))|Sk

 . (6)

4.1 Rescheduling the baseline

The auxiliary procedure for efficient proactive rescheduling is used in both

of the presented metaheuristic approaches (sections 4.2 and 4.3). It is an

adaptation of the work on SBD from Deblaere et al. (2011), which uses the

solution of the news-vendor problem for the asymmetric stability measure.

Lemma 1. The marginal cost function for an activity i in the case of a

news-vendor variant that uses the TCBF is

∆H(x) = −c+
i + (c+

i + c−i ) · P (ŝi ≤ x)− c−i · P (ŝi ≤ x− hi)

The proof of Lemma 1 is given in the Appendix.

We have adapted the algorithm to work with the TCBF in two stages.

OptimalTimes (Algorithm 1) finds the ideal baseline times by ignoring the
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previously set baseline times and using Lemma 1. Adjust (Algorithm 2)

finds the best interpolation between the previous and the new ideal base-

lines, taking into account the costs of rescheduling the baseline. These two

algorithms are always applied in succession.

Algorithm 1 OptimalTimes

Input: ST - simulation traces

Output: ξ∗ - ideal new baseline

1: for all i ∈ V do

2: P ← CDF of ŝi from STi

3: ŝmini ← min{ŝi ∈ STi}

4: ŝmaxi ← max{ŝi ∈ STi}

5: if c+
i 6= 0 ∨ c−i 6= 0 then

6: ξ∗i ← min{t ∈ [ŝmini , ŝmaxi ] : P (ŝi ≤ t) ≥
c+i

c+i +c−i
}

7: ξ∗i ← argmint∈[ξ∗i−1,ŝmax
i ){

∑t
j=ξ∗i−1−c

+
i +(c+

i + c−i ) ·P (ŝi ≤ j)−

c−i · P (ŝi ≤ j − hi)}+ 1

8: else ξ∗i ← min{t ∈ [ŝmini , ŝmaxi ] : P (ŝi ≤ t) ≥ 1
2}

Although the marginal cost function is not necessarily monotonic when

using TCBF, and there is no closed-form solution, we get a practical algo-

rithm. OptimalTimes uses simulation traces ST to create P , an empirical

cumulative distribution function (CDF) for the start times ŝi of each activ-

ity i (lines 2–4). It uses the median as the predicted time if both the overage

and underage costs (c+
i and c−i , respectively) for an activity are zero (line

8). Otherwise, it performs a linear search over all the time-points that are

greater than or equal to the critical percentile for the basic news-vendor

problem (lines 6–7). The chosen predicted time is the one with the lowest

expected cost, inferred by the summations of the forward differences. The

result of this algorithm is the new ideal baseline schedule ξ∗. The baseline

ξ∗ is optimal at the time-point of calculation under the following assump-
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tions: (1) no rescheduling costs are incurred for proactive changes, (2) an

unchanged policy that created simulation traces will be used for control,

and (3) no future proactive changes will be applied to the baseline. Opti-

malTimes is used as an approximate algorithm in the proposed controller

algorithms because Assumptions (2) and (3) are violated, but that is the

price of increased computational efficiency.

Algorithm 2 Adjust

Input: ST - simulation traces

Input: s, ξ∗ - actual and ideal baseline schedules

Input: t - current time-point

Output: ξ - proposed baseline schedule

1: for all i ∈ V do

2: if si = ξ∗i then ξi ← si

3: ρ← zi(si, ξ
∗
i , t)

4: if si ≤ t or ξ∗i < t then

5: ξi ← si

6: else if ρ > 0 then

7: l← min{si, ξ∗i }, u← max{si, ξ∗i }

8: ξi ← argminb∈[l,u]{zi(si, b, t) + 1
N

∑N
j=1 zi(b, STi,j , STi,j)}

OptimalTimes, assuming Assumption (1), creates the ideal baseline sched-

ule ξ∗, irrespective of the rescheduling costs from the actual baseline sched-

ule s. In order to fix the violation of that assumption, algorithm Adjust

(Algorithm 2) adapts the preliminary solution. It iterates through the ac-

tivities with proposed changes to the baseline. For each such activity, it

calculates the rescheduling cost ρ (line 3). The changes are reset for activ-

ities that have their time-points, actual or intended, in the past or present

(lines 4–5). In that case, the preparation for activity is done and the system

waits for the start of execution. For the rest of the activities that have a
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positive rescheduling cost ρ, we perform a linear search over all the time-

points between the actual and proposed baseline times to find the optimal

interpolated change (lines 6–8).

Algorithm 3 Flexible Rollout

Input: ~(Sk) - input project at stage k ≥ 0

1: while Uk 6= ∅ do

2: generate N new scenarios ω,∀i ∈ Ak ∪ Uk
3: repeat

4: ξk,F ← sk, Feas(Sk) ∪ {′next′}

5: a, ξ ← argmini∈F[g(Sk, u) + J(Suk = ψ(Sk, u), ω)|u = (i, sk,H)]

6: if a =′ next′ then ξk ← ξ . proactive update

7: Sk+1 = SM (Sk, δ
µFR

k (Sk) = (a, ξk,H), Fk+1)

8: k ← k + 1

9: until a =′ next′ or Uk = ∅

4.2 Flexible rollout

The flexible rollout (FR) controller (Algorithm 3) uses the RPRT-type base

heuristic H in evaluations during the online computation of control selection.

The initial base heuristic and baseline schedule are found by some optimiza-

tion algorithm (in our experiments SBD) in S−1 and they are adapted to

all the information known prior to the project start. In each time step, the

project state is updated with new information (Fk+1 in line 7) and the new

evaluation scenarios ω are generated according to the updated information

(line 2). As a simulation variance-reduction technique, new scenarios reuse

scenarios from the previous iteration, updating only the scenario durations

of currently active activities. The control selection (line 5) evaluates con-

trols using the set of scenarios and simulation. It is an approximation of

(4) that uses reduced decision space and evaluation of the cost-to-go value
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of the base heuristic H instead of the optimal policy. This involves trying

out each of the feasible activities as the first step. This results in incurring

an immediate cost g(Sk, u) and a transition ψ to the control-specific post-

decision state Suk . The evaluation of the cost-to-go value of the post-decision

state Suk is done in J (Algorithm 4). The baseline is rescheduled only when

the control “next” is selected (line 6). The controller applies the control

specified by the decision rule δµFR

k , which selects a control with the lowest

evaluated total cost (line 7).

Algorithm 4 J evaluation

Input: Suk - initial post-decision state

Input: ω - N evaluation scenarios

Output: c, ξ - new baseline ξ and its cost c

1: for all i ∈ [1, N ] do

2: simulate from Suk using H with scenario ωi

3: STi ← start times in simulated execution

4: ξ ←OptimalTimes(ST)

5: ξ ←Adjust(ST, sk, ξ, tk)

6: c← average cost of ST under the baseline ξ

7: return (c, ξ)

All the scenario runs are completed in a call to J (Algorithm 4) using

the base heuristic H from Suk (lines 1–3). For each post-decision state Suk ,

the optimal baseline schedule over the traces is found a posteriori, using

algorithms OptimalTimes and Adjust (lines 4–5). The cost-to-go of Suk is

then evaluated as average cost over the scenarios, according to each Suk -

optimal baseline and their respective simulation trace data (line 6). Below

stated Proposition 1 shows that the performance of the FR is at least as

good as RPRT. The proof is given in the Appendix.

Proposition 1. FR that uses RPRT with finite release times as the base
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heuristic is rollout improving.

4.3 Iterative online simulation-based descend

The iterative online simulation-based descend (IOSBD) controller (Algo-

rithm 5) initially uses the base RPRT heuristic H0, found by an offline

algorithm (in our experiments SBD) in S−1. Online SBD(OSBD) is a modi-

fication of the SBD procedure from Deblaere et al. (2011) to work online and

use our objective function. The former is achieved by omitting the search

for an initial policy, reusing the base-heuristic from the previous iteration,

and reducing the search over the parameters to only the unstarted activities

and only the time-points in the present and the future. The latter is accom-

plished by using algorithms OptimalTimes and Adjust for determining the

optimal predictive starting times.

Algorithm 5 IOSBD

Input: ~(Sk) - input project at stage k ≥ 0

1: while Uk 6= ∅ do

2: generate N new scenarios ω,∀i ∈ Ak ∪ Uk
3: H̄k, ξk ← OSBD(Sk, ω) . proactive update

4: repeat

5: a← H̄k(Sk)

6: Sk+1 = SM (Sk, δ
µIOSBD

k (Sk) = (a, ξk, H̄k), Fk+1)

7: k ← k + 1

8: H̄k, ξk ← Hk, sk

9: until a =′ next′ ∨ Uk = ∅

During the project execution, we use the gradually incoming information

(Fk+1) to update the project state (line 6). Upon each transition to the

next time-point, new uncertainty scenarios ω are generated (line 2). The

sequence of base RPRT heuristics H̄k is computed by employing the OSBD
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procedure (line 3). Scenarios are reused between the stages in order to

reduce the simulation variance. The OSBD procedure at the beginning of

each time-point returns a new base heuristic H̄k and a new optimal baseline

proposal ξk. During each time-point, base heuristic H̄k sequentially selects

the activities it can start before making a transition to the next time-point

(control “next”) (lines 5–8). The controller applies the control specified by

the decision rule δµIOSBD

k which starts the selected activity, and updates

the baseline and base heuristic. Below stated Proposition 2 shows that the

performance of the IOSBD is at least as good as RPRT. The proof is given

in the Appendix.

Proposition 2. IOSBD is rollout improving over the heuristic that runs

the RPRT heuristic stored in the state.

5 Computational Results

5.1 Experimental setup

We use the performance of RPRT+SBD as the benchmark for comparisons

in order to evaluate the effectiveness of the proposed algorithms on projects

with the TCBF measure. The RPRT family trained with SBD suffices for the

benchmark as it is still, to the best of our knowledge, the best performing

proactive–reactive approach. In order to compare our algorithms to the

benchmark in a setting as favorable as possible to the RPRT+SBD, we

kept our experimental design choices as similar as possible to those found in

Deblaere et al. (2011). We used OptimalTimes within the SBD procedure

for the optimal baseline schedule calculation in order to adjust for the TCBF

measure.

Due to the computational demands of our algorithms, we used only 48,

48, and 60 instances per each of the J30, J60, and J120 instance sets of

PSPLIB (Kolisch & Sprecher, 1997), respectively. We used stratified sam-
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pling to select one random instance per each of the PSPLIB’s parameter

groups. The selected instances are listed in the Appendix. Stochasticity in

activity durations is modeled identically to Deblaere et al. (2011), using a

discretized beta distribution with the shape parameters α = 2 and β = 5

and expected value E(di) set equal to the deterministic activity duration

from the PSPLIB instance. Each distribution is scaled with equal proba-

bility over the one of [0.75 · E(di), 1.625 · E(di)], [0.5 · E(di), 2.25 · E(di)] or

[0.25 ·E(di), 2.875 ·E(di)] intervals. The experiment is repeated for uniform

and discretized Beta(1,3) distributions in the Appendix, with similar results.

The parameters for TCBF were generated for each instance in the following

way. Every non-dummy activity has a 50% chance to be inflexible—that is,

it incurs rescheduling costs. The TCBF costs c+
i and c−i for inflexible activ-

ities are drawn from the discretized triangular distribution with parameters

a = 0, b = 11, c = 0, and the discretization is done using the ceiling function.

The TCBF thresholds for inflexible activities are drawn from the discretized

triangular distribution with parameters a = 0, b = 20, c = 4. The penalty

for exceeding the due date is β+
d = 38. Flexible activities have c+

i = c−i = 0

and the threshold hi is set to ∞.

From each of the selected J30, J60, and J120 instances, we created six

projects, according to two factors. The first factor regarding the project

early-finish bonus has two levels: no bonus (β−d = 0) and with bonus

(β−d = −19). The second factor is the due date tightness, with the fol-

lowing levels: 1.01 · Eµ1(sn+1), 1.05 · Eµ1(sn+1), 1.1 · Eµ1(sn+1), where the

expected makespan of the initial policy µ1 of SBD is used as a basis. We

used 1,000 activity-duration scenarios per each created project instance.

RPRT and FR were run on all the instances, but IOSBD was run only

on the J30-based instances, due to its long execution times. Sample size

used for Monte Carlo simulation in FR and in IOSBD is N = 1000, due to

the identical sample size used for SBD algorithm in Deblaere et al. (2011).
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The results were obtained on virtual machine instances, each having

two dedicated logical cores of Intel Xeon processors and 2 GB of RAM

with Ubuntu Linux 14.04 and the gcc 4.9.1 C++ compiler (flags -O2 -

march=native).

5.2 Performance

We tested all the performance values for statistical significance using multi-

ple paired t-tests at the p = .05 level with the Holm-Bonferroni correction,

which controls for the family-wise error rate. All the comparisons with

RPRT were significant at this level.

For the comparisons between the algorithms, we used the following for-

mula for the calculation of relative improvement of algorithm Alg2 over Alg1

on project i:

∆Alg1,Alg2
i (C) =

CAlg1i − CAlg2i

|CAlg1i |
· 100% (7)

where C is the sample statistic (mean or standard deviation) used for sum-

marizing the algorithm’s performance on the project i. When we consider

comparisons on a set of projects, we calculate the average of the relative

improvements on each project in the set.

Table 1 shows the relative improvements over the experimental factors:

project size group, pair of algorithms in comparison, early-completion bonus,

and due date tightness. Some of the improvements are greater than 100%

because the policy costs can be negative in certain cases due to the early-

finish bonus. FR offers a substantial improvement over RPRT in perfor-

mance mean over projects for all project groups, where the improvements

increase with the project size. The comparison of IOSBD with RPRT on

the J30-based projects reveals that it seems to be the best-performing algo-

rithm. The first obvious pattern is that projects with a bonus have a higher

improvement. The proposed algorithms seem to be even better at reducing

the expected makespan when early finishing is rewarded. Finally, projects
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Table 1. Relative improvements in the performance mean over experimental

factors

RPRT-FR RPRT-IOSBD

J30 J60 J120 J30

N B N B N B N B

1.01 · Eµ1(sn+1) 15.6 69.2 21.7 48.9 31.0 50.3 25.0 108.3

1.05 · Eµ1(sn+1) 17.4 230.6 23.0 631.9 29.6 178.2 28.3 384.8

1.1 · Eµ1(sn+1) 18.9 41.1 22.8 87.6 27.8 406.2 33.9 67.3

Note. N = No bonus, B = With bonus

with the due date multiplier 1.05 and an early-finish bonus have the greatest

improvement. This implies that RPRT substantially underperforms in the

situations with a moderately tight due date and an early-finish bonus.

In addition to the mean performance on projects (Table 1), the proposed

algorithms also improve the performance variance. FR brings improvements

to the standard deviation in comparison to RPRT by 16.4% for J30, 23.6%

for J60, and 37.2% for J120 project groups. IOSBD reduces the standard

deviation by 18.3% relative to RPRT on J30-based projects.

In Fig. 3, we show the number of proactive updates to the baseline

schedule for the algorithms FR and IOSBD in all project instances. The

number of proactive updates for the benchmark algorithm RPRT is always

zero, since it attempts no such changes. It is evident that IOSBD makes

substantially more updates to the baseline schedule than FR on projects

of the same size. This is due to a more thorough search over the space of

controls through the iterative updates to the base heuristic.

The total cost of a project (3) is the sum of the quality robustness and

cost-based flexibility costs. Hence, we can break the total percentage im-
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Fig. 3. Number of proactive updates per scenario for FR and IOSBD

provements into the improvements in these two cost components. The rel-

ative improvement in cost components is calculated with a modification of

(7), where we use component values in the numerator and the correspond-

ing total cost values in the denominator. In Fig. 4, we present scatter plots

containing the points that represent the relative improvements in the com-

ponents for the relevant J30-derived projects. Outliers were removed from

all plots to improve the clarity of exposition. Each point in the scatter plot

also holds information about a total relative improvement, as a sum of the

point’s coordinates. Both algorithms, FR and IOSBD, clearly dominate the

RPRT, as most of the points in the two left-most scatter plots are located

in the first quadrant. In the situations with an early-finish bonus, they tend

to improve over the benchmark both in quality and flexibility. In some sit-

uations for the case with no bonus, a small loss of performance in quality

robustness with respect to RPRT is accepted for a better overall perfor-

mance. We can see from all three plots that IOSBD does better overall than

FR in terms of quality. The rightmost scatter plot also shows that IOSBD

is able to trade off flexibility for greater overall improvement in the case of

a substantial early-finish bonus. In the absence of the bonus, IOSBD tends
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Fig. 4. Relative improvements in the performance components for J30

to shift the improvement focus to the flexibility.

Table 2 shows the average computation times for the algorithms. SBD is

the offline algorithm, and the rest are run online. All the online algorithms

use SBD for their offline calculations. RPRT is fast and scales well with an

increase in project size. FR takes more time but the performance improve-

ments justify the increased computation duration, which is still acceptable.

The performance improvements of IOSBD come at the price of a substan-

tial increase in the computation time. Although the computation time per

time-point is not excessive, a better optimization algorithm is needed.

6 Conclusion

Real-world projects, in addition to dealing with uncertainties, need to coor-

dinate the actions of project collaborators. Proactive–reactive models make

collaborator synchronization possible. However, the current models that

use schedule stability measure allow for very little flexibility in adapting
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Table 2. Average computation times for algorithms

J30 J60 J120

SBD 11.2 s 105 s 23 min

RPRT 0.013 ms 0.029 ms 0.073 ms

FR 1.24 s 6.5 s 44.5 s

IOSBDa 260.7 s - -

FR (p.t.b) 0.018 s 0.071 s 0.3 s

IOSBDa (p.t.b) 3.68 s - -

a IOSBD was executed only on J30-derived instances

b Per time-point

the baseline schedule to the information made available during the project

execution (Brčić et al., 2014). This flexibility deficit makes the proactive

rescheduling ineffective for improving the overall performance. We intro-

duced the TCBF measure and the metaheuristic algorithms built on it in

order to address these issues.

The TCBF robustness measure relaxes the mentioned rigidity by intro-

ducing the notion of planning horizons for activities. Only the part of the

change that intersects the activity’s planning horizon incurs a rescheduling

cost. However, such a setting requires searching in a more complex policy

space than do the currently published approaches. This is due to a greatly

increased control space, that at each time step enables proactive changes to

the whole unrealized part of the baseline schedule.

We proposed the algorithms FlexRollout and IOSBD that function as

metaheuristics over the base RPRT heuristic. They deal with the increased

policy-space complexity by breaking up the computational burden into of-

fline and non-trivial online parts. We have experimentally demonstrated

that our algorithms substantially outperform the best existing method, RPRT
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+ SBD from (Deblaere et al., 2011), on models that use TCBF in place of

the asymmetric stability measure. We observed simultaneous average im-

provements in the performance and the standard deviation on the used test

sets. The obtained theoretical results guarantee that the performance of our

algorithms is, in the worst case, at least as good as that of RPRT.

Presented ideas may be generalized and connected to the general coor-

dination problems in stochastic environments where forecasts are necessary

for coordination between the multiple parties. Research into extensions of

other robustness measures in a way that would enable proactive reschedul-

ing is a potentially fruitful area. Another direction would be finding more

general robustness measures, with weaker assumptions than TCBF, which

were made to enable efficient search for the optimal baseline. Rollout meta-

heuristic with novel, complex decision rules can be used on other methods

from the literature to expand decision spaces and efficiently search them to

get high-performing closed-loop policies.
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1 Sampled projects

As mentioned in the main text, we used 48,48, and 60 randomly selected in-

stances per each of the J30, J60, and J120 instance sets of PSPLIB (Kolisch

& Sprecher, 1997), respectively. Below, we list the sampled project instances

for each instance set. The names of instances are taken from (Kolisch &

Sprecher, 1997). Their form is x y, where x is the group identifier of param-

eter values for project generator and y is the identifier of specific generated

instance with those parameters. From the names of the instances, it is

evident that we have used stratified sampling with the group identifier as

strata.

The following projects were sampled from J30: 1 8, 2 4, 3 3, 4 4, 5 2,

6 3, 7 7, 8 3, 9 10, 10 7, 11 5, 12 2, 13 6, 14 2, 15 2, 16 8, 17 10, 18 2, 19 7,

20 10, 21 1, 22 7, 23 10, 24 7, 25 3, 26 9, 27 3, 28 2, 29 9, 30 8, 31 8, 32 5,

33 9, 34 1, 35 5, 36 5, 37 9, 38 4, 39 2, 40 3, 41 6, 42 9, 43 2, 44 9, 45 4,

46 7, 47 1, and 48 2.

The following projects were sampled from J60: 1 2, 2 7, 3 9, 4 5, 5 10,

6 6, 7 7, 8 6, 9 2, 10 5, 11 7, 12 5, 13 9, 14 5, 15 10, 16 3, 17 8, 18 5, 19 7,

20 8, 21 4, 22 2, 23 8, 24 3, 25 4, 26 6, 27 1, 28 4, 29 5, 30 6, 31 7, 32 1,

33 7, 34 9, 35 9, 36 3, 37 3, 38 9, 39 9, 40 2, 41 10, 42 4, 43 9, 44 2, 45 5,

46 2, 47 5, and 48 1.

The following projects were sampled from J120: 1 2, 2 9, 3 10, 4 7, 5 4,

6 9, 7 1, 8 1, 9 2, 10 3, 11 5, 12 4, 13 8, 14 8, 15 6, 16 5, 17 3, 18 7, 19 1,

20 9, 21 4, 22 5, 23 9, 24 1, 25 8, 26 4, 27 10, 28 9, 29 10, 30 6, 31 9, 32 8,

33 1, 34 2, 35 4, 36 3, 37 6, 38 5, 39 4, 40 1, 41 5, 42 7, 43 5, 44 4, 45 10,

46 2, 47 2, 48 1, 49 6, 50 8, 51 1, 52 7, 53 2, 54 2, 55 9, 56 8, 57 3, 58 3,

59 5, and 60 8.
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2 Additional experiments

The experiments in the main paper were done on projects with discretized

Beta(2,5) distributions modeling uncertain activity durations. In order to

strenghten the implications of those results, we repeated the experiments

for other probability distributions. Due to the problem setting, we had to

use probability distributions with bounded support. We used discrete uni-

form distributions and discretized Beta(1,3) distributions in two additional

experiments. Uniform distribution is symmetric, while Beta(1,3) is more

right-skewed than Beta(2,5). Except for the change of used probability dis-

tribution family, other experimental settings are identical to the experiment

presented in the main paper. The patterns in both experiments are similar

to the ones explicated in the main paper. For that reasons, the results are

stated as they are without further elaboration, except for the comparison

with Beta(2,5) case from the main text.

We shall see that the used probability distribution has an impact on

running times of SBD and IOSBD. Also, the probability distribution has

noticeable effect on improvements in the cases with early-finish bonus.

2.1 Uniform durations

The range of each distribution was set with equal probability to the one of

[0.75 · E(di), 1.25 · E(di)], [0.5 · E(di), 1.5 · E(di)] or [0.25 · E(di), 1.75 · E(di)]

intervals, corresponding to the cases of small, medium or large variability.

Table 1 shows improvements for uniform durations. Improvements are

greater than in Beta(2,5) case for early-finish bonus with due date multiplier

1.05. On the contrary, for early-finish bonus with due date multiplier 1.1,

the improvement seems to be smaller. In addition to the mean performance

on projects (Table 1), the proposed algorithms also improve the performance

variance. FR brings improvements to the standard deviation in comparison

to RPRT by 15.8% for J30, 21.3% for J60, and 37.0% for J120 project
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Table 1. Relative improvements in the performance mean over experimental

factors for uniform durations

RPRT-FR RPRT-IOSBD

J30 J60 J120 J30

N B N B N B N B

1.01 · Eµ1(sn+1) 14.9 128.3 21.5 162.6 29.5 50.2 22.6 172.9

1.05 · Eµ1(sn+1) 15.8 285.7 20.6 773.8 30.8 274.3 24.7 444.1

1.1 · Eµ1(sn+1) 16.9 28.4 22.7 33.7 29.7 160.0 30.7 45.0

Note. N = No bonus, B = With bonus

groups. IOSBD reduces the standard deviation by 16.9% relative to RPRT

on J30-based projects.

In Table 2 we can see average computation times. SBD and IOSBD

on average take less time than in the cases of Beta(2,5) and Beta(1,3).

However, Table 1 shows that the improvements for IOSBD over RPRT are

similar to those for Beta(2,5). Obviously, probability distribution has an

impact on execution durations for SBD and IOSBD, but not so much for

other algorithms.

2.2 Beta(1,3) durations

Each distribution is scaled with equal probability over the one of [0.8 ·

E(di), 1.6 · E(di)], [0.6 · E(di), 2.2 · E(di)] or [0.4 · E(di), 2.8 · E(di)] intervals,

corresponding to the cases of small, medium or large variability.

Table 3 shows improvements for Beta(1,3) durations. In addition to the

mean performance on projects, the proposed algorithms also improve the

performance variance. FR brings improvements to the standard deviation

3



Table 2. Average computation times for algorithms in the case of uniform

durations

J30 J60 J120

SBD 7.5 s 105.6 s 18.6 min

RPRT 0.014 ms 0.03 ms 0.086 ms

FR 1.4 s 6.0 s 51.2 s

IOSBDa 215.0 s - -

FR (p.t.b) 0.021 s 0.069 s 0.37 s

IOSBDa (p.t.b) 3.1 s - -

a IOSBD was executed only on J30-derived instances

b Per time-point

Table 3. Relative improvements in the performance mean over experimental

factors for Beta(1,3) durations

RPRT-FR RPRT-IOSBD

J30 J60 J120 J30

N B N B N B N B

1.01 · Eµ1(sn+1) 18.6 80.1 21.4 43.7 31.1 45.9 27.2 121.8

1.05 · Eµ1(sn+1) 17.3 487.5 23.2 399.8 30.1 102.8 28.4 749.2

1.1 · Eµ1(sn+1) 19.8 93.3 21.9 107.8 29.4 653.2 32.4 146.5

Note. N = No bonus, B = With bonus
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Table 4. Average computation times for algorithms in the case of Beta(1,3)

durations

J30 J60 J120

SBD 16.8 s 42.7 s 20.6 min

RPRT 0.015 ms 0.03 ms 0.083 ms

FR 1.5 s 5.6 s 51.3 s

IOSBDa 333.0 s - -

FR (p.t.b) 0.022 s 0.06 s 0.34 s

IOSBDa (p.t.b) 4.6 s - -

a IOSBD was executed only on J30-derived instances

b Per time-point

in comparison to RPRT by 17.3% for J30, 22.0% for J60, and 35.9% for J120

project groups. IOSBD reduces the standard deviation by 18.8% relative to

RPRT on J30-based projects.

In Table 4 we can see average computation times. IOSBD on the average

takes more time than in the case of Beta(2,5). However, Table 3 shows that

the improvements for IOSBD over RPRT are greater than Beta(2,5) case,

for most of the factor combinations.

3 Definitions

In this section we give the definitions necessary for the auxiliary lemmas in

the following section.

Definition 3. Heuristic HP (Sk) executes the RPRT heuristic Hk that is

part of the state Sk, that is HP (Sk) = Hk(Sk).

The following definitions and propositions are adapted from (Goodson,
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Thomas, & Ohlmann, 2017), where the objective function is maximized, to

our problem of minimizing the cost function.

Definition 4. (Sequentially Improving Heuristics) Let S be a (pre- or post-

decision) state in state space S and let S′ be a state such that it is on a

sample path induced by policy µH(S). Then, a heuristic H(·) is sequentially

improving if, for all S and subsequent S′,

E

 L∑
j=k

g(Sj , δ
µH(S)(Sj))|S′

 ≥ E

 L∑
j=k

g(Sj , δ
µH(S′)(Sj))|S′

 . (1)

Definition 5. (Sequentially Consistent Heuristics) Let S be a (pre- or post-

decision) state in state space S and let S′ be a state such that it is on a

sample path induced by policy µH(S). Then, a heuristic H(·) is sequentially

consistent if for all S and subsequent S′,

(δ
µH(S)

k , δ
µH(S)

k+1 , ..., δ
µH(S)

L ) = (δ
µH(S′)
k , δ

µH(S′)
k+1 , ..., δ

µH(S′)
L ). (2)

Proposition 3. (Sequential Consistency Implies Sequential Improvement).

If a heuristic is sequentially consistent, then it is also sequentially improving.

The proof of Proposition 3 is given in (Goodson et al., 2017). It is stated

in that paper as Proposition 2.

4 Proofs

4.1 Proof of Lemma 1

Proof. Let E[x]+ = E[max(x, 0)]. Then, the total expected cost for the

activity i is

H(x) = c+i · E[ŝi − x]+ + c−i · E[x− ŝi]+ − c−i · E[x− ŝi − hi]+

The leftmost term is due to the realized start time’s being greater than

the predicted start time, making the left half from Fig. 1 pertinent to the

6



Figure 1. Pricing situation for the two independent cases of actual baseline

times, from the perspective of the time-point ŝi = t at which the activity is

started

situation. The two rightmost terms, however, pertain to the right part from

Fig. 1, where the cost is incurred only up to the threshold of length hi. As

x ∈ N0, let us take the forward difference:

∆H(x) = H(x+ 1)−H(x),

so we get that

∆H(x) = c−i · {E[x+ 1− ŝi]+ − E · [x− ŝi]+}+ c+i {E[ŝi − x− 1]+ − E[ŝi − x]+}

−c−i · {E[x+ 1− ŝi − hi]+ − E · [x− ŝi − hi]+}

and using the facts

E[ŝi − x]+ =

∞∑
j=x

P(ŝi > j)

E[x− ŝi]+ =
x∑
j=0

P(ŝi < j)

we get that

∆H(x) = c−i · P(ŝi < x+ 1)− c+i · P(ŝi > x)− c−i · P(ŝi < x+ 1− hi)

7



Tidying up, we get

∆H(x) = c−i · P(ŝi ≤ x)− c+i · [1− P(ŝi ≤ x)]− c−i · P(ŝi ≤ x− hi)

from which the claim follows.

4.2 Proofs of auxiliary lemmas

In this subsection we state and prove lemmas used for the proofs of Propo-

sition 1 and Proposition 2.

Lemma 2. RPRT heuristic (π, τ) is terminating if and only has finite re-

lease times τ .

Proof. Assuming all the release times are finite, there is the maximal release

time τmax. At the time-points t ≥ τmax RPRT heuristic is identical to the

parallel schedule generation scheme (PSGS) that uses the activity priority

list π. Since PSGS is terminating, so is the RPRT.

If the RPRT heuristic is terminating, then all activities must finish in

finite time tL. By definition, this means that all the release times are less

than or equal to tL.

Lemma 3. Terminating RPRT heuristic is sequentially consistent.

Proof. Assume that RPRT heuristic generates a feasible sequence of activity-

starting decisions ([i, t], [i1, t1], ..., [in+1, tn+1]), starting at [i, t] where i ∈ V

and t is the time of starting activity i, such that j < l⇒ tj ≤ tl. Also assume

that it does not generate the feasible sequence ([i1, t1], ..., [in+1, tn+1]) start-

ing at [i1, t1]. Since the priority values of all activities stay the same, as well

as the release times, this can happen only when the sequence ([i1, t1], ..., [in+1, tn+1])

is time-, resource-infeasible or release-forbidden, a contradiction.

Lemma 4. SBD produces terminating RPRT heuristic in a finite time.
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Proof. SBD procedure is run in the initial state S−1, at the stage k = −1.

SBD carries out an improvement on the input RPRT heuristic, Hinput =

Π0. Π0 is a RPRT heuristic with finite release times which is created from

a deterministic schedule. SBD changes the current RPRT heuristic if and

only if the expected cost of the new RPRT heuristic, combined with the new

baseline schedule, is lower. Non-terminating RPRT have non-finite release

time for at least one activity and hence have infinite cost due to the quality

robustness that penalizes the amount by which the due date was exceeded.

SBD is greedy descent methods that searches through a finite search

space for non-dummy unstarted activities. The number of possible vectors

of priority values is finite as only the permutations of a limited number of

elements are considered. The release times of unstarted non-dummy activi-

ties are limited by the cost of the input heuristic Hinput in such a way that

(∀i ∈ Uk \ {0, n + 1}) max{tk, 0} ≤ τi ≤
J
µHinput(Sk)

k (Sk)

β+ + max{tk, δ}. The

potential solution is updated only if better solution has been found in the

finite search space. Also, SBD terminates if no improvement has been found

during one pass through the improvement loop. Hence, SBD produces a

solution in finite time.

The following corollary follows from Lemma 4. Its proof is a straightfor-

ward extension of the proof for Lemma 4.

Corollary 1. OSBD produces terminating RPRT heuristic in finite time if

the input RPRT heuristic is terminating.

Lemma 5. FR, that uses terminating RPRT as a base heuristic, is termi-

nating.

Proof. We shall use the proof by contradiction. Let us take any CBF-

SRCPSP ~, any terminating RPRT H = (π, τ) for ~ as the base heuristic,

and assume that FR is not terminating.
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There has to be at least one activity duration scenario under which FR

does not terminate. We examine the behavior of FR under any such scenario

ωNT . The project ~ has finite number of activities and all the activities have

bounded durations. Hence, there has to be the minimal timepoint tb such

that all of the following holds:

1. tb ≥ δ ∧ tb ≥ maxi∈V \{0,n+1} τi,

2. no activity is started at any timepoint t ≥ tb for the scenario ωNT ,

3. all the resources are free,

4. the set of unstarted activities is non-empty.

Base heuristic H, when run at timepoints t ≥ tb, behaves like the PSGS

policy with activity priority vector π.

PSGS policies are time-invariant, since their decisions on starting activ-

ities do not depend on the current time, but only on: the activity priority

vector π, the set of active, and the set of unstarted activities. For some ac-

tivity duration scenario η, let us assume that we execute project in any state

Sk = {tk, Ak, Uk, sk,Hk} with all the project resources free and nonempty

set of unstarted activities Uk. Let us note with jf,ηtp (Sk) start times of ac-

tivities in Uk for scenario η if starting no activities for t < tp and executing

PSGS heuristic f for t ≥ tp. Then, (∀a ∈ Uk)(∀z ∈ N0)(∀t ≥ tk)jf,ηt+z,a(Sk) =

jf,ηt,a (Sk)+z which we shall refer to as the translational property of PSGS

policies.

Each baseline sk was generated in a sequence of timesteps, resulting in

baselines s0, ...., sk. Baseline s0 is finite since it was created using algorithm

OptimalTimes in the offline phase (for example, as a part of SBD offline

calculation) from simulation traces of the terminating H. At each stage

k > 0, the baseline sk was calculated as an interpolation (by Adjust) between

the previous baseline sk−1 and the new ideal baseline ξ∗k−1 (calculated by
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OptimalTimes from the simulation traces of terminating H). Since sk is an

interpolation between the two finite vectors, it is also finite.

For stages k where t ≥ tb, ideal baseline times ξ∗k are translated with t

(due to the translation property), as they are calculated from the translating

simulation traces of H which at t ≥ tb behaves as PSGS. The actual base-

lines sk are interpolations between the previous baseline sk−1 and the ideal

baseline ξ∗k−1. Therefore, there exist stage k̂ and state Sk̂ = (t̂, Ak̂, Uk̂, sk̂)

with the minimal time t̂ such that t̂ ≥ tb and (∀a ∈ V )sk̂ ≤ ξ∗
k̂
. H(Sk̂)

starting from Sk̂ immediately starts the activities a1, ..., an at t̂ according to

the priority list π.

Let us compare two options for the immediate decision that FR takes

into account during the evaluation at state Sk̂:

1. select control ’next’ to change the baseline to ξk̂ and jump to the

timepoint t̂+ 1

2. start the activity a1.

Base heuristic H for each simulation scenario, due to the translational

property during the evaluation of controls ’next’ and a1, starts activities one

timestep later in the option 1 than under the option 2. Let us for simulation

scenario η denote rηa start time of activity a ∈ Uk̂ if we execute heuristic

policy µH(Sk̂)
from the state Sk̂. Then ∀a ∈ Uk̂, in option 1, start times

under the scenario η are r′ηa := rηa + 1.

Also, let ξ
′next′

k̂
be the proposed baseline schedule for the control ’next’

(calculated in J). Let B ⊆ Uk̂ be the maximal set of activities for which

(∀i ∈ B)ξ
′next′

k̂,i
> sk̂,i. Let us construct ξa1

k̂
in the following way: ξa1

k̂,i
:=

ξ
′next′

k̂,i
− 1 for all i ∈ B, and ξa1

k̂,i
:= ξ

′next′

k̂,i
otherwise.

The expected cost of option 1 is calculated by FR using the set of sim-

ulation scenarios H in line 6 is:
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β+ +
∑
i∈B

zi

(
si
k̂
, ξ
′next′

k̂,i
, t̂
)

+
1

|H|
∑
η∈H

 r′ηn+1∑
t=t̂+1

β+ +
∑
i∈Uk̂

zi

(
ξ
′next′

k̂,i
, r′ηi , r

′η
i

) .
(3)

The expected cost of option 2, with the baseline ξa1

k̂
is:

∑
i∈B

zi

(
si
k̂
, ξa1

k̂,i
, t̂
)

+
1

|H|
∑
η∈H

r′ηn+1−1∑
t=t̂

β+ +
∑
i∈Uk̂

zi

(
ξa1

k̂,i
, r′ηi − 1, r′ηi − 1

) .
(4)

It is evident that all the coresponding summands in Equation (4) are

less than or equal to the corresponding ones in Equation (3). Due to the

additional positive term β+, Equation (3) is strictly greater. Evaluation of

option 2 in line 6 of FR is less than or equal to Equation (4). Therefore,

the control ’next’ would not be selected in FR at the stage k̂, which is a

contradiction.

Lemma 6. RPRT heuristic with finite release times is sequentially improv-

ing.

Proof. RPRT with finite release times is terminating (Lemma 2) and se-

quentially consistent (Lemma 3). Hence, by Proposition 3, it is sequentially

improving.

Lemma 7. For any state Sk ∈ S it holds that

E

 L∑
j=k

g(Sj , δ
µHP (Sk)

j (Sj))

∣∣∣∣∣∣Sk
 (5)

≥ E

g(Sk, δ
µIOSBD
k (Sk)) + E

 L∑
j=k+1

g(Sj , δ
µHP (Sk+1)

j (Sj))

∣∣∣∣∣∣Sk+1

∣∣∣∣∣∣Sk
 (6)
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Proof. Let us mark by γµk (Sk) the activity starting rule that decides the

activity to be started under policy µ at state Sk.

Under HP (·), the base heuristic Hk remains unchanged for all the sub-

sequent states, that is ∀j ∈ [k + 1, L]Hj = Hk. This is due to the fact that

HP (·) executes RPRT heuristic which does not change the baseline schedule

nor the heuristic stored in the state. Instead, RPRT heuristics propagate

the both to the following stage.

The definition of decision rule δµIOSBDk (Sk) depends on the state Sk. We

separately prove the claim for each of the two cases.

1. If in Sk some activity was already started at tk, then δµIOSBDk (Sk) =

δ
µHP (Sk)

k (Sk).

E

 L∑
j=k

g(Sj , δ
µHP (Sk)

j (Sj))

∣∣∣∣∣∣Sk


= E

 L∑
j=k

g(Sj , δ
µHk(Sk)

j (Sj))

∣∣∣∣∣∣Sk
 (7)

≥ E

g(Sk, δ
µHk(Sk)

k (Sk)) + E

 L∑
j=k+1

g(Sj , δ
µHk(Sk+1)

j (Sj))

∣∣∣∣∣∣Sk+1

∣∣∣∣∣∣Sk


(8)

= E

g(Sk, δ
µHk(Sk)

k (Sk)) + E

 L∑
j=k+1

g(Sj , δ
µHk+1(Sk+1)

j (Sj))

∣∣∣∣∣∣Sk+1

∣∣∣∣∣∣Sk


(9)

= E

g(Sk, δ
µHP (Sk)

k (Sk)) + E

 L∑
j=k+1

g(Sj , δ
µHP (Sk+1)

j (Sj))

∣∣∣∣∣∣Sk+1

∣∣∣∣∣∣Sk


(10)

= E

g(Sk, δ
µIOSBD
k (Sk)) + E

 L∑
j=k+1

g(Sj , δ
µHP (Sk+1)

j (Sj))

∣∣∣∣∣∣Sk+1

∣∣∣∣∣∣Sk


(11)
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The equality in Equation (7) results from the definition of heuris-

tic HP (·). Equation (8) follows from the sequential improvement of

RPRT heuristic Hk(·). Equation (9) follows from fact that Hk(Sk+1) =

Hk+1(Sk+1). The equality in Equation (10) results from the definition

of heuristic HP (·). Finally, Equation (11) is due to the definition of

decision rule for IOSBD in this case.

2. Otherwise, OSBD search procedure is run at the state Sk. It takes

the RPRT heuristic Hk, as an input (as the part of the state Sk).

OSBD outputs RPRT heuristic H̄k and a new baseline schedule ξk.

Then, the decision rule is δµIOSBDk (Sk) = (γ
µH̄k(Sk)(Sk), ξk, H̄k). By

the construction of OSBD algorithm and its objective function, H̄k

and ξk are such that the following holds:

E

 L∑
j=k

g(Sj , δ
Hk(Sk)(Sj))|Sk

 ≥
E

g(Sk, δ
µIOSBD
k (Sk) +

L∑
j=k+1

g(Sj , δ
µH̄k(Sk)

j (Sj))|Sk

 .
(12)

Hence, we get:
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E

 L∑
j=k

g(Sj , δ
µHP (Sk)

j (Sj))

∣∣∣∣∣∣Sk


= E

 L∑
j=k

g(Sj , δ
Hk(Sk)(Sj))|Sk

 (13)

≥ E

g(Sk, δ
µIOSBD
k (Sk) +

L∑
j=k+1

g(Sj , δ
µH̄k(Sk)

j (Sj))|Sk

 (14)

≥ E

g(Sk, δ
µIOSBD
k (Sk) + E

 L∑
j=k+1

g(Sj , δ
µH̄k(Sk+1)

j (Sj))|Sk+1

 |Sk


(15)

= E

g(Sk, δ
µIOSBD
k (Sk) + E

 L∑
j=k+1

g(Sj , δ
µHk+1(Sk+1)

j (Sj))|Sk+1

 |Sk


(16)

= E

g(Sk, δ
µIOSBD
k (Sk) + E

 L∑
j=k+1

g(Sj , δ
µHP (Sk+1)

j (Sj))|Sk+1

 |Sk


(17)

The equality in Equation (13) results from the definition of HP (·).

Equation (14) follows from the operation of OSBD algorithm and

Equation (12). Equation (15) is due to the sequential improvement

property of RPRT heuristic H̄k(·) and iterated expectations. The

equality in Equation (16) results from the fact that Hk+1 = H̄k due

to the decision rule of IOSBD in this case. The equality in Equation

(17) is because of the definition of HP (·).

Lemma 8. IOSBD is terminating for terminating initial base heuristic H0.
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Proof. Proof by contradiction. Let us assume that IOSBD is not terminating

for some project ~, terminating initial RPRT base heuristic H0, and scenario

ω. From Corollary 1, it follows that ∀k > 0,Hk is terminating. As the

project ~ has finite number of activities, there has to be a minimal time

tb such that no activity is started at any timepoint t ≥ tb and where all

the resources are free and the set of unstarted activities is non-empty. Let

k̂ be the stage at which tb is reached under the scenario ω and Hk̂ is the

base-heuristic at that state. Let τ k̂ be the minimum release time in Hk̂

for unstarted resource- and precedence-feasible activities. In order not to

start any activity, IOSBD procedure must increase the minimum release

time τ k̂ in timepoints t ∈ [tb, τ
k̂], or an activity will be started. However,

Hk̂ is the local optimum of the OSBD procedure for the stage k̂ under

the set of activity-duration scenarios drawn from p(d|Sk̂). At each stage

km taking place at m ∈ [tb, τ
k̂], we have p(d|Skm) = p(d|Sk̂). Moreover,

IOSBD reuses scenarios over stages, which means that the identical set of

simulation scenarios is used for all the stages km. Hence, OSBD procedure

will not change Hk̂ until τ k̂, which is a contradiction.

Lemma 9. For all x1, x2, x3 greater than or equal to t it holds:

(∀i ∈ V )zi(x1, x2, t) + zi(x2, x3, t) ≥ zi(x1, x3, t)

Proof. For brevity, when defining intervals we assume that the limits of

intervals are reordered.

Obviously, [x1, x2] ∪ [x2, x3] = [x1, x3]. Let [x, y] = [x1, x2] ∩ [x2, x3] be
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the overlap of the two ranges.

zi(x1, x2, t) + zi(x2, x3, t)

=

max{x1,x2}∑
j=min{x1,x2}+1

c−i · 1j≤t+hi +

max{x2,x3}∑
j=min{x2,x3}+1

c−i · 1j≤t+hi (18)

=

max{x1,x3}∑
j=min{x1,x3}+1

c−i · 1j≤t+hi +

max{x,y}∑
j=min{x,y}+1

c−i · 1j≤t+hi (19)

≥
max{x1,x3}∑

j=min{x1,x3}+1

c−i · 1j≤t+hi (20)

= zi(x1, x3, t) (21)

Equality in Equation (18) results from the definition of TCBF. Equation (20)

is the result of regrouping of the summands. Equation (20) follows from the

omission of the non-negative cost. Equality in Equation (21) results from

the definition of TCBF.

4.3 Proof of Proposition 1

Proof. Proof by induction. FR is terminating (Lemma 5). The result holds

trivially for the terminal j = L. We assume that the result holds for j =

k + 1, ...., L− 1.

Let âk = δ
H(Sk)
k (Sk).
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For the case j = k:

E

 L∑
j=k

g(Sj , δ
µH(Sk)

j (Sj))

∣∣∣∣∣∣Sk


≥ E

g(Sk, δ
µH(Sk)

k (Sk)) + E

 L∑
j=k+1

g(Sj , δ
µ
H(S

âk
k

)

j (Sj))

∣∣∣∣∣∣Sk+1

∣∣∣∣∣∣Sk
 (22)

≥ min
a∈X(Sk)|H

E

g(Sk, a = (ik, ξk,H)) + E

 L∑
j=k+1

g(Sj , δ
µH(Sa

k
)

j (Sj))

∣∣∣∣∣∣Sk+1

∣∣∣∣∣∣Sk


(23)

= E

g(Sk, ãk = (̃ik, ξ̃k,H)) + E

g(Sk+1, δ
µ
H(S

ãk
k

)

k+1 (Sk+1)) +
L∑

j=k+2

g(Sj , δ
µ
H(S

ãk
k

)

j (Sj))

∣∣∣∣∣∣Sk+1

∣∣∣∣∣∣Sk


(24)

Equation (22) follows from the fact that RPRT base heuristic with finite

release times is sequentially improving (Lemma 6) and using iterated expec-

tations. Equation (23) follows from the minimization. Let ãk = (̃ik, ξ̃k,H)

be the optimum of the Equation (23). The equality in Equation (24) follows

from our definition of optimum in Equation (23).

There are two cases relevant for the rest of the proof:

1. ĩk =′ next′

In this case, we use the induction hypothesis to finalize the proof.

2. ĩk 6=′ next′

In this case, we repetitively expand the cost expression to the following

stages until we find the minimal stage l ≥ k+ 1 for which the case 1 is

true, or il = n+ 1 so we are at the terminal case l = L. The number

of stages necessary for finding l is limited by the number of unstarted

activities in the following way l − k < |Uk|.

If ĩk =′ next′, then δµFRk (Sk) = ãk and the following follows from the

Equation (24):

18



= E

g(Sk, δ
µFR
k (Sk)) + E

 L∑
j=k+1

g(Sj , δ
µ
H(S

ãk
k

)

j (Sj))

∣∣∣∣∣∣Sk+1

∣∣∣∣∣∣Sk
 (25)

≥ E

g(Sk, δ
µFR
k (Sk)) + E

 L∑
j=k+1

g(Sj , δ
µH(Sk+1)

j (Sj))

∣∣∣∣∣∣Sk+1

∣∣∣∣∣∣Sk
 (26)

≥ E

 L∑
j=k

g(Sj , δ
µFR
j (Sj))

∣∣∣∣∣∣Sk
 (27)

The equality in Equation (25) results from the definition of FR. Equation

(26) follows from the fact that the used heuristic H is sequentially improving.

Equation (27) follows from the induction hypothesis.

If ĩk 6=′ next′, then the baseline schedule is not updated and δµFRk (Sk) =

(̃ik, sk,H). When ĩk = n + 1 then there are no proactive changes to the

baseline and by definition k = L, hence the claim holds. Otherwise, we

shall postpone the proactive change of the baseline to the next stage, k+ 1.

Let us mark by γµk (Sk) the activity starting rule that decides the ac-

tivity to be started under policy µ at state Sk. Let δ
µ
H(Sa

k
),ξ̃k

k+1 (Sk+1) =

(γ
µH(Sa

k
)

k+1 (Sk+1), ξ̃k,H). It starts an activity iH ∈ Uk+1 ∪ {′next′} at tk ac-

cording to the RPRT heuristic H(Sak), and changes the baseline schedule to

ξ̃k for all the activities except for iH. The next follows from the Equation

(24):

E

g(Sk, ãk) + E

g(Sk+1, δ
µ
H(S

ãk
k

)

k+1 (Sk+1)) +
L∑

j=k+2

g(Sj , δ
µ
H(S

ãk
k

)

j (Sj))

∣∣∣∣∣∣Sk+1

∣∣∣∣∣∣Sk


≥ E

g(Sk, ak = (̃ik, sk,H)) + E

g(Sk+1, δ
µ
H(S

ak
k

),ξ̃k

k+1 (Sk+1)) +

L∑
j=k+2

g(Sj , δ
µ
H(S

ak
k

)

j (Sj))

∣∣∣∣∣∣Sk+1

∣∣∣∣∣∣Sk


(28)

= E

g(Sk, δ
µFR
k (Sk)) + E

g(Sk+1, δ
µ
H(S

ak
k

),ξ̃k

j (Sk+1)) +
L∑

j=k+2

g(Sj , δ
µ
H(S

ak
k

)

j (Sj))

∣∣∣∣∣∣Sk+1

∣∣∣∣∣∣Sk


(29)
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RPRT heuristics are independent of the baseline schedule so H(Sakk ) =

H(Sãkk ). Activity durations are also independent of the baseline schedule.

Let us mark by S
(24)
k+1 and S

(28)
k+1 states at stage k + 1 in Equations (24) and

(28), respectively. As the set Fk+1 of finished activities between the stages

k and k + 1 is identical for both the equations, S
(24)
k+1 and S

(28)
k+1 differ only

in the baseline schedule. Activity starting decisions of RPRT heuristics do

not depend on baseline schedule, hence γ
µ
H(S

ãk
k

)

k+1 (S
(24)
k+1) = γ

µ
H(S

ak
k

),ξ̃k

k+1 (S
(28)
k+1).

As Fk+2 is identical for both transitions to the stage k+ 2, it follows that at

the stage k + 2, we end up in the states S
(24)
k+2 = S

(28)
k+2. Therefore, the sums

of costs in stages j ≥ k + 2 are identical in Equations (24) and (28).

Both the states Sk and Sk+1 occur at the identical time-point tk. TCBF

cost due to the postponed rescheduling of the baseline in Equation (28) is

identical for all the activities with the exception of iH (if iH 6=′ next′). If

iH 6=′ next′ then, by postponing the update, we omit one reschedule for iH

and Equation (28) follows from Lemma 9. Equation (29) follows from the

definition of FR.

For simplicity, we continue to work just with the inner expectation in

(29):

E

g(Sk+1, δ
µ
H(S

ak
k

),ξ̃k

j (Sk+1)) +

L∑
j=k+2

g(Sj , δ
µ
H(S

ak
k

)

j (Sj))

∣∣∣∣∣∣Sk+1

 (30)

= E

g(Sk+1, δ
µ
H(Sk+1),ξ̃k

j (Sk+1)) +

L∑
j=k+2

g(Sj , δ
µH(Sk+1)

j (Sj))

∣∣∣∣∣∣Sk+1

 (31)

≥ E

g(Sk+1, a = δ
µ
H(Sk+1),ξ̃k

j (Sk+1)) + E

 L∑
j=k+2

g(Sj , δ
µH(Sa

k+1
)

j (Sj))

∣∣∣∣∣∣Sk+2

∣∣∣∣∣∣Sk+1


(32)

≥ min
a∈X(Sk+1)|H

E

g(Sk+1, a = (ik+1, ξk+1,H)) + E

 L∑
j=k+2

g(Sj , δ
µH(Sa

k+1
)

j (Sj))

∣∣∣∣∣∣Sk+2

∣∣∣∣∣∣Sk+1


(33)

The cost of changing the baseline to ξ̃k in Equations (30) and (31) is
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identical and the rest of the costs depends only on the heuristic H. Equality

in Equation (31) follows from the sequential consistency of H(·), since the

identical starting times of activities incur identical costs. Equation (32)

follows from the sequential improvement of the used RPRT heuristic and

iterated expectations. Equation (33) follows from the minimization.

The Equation (33) is of the identical form as the Equation (23), with

the stage number increased. The procedure from Equations (28)-(33) can

be repeated finite number of times (limited by the number of unstarted

activities) until we find the minimal stage number l ≥ k + 1 such that

ĩl =′ next′ or ĩl = n+1. If ĩl = n+1, then we can use the terminal case and

the claim holds. If ĩl =′ next′ we can proceed by using Equations (25)-(27)

with k = l to get the following:

E

 L∑
j=k

g(Sj , δ
µH(Sk)

j (Sj))

∣∣∣∣∣∣Sk
 (34)

≥ E

 l∑
j=k

g(Sj , δ
µFR
j (Sj)) + E

 L∑
j=l+1

g(Sj , δ
µH(Sl+1)

j (Sj))

∣∣∣∣∣∣Sl+1

∣∣∣∣∣∣Sk
 (35)

≥ E

 L∑
j=k

g(Sj , δ
µFR
j (Sj))

∣∣∣∣∣∣Sk
 (36)

Equation (35) follows from the application of procedure from Equations

(28)-(33) for stages j < l followed by using Equations (25)-(26) for the stage

l. Equation (36) follows from the induction hypothesis. This completes the

proof.

4.4 Proof of Proposition 2

Proof. We use proof by induction. IOSBD is terminating (Lemma 8). The

result holds trivially for the terminal j = L case by using Lemma 7.

We assume that the result holds for j = k + 1, ...., L− 1.
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For the case j = k:

E

 L∑
j=k

g(Sj , δ
µHP (Sk)

j (Sj))

∣∣∣∣∣∣Sk


≥ E

g(Sk, δ
µIOSBD
k (Sk)) + E

 L∑
j=k+1

g(Sj , δ
µHP (Sk+1)

j (Sj))

∣∣∣∣∣∣Sk+1

∣∣∣∣∣∣Sk
 (37)

≥ E

 L∑
j=k

g(Sj , δ
µIOSBD
j (Sj))

∣∣∣∣∣∣Sk
 (38)

Equation (37) results from Lemma 7. Equation (38) follows from the

induction hypothesis.
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