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Abstract

Several millimetres large spherical cuprous selenide single crystals with well developed (1 1 1) facets grown at about

30K below the roughening temperature (TRE830K) and rapidly cooled to room temperature were used to test the

universality and value of critical exponent describing the surface profile behaviour near the facet edge. Enlarged

photographs (52.5 times) of part of the crystal profile were digitised with resulting spatial resolution of

0.190470.0001mm. After FFT low pass filtering, the position of crystal silhouette edge was determined as the loci

of the extremes in the first derivative of each image row intensity profile. For assumed critical dependence z ¼
Aðx� x0Þ

y; the inverse logarithmic derivative applied to crystal profile data points disclosed the extent of intervals of

different behaviour, giving independently the respective indicative values of fitting parameters y and x0: In three distinct

regions non-linear Levenberg–Marquardt fitting was applied to original data sets.

In the region farthest away from the facet, the behaviour is well described by yE2:5 or by Andreev formula

z ¼ Aðx0 � xÞ2 þ Bðx0 � xÞ4. In the stepped region, for j=13.98–17.121 (tilt angle relative to facet plane), the critical

exponent y ¼ 1:49970:003 is found, in agreement with Pokrovsky–Talapov universality class predicted value of y ¼ 3
2
:

The step interaction energy, step free energy and facet free energy ratios obtained from data fitting parameters only, are

compared to published values for 4He, Si and Pb single crystals.

The behaviour in the immediate vicinity of the facet edge is discussed in the light of dynamics features recently

observed on different single crystals during growth (cuprous selenide, 4He) and equilibration (Pb). r 2002 Elsevier

Science B.V. All rights reserved.
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1. Introduction

There has been considerable interest in experi-
mental investigation of the shape of equilibrium
single crystals of various materials, in the tem-
perature range where equilibrium crystal shape
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(ECS) comprises both planar facets and curved
interfacial regions. Facets and curved regions join
at edges, which can be either sharp or smooth.
Within an xz-plane section of the crystal (perpen-
dicular to the facet which is coplanar with the xy

facet plane), the shape of curved interface in the
vicinity of a smooth edge positioned at (x0; 0) is
described as [1,2]

z ¼ Aðx� x0Þ
y þ higher order terms: ð1Þ

The main objective of the experimental endea-
vour has been to test the universality and value of
the critical exponent y; theoretically predicted to
be equal to 3

2
:

The ECS materials investigated thus far have
been mostly metals, with single crystals up to
10 mm in diameter, on graphite substrate (Pb
[1,3–5], Au [3,6,7], In [8–10].) The shape of 9 mm
Pb crystal [1] is described with y=1.6070.15
within a curved surface region not extending all
the way to the edge (latest STM measurement on a
few mm large Pb crystals [5] at 380K give
y=1.4970.06 independent of azimuth); the shape
of 4 mm In crystals with yE2 close to the edge and
yE1:6070:10 further away, while for describing a
few mm large Au crystals having sharp edges [9] a
term linear in ðx� x0Þ was used [3]. Profiles of
0.36–7.2 mm Si crystallites [11] (equilibrated apexes
of small silicon columns on silicon substrate) are
described with y ¼ 1:5 (with a 6% uncertainty) for
misorientation of profile from the facet between 31
and 171.

The theory describes the shape of idealized large
crystals in the thermodynamic limit (V-N; at
fixed T ; where the atomic scale details of crystal
outline effectively disappear), with the mathema-
tically sharp features such as strict planarity of
facets, the sharpness of edges and corners, etc. The
discrepancy between these and the experimentally
observed features are expected to be more
pronounced for smaller crystals (their size being
limited by the equilibration time).

The investigated 4He single crystals [12–14] were
a few millimetres large and their shape was
described [12] with y ¼ 1:5570:06; starting at the
facet edge. On millimetre size growing single
crystals of ordinary H2O ice [15], the value of y ¼

1:74 was obtained, again fitted over the entire
rounded profile, from the very facet edge.

The aim of this article is to investigate the shape
of the curved region near the (1 1 1) facet edge of
an equilibrium shape large spherical single crystal
of cuprous selenide. Cuprous selenide Cu2�xSe
is a representative of a group of chemically
and structurally simplest superionic conductors,
namely metal chalcogenides (M27xCh, M=Ag,
Cu; Ch=S, Se, Te). These materials exhibit large
ionic and electronic conductivity, thus enabling
fast bulk metal atom transport, while still in solid
phase. They have only recently been introduced as
convenient materials for studying ECS properties
[16–20], since they are, besides the solid 4He single
crystals, the only materials having large (sub-
centimetre) size crystals of apparently ECS form
that can be grown on a practical time scale (of
several days).

1.1. Theoretical background

Let us briefly review the underlying theory and
basic definitions of the ECS along the lines set
forth by Landau [21] and Jayaprakash et al. [2].

As crystals are anisotropic, the equilibrium
shape of a crystal is the direct consequence of the
surface free energy per unit area f ð~hhÞ dependence
on the crystal surface (described by zðx; yÞ; ~hh ¼
~rrzðx; yÞ; origin at the crystal centre) orientation
relative to crystallographic axes, at given tempera-
ture. The shape is determined [2,21] by minimiza-
tion of the surface free energy, subject to the
constant volume constraint, i.e. by minimization
ofZ

dx dy½f ð~hhÞ � 2lzðx; yÞ�; ð2Þ

where l is the Lagrange multiplier. The solution to
this variational problem is not strictly valid [22]
except in the thermodynamic limit V-N; since
by writing the total free energy in the form of
Eq. (2) the physical effects of atomic scale details
(e.g. edge and corner energies, curvature correc-
tions, and the like) responsible for finite size
corrections are omitted.

As pointed out by Rottman et al. [1], the
prediction of critical exponent y ¼ 3

2
is based on
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two propositions: (i) that interface can be mod-
elled as a two-dimensional (2D) surface (for small
bulk correlation length), and (ii) that the dominant
excitations of such surface are ‘‘steps’’ or ‘‘ledges’’
(TSK—terrace–step–kink model).

Microscopically, the transition region with sur-
face orientations arbitrarily close to a high-
symmetry direction (flat facet—smooth phase),
the so-called vicinal surfaces, can be viewed as a
sequence of atomically smooth terraces separated
by steps of height a (lattice plane spacing) and
spacing l: The angle j between the vicinal surface
and the facet is proportional to the linear density
of steps 1=l (jBtan jBa=l ¼ j~hhj). It should be
stressed that such a picture is valid only if the tilt
angle j is small enough [23,24]. On such stepped
surface, the distance between steps is large and the
steps are well defined. If the angle j gets too large,
the terrace width becomes comparable to step
width—thus the regular staircase disappears and
the surface becomes rough.

Generally, the surface free energy per unit area
for the stepped surface can be written as an
expansion [3] in terms of moduli of ~hh:

f ð~hhÞ ¼ b0 þ b1j~hhj þ b2h
2 þ b3j~hhj

3 þy ð3Þ

with generally temperature dependent coefficients
bn: The term b0 is the surface free energy per unit
area of the facet (~hh ¼ 0), b1j~hhj corresponds to the
step free energy that vanishes at the roughening
transition. The higher order terms represent
interactions between steps.

A ‘‘very particular choice’’ [3] of coefficients in
Eq. (3) (in the framework of the mean-field theory)
gives the Andreev [25] crystal shape (in xz-plane,
as in Eq. (1)) of the form

lzðxÞ ¼ z0 þ aðlxÞ2 þ bðlxÞ4: ð4Þ

Models [2] taking into account thermal fluctua-
tions in step positions, which exclude voids and
overhangs (solid-on-solid condition), with only
repulsive interactions between steps, give the free
energy dependence on slope ~hh of the stepped
surface

f ðj~hhjÞ ¼ b0 þ b1j~hhj þ b3j~hhj
3: ð5Þ

The resulting crystal shape in the vicinity of
facet edge is described by the power law depen-

dence [2] (again in xz-plane):

lzðxÞ ¼

b0 for jlxjob1;

b0 �
2

33=2b1=23

ðjlxj � b1Þ
3=2 for jlxjXb1:

8><
>: ð6Þ

The exponent y ¼ 3
2
(critical exponent) describing

the shape of the curved surface, characterises such
a transition (second-order phase transition) as
belonging to the Pokrovsky–Talapov [26] (or
Gruber–Mullins [27]) universality class. Such
universal exponent should be independent of the
observed material, orientation of facet or azi-
muthal angle of the xz-plane crystal section.

The paper is organised as follows.
In Section 2 we review the preparation of large

spherical cuprous selenide single crystals with well
developed (1 1 1) facets. The methods of noise
removal and determination of crystal silhouette
edge position on digitised enlarged photographs of
part of crystal profile (the facet and adjacent
curved region) are discussed.

In Section 3 the detailed analysis of functional
dependence of thus obtained crystal profile data
points is given. For assumed critical dependence
z ¼ Aðx� x0Þ

y; the inverse logarithmic derivative
approach is used to disclose the intervals of
different behaviour and to obtain indicative values
of fitting parameters y and x0 independently.

The results are discussed in Section 4. The value
of scaling parameter l is estimated in order to
calculate the b0; b1 and b3 coefficients, while the
ratios of these coefficients are obtained from
the fitting parameters (of the critical behaviour in
the stepped region) only. These are compared with
values obtained by other authors on 4He, Si and
Pb single crystals. The extent of the stepped region
and the possible origin of the behaviour of crystal
profile adjacent to the facet edge is discussed.

2. Experimental procedure

The method of growth [19,20] of superionic
conductor cuprous selenide Cu2�xSe single crystals
in a solid/vapour system is based upon the fast
bulk Cu atoms transport at temperatures from
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300K up to the melting temperature Tm ¼ 1450K.
The crystals are grown using modified Ohachi’s
method [17,18], around the tip of a quartz
capillary (the tip being o10% of the crystal
sphere volume, see Fig. 4 in Ref. [19]). The tip
narrowing is used for single crystal seed selection,
and for keeping the current density of Cu atoms
smaller [20] (103–105 times) than the one of
selenium molecules. Thus high quality spherical
single crystals are grown in the solid-state crystal-
lisation mode [28,29], with constant volume
growth rate (0.1–0.9mm3 h�1) [19,20].

The partly faceted (circular (1 1 1) facets) and
partly rounded crystals were grown at about 30K
below the roughening temperature, TRE830K,
for several days, until reaching several millimetres
in diameter. The growth was observed in situ,
measuring simultaneously facet and sphere radii.
Their ratio, characterising the crystal shape, shows
the exponential-like relaxation (with relaxation
time constant tB1200min, see Fig. 6. in Ref. [20])
towards the equilibrium value with time, as radial
growth rate decreases (from 350 to 1.5 nm s�1), all
the time obeying volume vs. time linearity. Then
they were quickly cooled (from 800 to 600K in less
than a minute) to room temperature (hopefully
without changing their shape and quality). The
single crystals with well-developed eight (1 1 1)
facets (with relative orientations perfectly
reflecting the point group symmetry of FCC
crystal), thus grown and quenched, were used to
obtain the enlarged photographs of the crystal
edge projection. Their growth shape is believed to
be as near to equilibrium shape as practically
attainable (the exponential approach to equili-
brium becoming prohibitively slow after growth
time > 5t).

A halogen point-like white light source and a
convergent lens provided a parallel light beam for
backlighting the crystal. The part of crystal with a
facet was brought into the centre of the light beam,
with the facet surface parallel to paraxial rays.
Another lens was used to obtain a magnified
picture of the facet and its neighbourhood silhou-
ette projected directly on photographic paper
(ILFORD black and white Ilfobrom FB IB3.1P).
A continuous coloured glass filter was used to
provide monochrome illumination, thus reducing

chromatic aberrations. The exposure time was
about 20min.

By projecting standard calibration grid several
times larger than the single crystal samples (DRC
Metrigraphics, 10� 3mm, 40 mm bars) a smaller
area (approx. 30� 30 cm) with no pincushion
distortions was determined in the image centre.
Subsequently, the observed single crystal was
placed so as to get the image of facet and its
neighbourhood well within this area. Testing on
standard steel balls (comparable in size with our
single crystals) using a CALCOMP digitising
board to obtain coordinates of their silhouette
edge from photographs, proved that within the
chosen central area there were no detectable image
distortions (the fit standard deviations were at the
worst 10 times smaller than the declared deviation
of standard balls’ radii, at a given magnification of
about 53 times).

The photographs of single crystal facet edge
area were digitised using a professional drum
scanner (Linotype-Hell Cromagraph S3700, sam-
pling aperture 12 mm, resolution 100 dotsmm�1),
thus avoiding the subjective choice of crystal
projection edge points sampled when using a
digitising board. A typical scan of a crystal
photograph (crystal with 2R ¼ 7:8070:05mm,
measured with vernier calliper) resulted in non-
compressed RAW file of 26710 rows with 5499
pixels each (Fig. 1).

Due to the initial orientation of the photograph
with edge extending roughly along the y-direction,
i.e. perpendicular to the pixel rows, a basically
one-dimensional (1D) approach to the edge detec-
tion problem at hand proved to be quite appro-
priate.

Fig. 2 shows part of a typical row taken from
the middle part of the image, crossing the crystal
edge near the facet end. The white part (crystal)
has a uniform grey level value of 255, while the
‘‘black’’ background has a grey value of 40720,
with superimposed noise. The transition area
defining the crystal silhouette outline shows a
gradual change from white to ‘‘black’’ over
typically 120720 pixels, with the similar high-
frequency noise. In order to get an objective edge
position within a row, a smoothing filter matching
the known requirements of biological vision
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(smooth and localised in spatial, and band limited
in the frequency domain [30]) should be applied
first. The edge position is then determined as the
locus of the extreme of the numerical derivative of
row intensity profile.

1-D FFT smoothing (low pass filtering) was
applied to each pixel row of the image [31]. FFT
smoothed grey-level data with frequency filtering
window of width 29 (removing all oscillations in
real space of periodicity shorter than 29 pixels)

have a smooth first derivative with well-defined
single minimum, in contrast to the derivative of
adjacent average smoothed data with a spatial
domain window of 29 points (Fig. 2(b)). For
smaller window widths, the position of the
minimum for a given row shifts significantly, and
the spread in values for consecutive image rows is
large (100–40 pixels). For larger window widths
the position of the edge for each row approaches a
stable value (not changing with further enlarging
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Fig. 2. (a) A part of intensity profile of a row of pixels (indicated in Fig. 1) crossing the crystal silhouette edge: original data—’;

smoothed by adjacent averaging (window width of 29 pixels—&, 125 pixels—J); smoothed by FFT low pass filtering—E (frequency

filtering window width was 29); (b) numerical derivatives of the smoothed intensity profile curves from (a). The minimum of derivative

corresponds to the crystal silhouette edge position in the given row. Only the FFT smoothed intensity data result in well-defined single

minimum.

Fig. 1. (1 1 1) facet and its neighbourhood projected directly on photographic paper (rotated 901 counter-clockwise, magnification

52.5170.03 times, digitised with 2540 dpi, 255 grey levels, image size 5499� 26710 pixels). The resolution obtained is

0.190470.0001mm. The row of pixels analysed in Fig. 2 is indicated by dashed line.
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the window), with positions of minima in con-
secutive rows differing at most by several pixels.
When 2-D FFT smoothing was applied to the
whole image matrix, independently varying x- and
y-window widths, the position of the edge proved
to be almost completely insensitive to y-filtering, as
expected due to the original orientation of edge in
the photograph. However, 2-D filtering with the
same x- and y-filtering window widths (large
enough to give a stable value of the edge position
in a given row) removed all local extremely large
amplitude grey level oscillations (e.g. an erroneous
several pixels large white spot on ‘‘black’’ back-
ground). The working width of the filtering
window (for both spatial directions) was chosen
to be in the range from 91 to 111.

Thus obtained x and y coordinates of the edge
were then interchanged in order to obtain the data
plot in which the facet direction was roughly
parallel to the x-axis.

3. Data analysis and results

In order to comply with the functional depen-
dence zðxÞ describing the shape of the curved ECS
interface profile in the vicinity of a facet (Eq. (1),
x-axis coincident with facet) and avoid unneces-
sary additive constants, we had to determine the
reference facet line first.

The parameters of the linear regression fit zi ¼
Aþ Bxi; obtained by the least-squares method
(over i ¼ 2841 facet profile data points starting
somewhat within the facet, to avoid the influence
of the points near the edge) are

A ¼ 6362:070:7; B ¼ �0:0943170:00005;

s ¼ 2:47532:

Fig. 3 shows the linear fit through the B0.5mm of
the facet (facet diameter dE1:38mm), together
with the residual points showing that the scattering
of data points around the reference facet line is
within at most 710 pixels, i.e. 72 mm (this being
the intrinsic scattering of the crystal projection
outline data). The crystal profile plot was after-
wards rotated using the slope value (B ¼ tan f),
then translated to make the facet coincident with
the x-axis, and finally reflected about the x-axis.

The resulting plot is shown in Fig. 4. The small
inset shows the part of the crystal profile obtained
from the scanned photograph as a part of an
idealized spherical crystal coinciding with the
profile in regions far away from the facet.

It proved more advantageous to apply the
following fitting procedure to the scanned profile
left of the facet in Fig. 4, since it extends further
away from the facet edge than the corresponding
right-side part. (The tilt angle j between the
curved surface and the facet extends up to E281,
being equivalent to the polar angle o; measured
from the facet centre normal, of E451.)

In compliance with Eq. (1), we want to fit the
crystal shape profile in the vicinity of the facet to
the functional form with three fitting parameters:

z ¼ Aðx0 � xÞy; ð7Þ

where x0 is the facet edge position, and y is the
critical exponent. The large number of data points
and their homogeneous density in both x and z

directions over the whole photograph permit us to
circumvent the tedious trial-and-error procedure
of determining the interval within which functional
form (7) is applicable, by making use of the
following procedure.

Taking the logarithm of Eq. (7) we have ln z ¼
lnAþ y lnðx0 � xÞ: The inverse of the derivative of
ln z is

dðln zÞ
dx

� ��1

¼ �
x0

y
þ

1

y
x

being linear in x: Thus, transforming the
original (rotated, translated and reflected)
data and plotting them as ½dðln zÞ=dx��1 vs. x

should give a straight line in an interval where
they are appropriately described by the critical
dependence given by Eq. (7). The least-squares
linear fit parameters in thus (visually) disclosed
intervals give independently the corresponding
values of the critical exponent y; and the facet
edge position x0:

It should be kept in mind that the particular
steps involved (numerical differentiating of ln z;
taking inverse) greatly amplify the inherent noisi-
ness of the original data set, but this proves to be
only visually distracting for the intended purpose.
In order to diminish the scattering, which obscures
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Fig. 4. Crystal profile data obtained from the photograph in Fig. 1, in the coordinate frame having x-axis coincident with the facet.

Inset: The same data shown as part of an idealised spherical crystal coinciding with the profile in curved regions far away from the

facet. On the left side, the profile data extend up to tilt angle jE281 (corresponding to the polar angle oE451).
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the general data trends, we first applied smoothing
by moving averaging over N adjacent points of the
original data set, and only after that proceeded
with the inverse logarithmic derivative approach.
The obtained values of y and x0 are quite
insensitive to the adjacent averaging interval
(N ¼ 64; 128, 256, 512 or 1024), the only effect
of averaging being the artificial linear segment of
the dz=dx and ½dðlnzÞ=dx��1 plots at the right-hand
side of the plot (Fig. 5), due to facet points (with

ordinates E0) being included in the adjacent
average smoothing.

The resulting z; dz=dx and ½dðln zÞ=dx��1 vs. x
plots are shown in Fig. 5.

In Fig. 5(b) the existence of three distinct linear
segments of the ½dðln zÞ=dx��1 plot, having differ-
ent slopes and intercept values is clearly visible
(besides the artificial linear segment closest to
the facet edge). The residual values of the linear
fits to three different segments shown in Fig. 5(c),
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confirm the appropriateness of different sets of
parameters in these three intervals. Assuming
for the moment that there are indeed three
adjacent regions of the crystal surface profile near
the facet the shape of which can be described by
critical dependence, we obtain the values shown in
Table 1.

In order to check these indicative results, we
applied the non-linear Levenberg–Marquardt [31]
fitting of functional dependence (7) to the original
data sets in the same intervals. Thus obtained
values are shown in the last column of Table 1
(being almost the same as those obtained from the
linear fits of the inverse logarithmic derivative).

In the region farthest away from the facet (from
j=17.96–27.091), we tried to describe the crystal
profile shape by fitting the data points to a circle,

z ¼ zc7
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 � ðxc � xÞ2

q
(shown in Fig. 6), ob-

taining

R ¼ 20480712; xc ¼ 1525577;

zc ¼ 20208710; w2 ¼ 20:94905:

Comparing these values to the crystal diameter
measured with a vernier calliper in the rounded
region between the facets, 2R ¼ 7:8070:05mm,
the magnification of the photograph is 52.517
0.03, and thus the distance between two adjacent
image pixels corresponds to 0.190470.0001 mm on
the single crystal sample. All of the following
results were transformed to millimetres scale using
this correspondence. The thus obtained values for
circle radius and centre:

R ¼ 3:90070:002 mm; xc ¼ 2:90570:001 mm;

zc ¼ 3:84870:002 mm; w2 ¼ 0:00399

are used afterwards as the ones describing the
position of the centre (the Wulff centre) of our
crystal (in calculating the angular extent of
particular fitting intervals, and determining the
values of bn coefficients).

This method of determining the Wulff centre of
our crystal was used since it was not possible to
obtain the undistorted projection of the whole
crystal silhouette with the same magnification/
resolution. However, as our crystals are almost
spherical, grown without spatial constraints (ex-
cept the discussed capillary tip) and of FCC T
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symmetry (as confirmed by relative orientations of
eight present (1 1 1) circular facets), it seems
justifiable to identify the circle fit centre with the
Wulff centre position (the fit is equally good on
both sides of the facet, in corresponding intervals).
To further test this claim, a circle was constructed
directly on the photograph, enclosing everywhere
the visible part of crystal edge projection. Thus
obtained value of crystal radius, compared to the
direct measurement of crystal diameter by a
vernier calliper gives the magnification of
52.570.1 times, and therefore the crystal radius
value of 20475740 pixels. This is practically equal
to the value obtained form fit to a circle (within its
error margin) which is, strictly speaking, the local
radius of surface curvature within the fit interval.
The fact that our crystals are of spherical shape
was also confirmed in testing the volume vs. time
linearity during the crystal growth [19], where the
crystal radius was measured as the radius of

maximum circular envelope of the sphere projec-
tion on screen (between the opposite rounded
parts of surface in regions between facets) [20].

The facet itself covers the angular range of
DoE20.431 (as viewed from the centre ðxc; zcÞ of
the circle).

Fig. 7 shows the fit of the original data to the
critical dependence (7), with y=1.49970.003 and
the residue plot. The fit describes the crystal shape
quite well within the angular range Dj ¼3.131
(from 13.981 to 17.121), the critical exponent
disclosing it as the true stepped region. However,
this dependence obviously does not seem to be
appropriate for describing the crystal profile in the
closest neighbourhood of the facet edge.

In the region further away from the facet
(the same interval as for fit to a circle), beyond
the extent of the stepped region, the critical
dependence indicated by the inverse logarithmic
derivative plot would be characterised by
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Fig. 6. Non-linear fits of the crystal profile data (5252 pixels21mm) in the region farthest away from the facet, together with residue

plots to a circle z ¼ zc7
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 � ðxc � xÞ2

q
; w2 ¼ 20:94905 (dotted line; J), to critical dependence z ¼ Aðx0 � xÞy; y=2.53870.002,

w2 ¼ 16:67726 (dashed line; &), to the Andreev formula z ¼ Aðx0 � xÞ2 þ Bðx0 � xÞ4; w2 ¼ 21:29286 (full line; W). The symbols in the

residue plot within the fitting interval are filled. The residue plots & and W are shifted for –40 and –80 pixels, respectively.
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Fig. 7. Non-linear fit of the crystal profile data to critical dependence z ¼ Aðx0 � xÞy in the stepped region, y=1.49970.003,

w2 ¼ 6:90725: The symbols in the residue plot within the fitting interval are filled.
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Fig. 8. Non-linear fit of the crystal profile data to critical dependence z ¼ Aðx0 � xÞy in the region adjacent to the facet edge,

y=1.08270.004, w2 ¼ 1:23: The symbols in the residue plot within the fitting interval are filled.
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y=2.53870.002 obtained from fitting the ori-
ginal data (Fig. 6). As such dependence has
not been mentioned in the existing literature, and
this is the interval where the surface is rough
and TSK model is no longer applicable, we
managed to fit the data in this interval quite
well (Fig. 6) to the Andreev [25] (mean-field)
formula:

z ¼ Aðx0 � xÞ2 þ Bðx0 � xÞ4:

In the close vicinity of the facet itself the crystal
profile shape was indicated by inverse logarithmic
derivative plot to correspond to a critical depen-
dence given by Eq. (7), with y=1.08270.004
obtained from direct data fit (Fig. 8).

4. Discussion

We focus again on the region in which our
crystal profile is extremely well described using
critical dependence (7) with the value of critical
exponent y=1.49970.003 corresponding with
great accuracy to the theoretically predicted value
of 3

2 (characteristic for the Pokrovsky–Talapov–
Gruber–Mullins universality class). Comparison
of Eqs. (7) and (6) allows determination of the
values of b0; b1 and b3 coefficients (bearing in
mind that Eq. (6) describes the profile of a crystal
within the coordinate frame with origin at the
centre of the crystal):

b0 ¼ lðzc � zfacetÞ;

zfacet ¼ 0; the facet itself being coincident with the
x-axis of our data,

b1 ¼ lðxc � x0Þ;

x0 taken as the facet edge position obtained from
the critical fit in the stepped region,

b3 ¼ l
4

27

1

A2
;

A from the critical fit in the stepped region.
An approximate value of the scaling parameter

l (Lagrange multiplier of Eq. (2)) can be estimated
from the theoretical value f0 of the surface free
energy per unit area of the flat facet, in the

expression [2] for the universal jump in surface
curvature at TR; where from

f0 ¼
p
2

kBTR

d2
;

where d is the distance between (1 1 1) lattice
planes, d111

Cu2�xSe
¼ 3:5� 10�10 m, TRE830K. We

thus obtain f0E161 erg cm�2.
Using this value for b0 of our crystal grown

30K below the roughening temperature (0.96 TR),
we have an approximate working value
lE418.39 erg cm�3. Relying upon the results of
fitting the profile data points to a circle

z ¼ zc7
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 � ðxc � xÞ2

q
(in the region farthest

away from the facet) for the values of xc; zc
(describing the position of the crystal centre within
the coordinate frame of our data), we have:

b0E161 erg cm�2; b1E25 erg cm�2;

b3E74 erg cm�2:

Restricting ourselves to experimental data fitting
parameters only, we can state the values of ratios
of coefficients in the stepped region of the crystal
surface profile,

b3
b0

¼ 0:46;
b3
b1

¼ 3:0;

b1
b0

¼ 0:15 ðfor Cu2SeÞ:

On few mm large Pb crystals [32] observed by
STM after annealing at 440–560K and cooling
to room temperature, the critical exponent
varies periodically with azimuth between 1.4 and
1.7 (reflecting the threefold symmetry of facet
shape).

The values of coefficients obtained for the
azimuth angle at which the 3

2
-critical dependence

is approximately valid [32] are:

b0E608:8 erg cm�2; b1E127:05 erg cm�2

b3E126:57 erg cm�2;

giving ratios

b3
b0

¼ 0:21;
b3
b1

¼ 1:00;
b1
b0

¼ 0:21 ðfor PbÞ:

The same crystals measured by STM in situ at the
equilibration temperature of 380K [5] have
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circular facets, the critical exponent is no longer
azimuth dependent and has an average value of
1.4970.06. Such contrast to the previous report of
non-universal behaviour is explained as resulting
from the crystal shape changes that apparently
occur during cooling of the samples.

For small Si 3-D crystals [11] observed by
SEM ex situ after equilibrating at 9001C the mean
value of the ratio b3=b0=0.3670.09 was found,
while for 2-D samples observed by TEM and
REM in situ at 9001C the value of b3=b0=0.426
was obtained. In both cases the profile is
compatible with 3

2
power law within the tilt angle

range 3–171, while at small angles (0–1.51) ‘‘no
physically reasonable law can be assigned to the
profile’’.

Helium crystals have been the most extensively
investigated ECS material thus far, both theoreti-
cally and experimentally. For HCP 4He(0 0 0 1)
facet, with TR ¼ 1:28K and d0001

He ¼2.99� 10�10m,
using the relation [2] for universal jump in surface
curvature (or Fisher and Weeks [33] relation
connecting the roughening temperature and prin-
cipal surface stiffnesses at TR), the value of b0
should be 0.31 erg cm�2. As discussed in Ref. [34],
the precise measurements by Babkin et al. [35]
showed that close to c-direction it raises up to
about 0.31 erg cm�2, the exact theoretical value
(confirming that it is indeed justified to use the
theoretical value at the roughening temperature in
our estimate for l). The step energy found by
Rolley et al. [24] is 0.01470.0005 erg cm�2 (falling
off exponentially when approaching TR; with a
typical value of 0.0002 erg cm�2 in the temperature
range between 1.13 and 1.232K [34,36]). From the
independent measurements of g8 component of
surface stiffness (in the stepped surface region, for
tilt angle o1.31, where it is proportional to step
interactions and vanishes linearly with tilt angle),
the value of step interaction energy at 0.1K is
deduced (see Figs. 3 and 4 in Ref. [37]) to be
E0.15 erg cm�2. Keeping in mind that the values
correspond to different temperatures below TR we
have

b0 ¼ 0:31 erg cm�2; b1 ¼ 0:014 erg cm�2;

b3E0:15 erg cm�2;

which would give (indicative only) values of the
ratios

b3
b0
E0:48;

b3
b1
E10:7;

b1
b0
E0:045 ðfor 4HeÞ:

As has already been pointed out the critical
behaviour description of equilibrium crystal shape
is appropriate in the stepped region only. The
crossover angle between the stepped and the rough
surface regions was predicted to be rather small in
the case of helium where the crystal surfaces are
weakly coupled to the underlying lattice. (The
lattice potential is small and the solid–liquid
interface thickness is much larger than the atomic
spacing; thus the step height changes from 0 to a

over a distance—step width—of several atomic
spacings [24].) The opposite is expected in the case
of metal–vacuum interface (surface) of metal
crystals—the coupling should be strong, resulting
in narrow, sharp steps, and thus enabling the
stepped surface to extend to larger values of tilt
angle j:

The values of step interaction energy, step
energy and facet surface free energy ratios
obtained for cuprous selenide seem to fit pretty
well within the overall framework—falling in
between the values for metal (Pb) crystals and
helium crystals at the opposite end—indicating a
rather strong coupling. In agreement with that,
our y ¼ 3

2
fit extends up to jE171, comparable to

131 in Pb [1], 151 in In [9] and 171 in Si [11]. On the
other hand, in 4He, the critical dependence
describes the data up to 0.1 rad (E5.731) [12], the
other measurements showing that the crossover
angle is even smaller [24,37]. Since both b1 and b3
are temperature dependent, further experimental
data at different temperatures are necessary for a
more detailed analysis.

The problem of the extent (angular range) of the
y ¼ 3

2
fit near the facet edge is far from being

cleared in various materials. This has proved to be
an experimentally difficult problem itself, for
obvious reasons such as small sample sizes (of a
few mm in most cases), scarcity of available data
points in the region of interest and limited reso-
lution. Besides, there seems to be an intrinsically
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different behaviour that has often been noticed
there, either directly or indirectly (through change
in value of critical exponent of the stepped region
when taking into account more and more points
approaching the facet edge).

Rottman et al. [1] showed on a 9 mm equilibrium
Pb crystal, by choosing a number of different
windows (B0.8 mm wide) and determining within
each of them the value of the critical exponent,
that the effective value of y indeed had a minimum
(y=1.53) within the ‘‘true critical region’’ between
41 and 131 from the edge. Extending the fitted data
window to either side caused rising of the y values
determined from the fit.

On small Pb single crystals with threefold facet
shape symmetry [32] observed at room tempera-
ture, there was also pronounced dependence [38]
on the fitting range Dr=rf ¼ 0:2020:55 (rf is facet
radius, Dr is fitting interval). The fit interval begins
at the edge position, and the critical exponent
value diminishes in general when taking into
consideration more points away from the facet.

M!etois and Heyraud [9] analysed equilibrium
shape profiles of two In single crystals (B4 mm in
diameter), in the vicinity of a {1 1 1} facet. Their
results show that the data in the region from 01 to
B51 (with respect to facet orientation) are best
described with the exponent yE2; and from 51 to
151 with the exponent yE1:6070:10:

Elbaum [15] studied curvature jump of single
crystals of ordinary H2O ice grown from vapour
by interference microscope. During in situ mea-
surements, the sample was growing at a rate of
B50 (As�1, which had strong effect on the profile
at temperatures farther below TR: Just below TR

(B271.81K in cooling), the surface profile shown
contains the facet (2rB0:3mm) and a small range
of surface orientations from 01 to B1.31 with
respect to the facet. About 20 data points from this
range gave exponent y=1.74, fitted over the entire
range. The authors conclude that the shape of the
critical region is suggestive of Pokrovsky–Talapov
transition, though an experiment in which the
equilibrium would be reached, farther below the
roughening temperature, is called for.

Carmi et al. [12] investigated the profile of HCP
4He crystals next to c facets (0 0 0 1). The crystals
of lateral dimensions as large as a few millimetres

were observed in situ at temperature stabilized
below TR (1.28K) to an accuracy of 0.002K. The
authors claim that although their crystals were
possibly not in global equilibrium, after equilibra-
tion times of the order of 10min, the vicinal
surfaces of interest should be in local equilibrium
(since they should equilibrate as a rough surface,
i.e., with time constants shorter than 20 s). In
contrast to results on 9 mm Pb crystals [1], the
extent of fit interval on large 4He crystals was not
limited to a ‘‘window’’. The fitting function
describes the data beginning from the chosen facet
end position up to 0.1 rad (E5.731) with respect to
the facet orientation. The obtained values of y
from 13 photographs at various temperatures
range from 1.49 to 1.65, giving the overall result
y=1.5570.06.

All these observations seem to indicate that in
situ measurements of non-growing, equilibrated
crystals show better agreement with predicted
value y ¼ 3

2
; all the way to the facet edge (fit

interval not being limited to a ‘‘window’’).
In the case of cuprous selenide, application of

inverse logarithmic derivative enabled us to clearly
see the distinction between the stepped region
behaviour (with y=1.499) and the different
dependence near the facet edge, where an intri-
guing value of y=1.082 emerges. As the shape of
our crystals was analysed on single crystals
obtained by interrupting the crystal growth and
cooling them rapidly to room temperature, one is
tempted to say that such critical exponent value
could rather be the result of (local) shape change
that occurred during the cooling, than some new
intrinsic behaviour.

However, during the growth [19,20,39] of our
spherical Cu2�xSe single crystals under conditions
of constant volume growth rate, the exponential-
like shape relaxation (the ratio of facet radius to
sphere radius) towards the equilibrium form is
observed. The other effect superimposed to the
relaxation behaviour is the facet size oscillations
(of order of 20%) during growth [20]. These
oscillations seem to be correlated with step-like
behaviour of facet height ðzfacetÞ value in time, the
period of increase in facet diameter corresponding
to the constant value of zfacet and the period of
decrease in facet diameter corresponding to the
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increase of zfacet value. The process bears resem-
blance to ‘‘burst-like’’ growth mode reported [40]
for 4He solid/liquid interface at 2mK. These
growth dynamics features surely do affect the
crystal shape during gradual approach to ideal
equilibrium form, especially in the immediate
vicinity of facets. They seem to be present during
crystal growth in such diverse systems as solid 4He
and Cu2�xSe, and could be recognised in the
equilibration–relaxation process of small Pb crys-
tallites after an abrupt change in temperature [41].

Thus, if we accept that the y=1.082 behaviour
of our crystal profile in the immediate vicinity of
the facet edge is of the dynamic origin, one would
expect that in the case of non-growing, ideally
equilibrated crystal, the same y ¼ 3

2
critical beha-

viour would prevail in this region. In that case the
y ¼ 3

2
fit would be extending from the facet edge all

the way up to jE171, in accordance with
predictions. (Note that the observed facet radius
xc � x0 ¼ 0:6934mm of the crystal analysed here
is E18% larger than the facet radius
xc � x0 ¼ 0:5882mm that comes out as the fitting
parameter from the y=1.499 critical behaviour in
the stepped region. Seemingly, the sample was
‘‘quenched’’ in the growing part of the facet size
oscillation cycle.)

Using the hereby established reliable, high-
resolution method of crystal shape analysis (giving
intervals of different behaviour and values of y
and x0 independently), one should try observing
the crystal shape in situ during growth and
correlating it with simultaneous observations of
growth dynamics features as the equilibrium form
is approached.
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