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We study the asymptotic behavior as ε → 0 of the Ginzburg–Landau functional Iε
A(v) =

R 1
0 (ε2v′′2(s) + W (v′(s)) + A(s, v, v′)v2(s))ds, where A(s, v, v′) is the nonlinear lower-

order term generated by certain Carathéodory function a : (0, 1)2 ×R2 → R. We obtain
Γ-convergence for the rescaled functionals Iε

A as ε → 0 by using the notion of Young
measures on micropatterns, which was introduced in 2001 by Alberti and Müller. We

prove that for ε ≈ 0 the minimal value of Iε
A is close to E0

R 1
0 A

1/3
∞ (s)ds · ε2/3, where

A∞(s) := 1
2
A(s, 0,−1) + 1

2
A(s, 0, 1) and where E0 depends only on W . Further, we use

this example to establish some general conclusions related to the approach of Alberti
and Müller.

Keywords: Asymptotic analysis; Young measures; Ginzburg–Landau functional; gamma
convergence.
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1. Introduction

We consider the Ginzburg–Landau functional

Iε
A(v) =

∫ 1

0

(ε2v′′2(s) +W (v′(s)) +A(s, v, v′)v2(s))ds, (1.1)

where v ∈ H2
per(0, 1), W is the 2-well potential (a nonnegative continuous function

such that W (ζ) = 0 if and only if ζ ∈ {−1, 1}), and A is given by A(s, v, v′) :=∫ 1

0
a(s, σ, v(σ), v′(σ))dσ, where a : (0, 1)2 × R2 → R, a = a(s, σ, ξ), s ∈ R, σ ∈ R,

ξ ∈ R2, is 1-periodic in s and σ. We deal with the problem of calculation of the
rescaled asymptotic energies EA,per := limε min{ε−2/3Iε

A(v) : v ∈ H2
per(0, 1)} and

EA := limε min{ε−2/3Iε
A(v) : v ∈ H2(0, 1)}. We also describe geometric behavior of

minimizers for Iε
A as ε→ 0. Functional (1.1) can be regarded as a nonlinear variant
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of the functional

Iε
a0

(v) =
∫ 1

0

(ε2v′′2(s) +W (v′(s)) + a0(s)v2(s))ds (1.2)

considered in [1]. A similar functional in dimension N ≥ 1,

Jε,σ(u) =
∫

Ω

(ε2|∇u(s)|2 +W (u(s)) + σ|(−∆)−1/2(u(s) −m)|2)ds, (1.3)

was introduced by Ohta and Kawasaki in [14] in order to model microphase separa-
tion of diblock copolymer melts (cf. [4–7, 18]). As discussed in [18], u : Ω → R rep-
resents the mass density parameter describing the system of two different covalently
joined monomers which make a linear chain — the copolymer molecule (whereby
u(s) = 1 (respectively, u(s) = −1) corresponds to the concentration of the first
(respectively, the second) monomer at a point s in a bounded open set Ω ⊆ RN ).
The parameters ε and σ are related to the physical properties of the melt (see [7]
for details): ε is proportional to the thickness of the transition regions between
the two monomers, while σ is inversely proportional to the square of the number
of monomers per molecule. The phenomenon of interest here is the formation of
regular patterns (for instance, lamellars or circular tubes) which develop as a result
of microphase separation when ε ≈ 0 and 0 < ε � σ � 1. It is easy to see that,
in dimension N = 1, (1.3) becomes (1.2), provided Ω = (0, 1), u = v′, σ = a0 and
m = 0 (a simplified version of (1.2) was independently introduced by Müller in [12]
in the context of coherent solid–solid phase transitions, where it is assumed that
a0 is constant). Thus, as ε → 0, (1.2) accounts for the energy stored by a one-
dimensional physical system occupying the interval (0, 1). On the other hand, (1.2)
is a typical example of a functional where competition of nonconvexity (which favors
oscillations in minimizing sequences) and regularization of higher order occurs. To
study the asymptotic behavior of (1.1) as ε → 0, we apply the method of relax-
ation over the space of Young measures on micropatterns introduced by Alberti
and Müller in [1]. The analysis in [1] shows that, under assumption a0 ∈ L1(0, 1),
a0(s) ≥ α0 > 0 for a.e. s ∈ (0, 1), the minimizers vε of (1.2) for sufficiently small ε
resemble a particular sawtooth function, and satisfy Iε

a0
(vε) ≈ E0

∫ 1

0
a
1/3
0 (s)dsε2/3,

where E0 := C
2/3
0 A2/3

0 , C0 := 3/4, A0 := 2
∫ 1

−1

√
W (ζ)dζ. For results involving dif-

ferent types of lower-order terms see [15–17].
The purpose of the present paper is two-fold. Our first goal is to show that

the program in [1] can be successfully applied to the functional Iε
A with nonlinear

lower-order term A under assumption of continuity of a (cf. Sec. 4). Our second goal
is to obtain some further deductions based on the study of the functional Iε

A, which
are of wider interest within the framework of Alberti and Müller (cf. Sec. 6). More
precisely, while the approach in [1] relies on the notion of f -uniform approximability
(cf. Definition 3.4), in this paper we work with a weaker property (namely, partial
f -uniform approximability; cf. Definition 6.3), and we establish its connection to the
integral representation of the Γ-limit of (ε−2/3Iε

A) (cf. Theorem 6.9). We find that in
some cases it is possible to complete all points of the analysis in [1], whereby partial
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f -uniform approximability is recovered (cf. Corollary 6.10 and subsequent remarks),
but f -uniform approximability is not used as such. In many places throughout the
paper we refer to various results in [1].

2. Some Preliminaries

In this paper measurability always means Borel measurability. We consider a com-
pact metric space (K, d) (the space of patterns), which is the set of all measurable
mappings x : R → [−∞,+∞] (modulo equivalence λ-almost everywhere, where λ
is one-dimensional Lebesgue measure), endowed with the metric d defined by

d(x1, x2) :=
∞∑

k=1

1
2kαk

∣∣∣∣
∫
R

yk

(
2
π

arctanx1 − 2
π

arctanx2

)
dλ

∣∣∣∣ , (2.1)

where (yk) is a sequence of bounded functions which are dense in L1(R), such that
the support of yk is a subset of (−k, k), with αk := ‖yk‖L1 + ‖yk‖L∞ . As shown
in [1, p. 806], Lp

loc(R) continuously imbeds in K for every p ∈ [1,+∞]. The Banach
space C(K) (respectively, C0(Rr)) is the space of all continuous real functions on
K (respectively, the space of all continuous real functions on Rr which vanish at
infinity), whose dual is identified with the space of all real Radon measures on K

(respectively, all real bounded Radon measures on Rr), denoted by M(K) (respec-
tively, Mb(Rr)), endowed with the corresponding weak-star topology. Weak-star
topology on M(K) is induced by the norm φ defined in [1, p. 799]. By P(K) (respec-
tively, P(Rr)) we denote the set of all probability measures in M(K) (respectively,
Mb(Rr)). If µ ∈ M(K) (respectively, Mb(Rr)), by ‖µ‖ we denote total varia-
tion of µ. If Ω ⊂ R is a measurable set such that λ(Ω) < +∞, by L∞

w∗(Ω;M(K))
(respectively, L∞

w∗(Ω;Mb(Rr))) we denote the dual of L1(Ω; C(K)) (respectively,
L1(Ω; C0(Rr))). The set of all K-valued Young measures (Young measures on
micropatterns), denoted by YM(Ω;K), is the set of all ν ∈ L∞

w∗(Ω;M(K)) such
that νs ∈ P(K) for almost every s ∈ Ω, where ν(s) := νs, s ∈ Ω. We always endow
it with the weak-star topology of L∞

w∗(Ω;M(K)). The basic result about Young
measures, known as the fundamental theorem of Young measures, can be found
in [2]. The weak-star topology on bounded sets in L∞

w∗(Ω;M(K)) is induced by the
norm Φ defined in [1, p. 769], and therefore YM(Ω;K) is metrized by Φ. The ele-
mentary Young measure associated to a measurable map u : Ω → K (respectively,
u : Ω → Rr) is the map δu : Ω → M(K) (respectively, δu : Ω → Mb(Rr)) given by
δu(s) := δu(s), s ∈ Ω. We say that a sequence of measurable maps uk : Ω → K gen-
erates the Young measure ν, if the sequence of elementary Young measures (δuk)
converges to ν in the topology of L∞

w∗(Ω;M(K)). We say that µ ∈ M(K) is invari-
ant with respect to translations if for every τ ∈ R there holds T#µ = µ, where
〈T#

τ µ, g〉 := 〈µ, g ◦ Tτ 〉, and where Tτ : K → K is defined by Tτx(t) := x(t − τ),
for x ∈ K and t ∈ R. I(K) denotes the class of all invariant measures in P(K).
If x ∈ K is periodic, the notation εx stands for the unique invariant probability
measure supported on the orbit of x (which is referred to as to an elementary
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invariant measure), while EI(K) stands for the set of all elementary invariant mea-
sures in P(K). By L1

per(0, 1) (respectively, H2
per(0, 1)) we denote the set of all real

functions on (0, 1), extended to R by periodicity, which belongs to L1
loc(R) (respec-

tively, H2
loc(R)). Sx′ denotes the set of discontinuities of x′ ∈ K, and |Sx′| denotes

cardinality of the set Sx′. If r1, r2 ∈ R and r1 < r2, S(r1, r2) stands for the set
of all “sawtooth” functions, i.e. the set of all continuous piecewise affine functions
x : (r1, r2) → R with slope equal to either −1 or 1 at almost every point of the
interval (r1, r2). By Sper(r1, r2) (respectively, Sper,0(r1, r2)) we denote the set of all
functions in S(r1, r2) with property x(r1) = x(r2) (respectively, x(r1) = x(r2) = 0),
extended to R by periodicity. Lip(v) stands for the Lipschitz constant of a func-
tion v : R → R. Finally, we recall the notion of Γ-convergence. If X is a metric
space then a sequence of functions F ε : X → [0,+∞] is said to Γ-converge to F
on X (which we write as F ε Γ−→F ) if the following two properties are fulfilled:
For every x ∈ X and a sequence (xε) in X such that xε → x in X there holds
lim infε F

ε(xε) ≥ F (x) (the lower bound); for every y ∈ X there exists a sequence
(yε) in X such that yε → y in X and lim supε F

ε(yε) ≤ F (y) (the upper bound).
If there holds lim supε F

ε(xε) < +∞, we say that (xε) is a finite-energy sequence
(or FE sequence) for (F ε). Detailed and systematic treatment of this type of con-
vergence can be found in [8].

3. Formulation of the Problem and Plan of the Paper

The main steps in asymptotic analysis of the functional (1.2) can be summarized
as follows (cf. [1, p. 779]).

• In Step 1 we characterize the class of all Young measures ν ∈ YM((0, 1);K)
which are generated by sequences of ε-blowups s �→ Rε

sv
ε as ε → 0, where

Rε
sv(t) := ε−1/3v(s+ ε1/3t), t ∈ R and vε ∈ H2

loc(R).
• In Step 2 we rewrite the rescaled functionals ε−2/3Iε

a0
(v) as

∫ 1

0
fε

s (Rε
sv)ds for a

suitable choice of Rε
sv and fε

s .
• In Step 3 we are to identify the Γ-limit fs of the sequence (fε

s ) as ε → 0 on K

for almost every s ∈ (0, 1).
• In Step 4 we are required to determine the Γ-limit Fa0 of the sequence (F ε

a0
),

where F ε
a0

: YM((0, 1);K) → [0,+∞] defined by F ε
a0

(ν) :=
∫ 1

0 〈νs, f
ε
s 〉ds, if ν =

δRεv for some v ∈ H2
per(0, 1) (F ε

a0
(ν) := +∞, otherwise).

• Finally, in Step 5, we are to find the minimizer for Fa0 and prove its uniqueness.

According to [1, Proposition 3.6], fs : K → [0,+∞] is defined by fs(x) :=
A0
2r |Sx′ ∩ (−r, r)| + a0(s)−

∫ r

−r
x2(τ)dτ , if x ∈ S(−r, r) (fs(x) := +∞, otherwise).

By [1, Proposition 3.1], it is natural to define Fa0 : YM((0, 1);K) → [0,+∞] by
Fa0(ν) :=

∫ 1

0
〈νs, fs〉ds, if νs ∈ I(K) for a.e. s ∈ (0, 1) (Fa0(ν) := +∞, other-

wise). To justify the choice of F ε
a0

in the Step 4, we rely on the following remarks
concerning integral functionals on measurable maps from (0, 1) to K (denoted
by Meas((0, 1);K)) and their extensions to YM((0, 1);K). If f : (0, 1) × K →
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[0,+∞] is Borel measurable, then it defines a functional on Meas((0, 1);K) by
u �→ ∫ 1

0 f(s, u(s))ds. Then there are two ways to extend such a mapping on
YM((0, 1);K): by linearity and by +∞. We quote a variant of Theorem 2.12.
In [1] which discusses the lower-semicontinuity and Γ-convergence of both types
of extensions.

Theorem 3.1. Let fs : K → [0,+∞] be given by fs(u) := f(s, u(s)), s ∈ (0, 1)
for some Borel measurable f : (0, 1) × R → [0,+∞]. Let us define Ff ,Ff , :
YM((0, 1);K) → [0,+∞] by Ff (ν) :=

∫ 1

0
〈νs, fs〉ds, if ν = δu for some u ∈

Meas((0, 1);K) (Ff (ν) := +∞, otherwise), Ff (ν) :=
∫ 1

0
〈νs, fs〉ds for every ν ∈

YM((0, 1);K). If the integrands fε satisfy fε
s

Γ−→ fs as ε→ 0 on K for almost every
s ∈ (0, 1), and if the functions Efε defined by Efε(s) := infx∈K fε(s, x) are equi-
integrable on (0, 1), then Ffε

Γ−→Ff and Ffε
Γ−→Ff as ε → 0 on YM((0, 1);K).

Both Ffε and Ffε verify the lower-bound inequality without any assumption on
Efε.

Next, we adjust the language of Theorem 3.1 to our consideration by introducing
the following definition.

Definition 3.2. Consider F ε
fε : YM((0, 1);K) → [0,+∞] defined by F ε

fε(ν) :=∫ 1

0 〈νs, f
ε
s 〉, if νs = δRε

sv for a.e. s ∈ (0, 1) for some v ∈ H2
loc(R) (F ε

fε(ν) := +∞, oth-

erwise), where fε
s

Γ−→ fs on K as ε→ 0 for a.e. s ∈ (0, 1). We say that the sequence
(F ε

fε) has the commutation property if the Γ-limit of (F ε
fε) on YM((0, 1);K) as

ε→ 0 exists and it is given by Ff (ν) :=
∫ 1

0 〈νs, fs〉ds if νs ∈ I(K) for a.e. s ∈ (0, 1)
(Ff (ν) := +∞, otherwise).

Further, if E ⊆ (0, 1) is a measurable set, we consider F ε
fε;E : YM(E;K) →

[0,+∞] (respectively, Ff ;E : YM(E;K) → [0,+∞]) defined as F ε
fε (respectively,

Ff ), but with
∫ 1

0
replaced by

∫
E

, whereby condition ν = δRεv for some v ∈ H2
loc(R)

(respectively, νs ∈ I(K) for a.e. s ∈ (0, 1)) is replaced by condition νs = δRε
sv for

some v ∈ H2
loc(R) and a.e. s ∈ E (respectively, νs ∈ I(K) for a.e. s ∈ E).

Proposition 3.3 (Locality of Γ-convergence). If the sequence (F ε
fε) has the

commutation property, then for arbitrary Borel measurable set E ⊆ (0, 1) the
sequence (F ε

fε;E) also has the commutation property.

Proof. The lower bound follows by independence of boundary conditions (cf. [1,
p. 813]), Borel regularity of λ and Theorem 3.1. Regarding the proof of the upper
bound, we argue as follows. Consider ν ∈ YM(E;K) such that Ff ;E(ν) < +∞
and µ ∈ YM((0, 1);K) such that µχE = ν and Ff (µ) < +∞. By assumption
there exists a sequence vε ∈ H2

loc(R) such that δRεvε
∗−⇀µ in YM((0, 1);K) as

ε→ 0 and limε F
ε
fε(δRεvε) = Ff (µ). By [1, Remark 2.5] there holds δRεvεχE

∗−⇀ν

in YM(E;K) as ε → 0. If we define µε(E) :=
∫

E
〈δRε

svε , fε
s 〉ds, then E �→ µε(E)

is a Radon measure. For arbitrary subsequence (not relabeled) of measures (µε)
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by construction there holds ‖µε‖ ≤ Ff (µ) (provided ε is small enough). Therefore
there exists a Radon measure µ0 and a further subsequence (not relabeled) such
that µε ∗−⇀µ0 in Mb(0, 1) as ε → 0, ‖µ0‖ ≤ Ff (µ), limε µ

ε(E) = µ0(E) for every
Borel measurable set E ⊆ (0, 1). Then µ0 and E �→ Ff ;E(µ) are Radon measures
such that for every open set E ⊆ (0, 1) there holds µ0(E) ≤ Ff ;E(µ). In effect, the
upper bound holds for arbitrary measurable set E ⊆ (0, 1).

As a sufficient condition for the successful completion of the Step 4, Alberti and
Müller introduced the following notion (cf. [1, p. 803]).

Definition 3.4. Consider ψ : K → [0,+∞]. We say that K is ψ-uniformly approx-
imable if for every ε > 0 there exists h = h(ε) > 0 such that for every point x ∈ K

we can find an h-periodic point x̃ ∈ K which satisfies −∫ h

0
d(Tτx, Tτ x̃)dτ ≤ ε and

−∫ h

0 ψ(Tτ x̃)dτ ≤ −∫ h

0 ψ(Tτx)dτ + ε.

The main result in [1] now can be stated as follows.

Theorem 3.5. K is fs-uniformly approximable for a.e. s ∈ (0, 1), and there holds
F ε

a0

Γ−→Fa0 as ε→ 0 on YM((0, 1);K). Moreover, the conclusion is independent of
boundary conditions : in the definition of F ε

a0
we can replace H2

per(0, 1) by H2(0, 1).

Thus Theorem 3.5 ensures that the sequence (F ε
a0

) has the commutation prop-
erty. In the next two sections we prove that functionals derived from (1.1) (according
to the Step 4 of the approach) also posses such a feature, though our arguments are
somewhat different in comparison to those in [1]. In Sec. 4 we obtain Γ-convergence
by establishing a kind of asymptotic equivalence of functionals (ε−2/3Iε

A) and suit-
ably chosen (rescaled) functionals of type (1.2). Then, independently of Sec. 4, we
identify the Γ-limit in Sec. 5. In the calculations we avoid the question of ϕ-uniform
approximability of K for a natural choice of ϕ. In the end of our consideration, we
revisit the proof of Γ-convergence of functionals (1.1) and we note that the strategy
of the proofs in [1] can be followed step by step, even if ϕ-uniform approximability
is not at our disposal. We discuss this topic in some detail in Sec. 6.

4. Γ-Convergence Result

Herein we describe the main points of the approach concerning the functional (1.1).
To this end, we consider W which satisfies

W (ζ) ≥ c0|ζ|r0 for every ζ such that |ζ| ≥ R0, (4.1)

where c0, R0 > 0 and r0 ≥ 1. We assume that a is a Carathéodory function (mea-
surable in (s, σ), continuous in ξ, extended by periodicity to R2 × R2) such that:

inf
ξ∈R2

a(s, σ, ξ) ≥ α0 > 0, for a.e. (s, σ) ∈ (0, 1)2, (4.2)

a(s, σ, ξ) ≤ h0(s, σ) + |ξ1|qh1(s) + |ξ2|ph2(s), for a.e. (s, σ) ∈ (0, 1)2, (4.3)

where ξ = (ξ1, ξ2) ∈ R2, h1, h2 ∈ L1
per(0, 1), h0 ∈ L1

per((0, 1) × (0, 1)), q ∈
(0,+∞) and p ∈ (0, r0]. In this section we prove that EA = EA,per =
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E0

∫ 1

0
(
∫
R2 A(s, ξ)dν∞(ξ))1/3ds, where ν∞ := 1

2δ(0,−1)+ 1
2δ(0,1). We begin by proving

the following technical results which we use in the proof of Proposition 4.2.

Lemma 4.1. Consider Aε
s,τ (x) :=

∫ 1

0 −∫ r

−r a(s+ ε1/3τ, σ+ ε1/3t, ε1/3x(t), x′(t))dtdσ

and Ã(s, 0, ·) : K → [0,+∞] defined by Ã(s, 0, y) :=
∫ 1

0
−∫ r

−r
a(s, σ, 0, y(t))dtdσ. If

xε → x in W1,1(−r, r) as ε→ 0, x ∈ S(−r, r) and ‖x′ε‖Lr0(−r,r) ≤ C, then

Aε
s,τ (xε) −⇀ Ã(s, 0, x′) in L1(−r, r) (a.e. s ∈ (0, 1)), (4.4)

Aε,M
s,τ (xε)

∗−⇀ ÃM (s, 0, x′) in L∞(−r, r) (a.e. s ∈ (0, 1)), (4.5)

where, for M > 0, ÃM (s, 0, y) :=
∫ 1

0
−∫ r

−r
aM (s, σ, 0, y(t))dtdσ, aM := min{a,M}

and Aε,M
s,τ (x) :=

∫ 1

0 −∫ r

−r a
M (s+ ε1/3τ, σ + ε1/3t, ε1/3x(t), x′(t))dtdσ.

Proof. We divide the proof into four steps.

Step 1. To begin with, we extract a subsequence (not relabeled) such that xε(t) →
x(t) and x′ε(t) → x′(t) for a.e. t ∈ (−r, r). By Egoroff’s theorem for every η ∈ (0, 1)
there exists a measurable set Eη ⊆ (−r, r) such that λ(Eη) ≤ η and xε → x

uniformly on (−r, r)\Eη and x′ε → x′ uniformly on (−r, r)\Eη. We fix M > 0 and
we consider ãM : (0, 1) × R2 → R defined by ãM (s, ξ) :=

∫ 1

0 a
M (s, σ, ξ)dσ. By

the Scorza–Dragoni theorem there exists an increasing sequence of compact sets
(Fj) such that Fj ⊆ (0, 1), limj→0 λ((0, 1)\Fj) = 0 and such that the restriction
of ãM on Fj ×R2 is continuous. Since ãM is uniformly continuous on compact set
([s−∆, s+∆]∩Fj)× [−2, 2]2, for every ∆ > 0 there exists m0(∆, s, j,M) ∈ N such
that for every m ≥ m0 and every (ρi, ξi) ∈ ([s−∆, s+ ∆]∩Fj)× [−2, 2]2, i = 1, 2,
‖(ρ1, ξ1) − (ρ2, ξ2)‖ ≤ 1

m implies |ãM (ρ1, ξ1)−ãM (ρ2, ξ2)| ≤ ∆. On the other hand,
for a given m ∈ N there exists ε0 = ε0(m, η) such that for every ε ∈ (0, ε0] there
holds ‖xε − x‖L∞((−r,r)\Eη) ≤ 1

2m and ‖x′ε − x′‖L∞((−r,r)\Eη) ≤ 1
2m .

Step 2. Further, we prove that for every ψ ∈ L∞(−r, r) there holds

lim sup
ε→0

−
∫ r

−r

Aε
s,τ (xε)ψ(τ)dτ ≤ −

∫ r

−r

Ã(s, 0, x′)ψ(τ)dτ. (4.6)

Since a is 1-periodic in σ, by Step 1 for arbitrary M > 0 we get

lim sup
ε→0

−
∫ r

−r

Aε,M
s,τ (xε)dτ ≤ 1

2r

∫
(−r,r)\Eη

ãM (s, 0, x′(t))dt+ ∆j(M,η),

where ∆j(M,η) := 1
2r ∆+ M

4r2 (λ(Fj)λ(Eη)+2rλ((0, 1)\Fj)). We pass to the limit as
j → +∞ and as η → 0 by the dominated convergence theorem, and, by arbitrariness
of ∆ > 0, we obtain lim supε −

∫ r

−r
Aε,M

s,τ (xε)dτ ≤ Ã(s, 0, x′). We set H0(s, σ) :=
h0(s, σ) + c1h1(s) + c2h2(s), where ‖xε‖q

Lq ≤ c1 and ‖x′ε‖r0
Lr0 ≤ c2. Since h0 is 1-

periodic in σ, we have
∫ 1

0
H0(s+ ε1/3τ, σ+ ε1/3t)dσ = H(s+ ε1/3τ), where H(s) :=

A
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∫ 1

0
H0(s, ρ)dρ ∈ L1(0, 1). To proceed, we estimate

−
∫ r

−r

Aε
s,τ (xε)dτ ≤ −

∫ r

−r

Aε,M
s,τ (xε)dτ +

1
4r2

ε−1/3

∫ s+ε1/3r

s−ε1/3r

HM (θ)dθ,

and it results lim supε −
∫ r

−r
Aε

s,τ (xε)dτ ≤ Ã(s, 0, x′)+ 1
2rHM (s), where HM (s) := 0 if

H(s) ≤M , andHM (s) := H(s), otherwise. SinceH ∈ L1(0, 1), there holdsHM → 0
in L1(0, 1) as M → +∞, and we can extract a subsequence (not relabeled) such
that HM (s) → 0 for a.e. s ∈ (0, 1). Therefore we can pass to the limit as M → +∞,
getting (4.6) for ψ(τ) = 1. Next, we claim that for every simple function ψ(τ) :=∑n

i=1 ciχBi(τ), τ ∈ (−r, r) (where Bi ⊂ (−r, r), i = 1, . . . , n, are measurable sets
such that λ((−r, r)\⋃n

i=1Bi) = 0) (4.6) holds true. By outer Borel regularity of
measure λ for every δ > 0 there exists an open set Bi

δ such that Bi ⊆ Bi
δ and

λ(Bi
δ\Bi) ≤ δ. Then each Bi

δ can be written as a disjoint union of countably many
open intervals Ii

k, k ∈ N. As before, it follows
∫

Ii
k

Aε
s,τ (xε)dτ ≤

∫
Ii

k

Aε,M
s,τ (xε)dτ +

1
2r
ε−1/3

∫ s+ε1/3r

s−ε1/3r

HM (θ)χIi
k
(ε−1/3(θ − s))dθ,

where, by [9, Corollary 1.7.2, p. 44], for a.e s ∈ (0, 1) holds

lim
ε→0

ε−1/3

∫ s+ε1/3r

s−ε1/3r

HM (θ)χIi
k
(ε−1/3(θ − s))dθ = λ(Ii

k)HM (s).

As we apply the sum over all k, we have∫
Bi

Aε
s,τ (xε)dτ ≤

∫
Bi

δ

Aε,M
s,τ (xε)dτ +

+∞∑
k=1

1
2r
ε−1/3

×
∫ s+ε1/3r

s−ε1/3r

HM (θ)χIi
k
(ε−1/3(θ − s))dθ.

We pass to the limit as ε→ 0, δ → 0, and as M → +∞ by the dominated conver-
gence theorem. Thus, summation over i yields (4.6). For a given ψ ∈ L∞(−r, r) we
take a sequence of simple functions (ψN ) such that ‖ψ − ψN‖L∞(−r,r) ≤ 1

N . Then
−∫ r

−r A
ε
s,τ (xε)ψ(τ)dτ ≤ −∫ r

−r A
ε
s,τ (xε)ψN (τ)dτ + 1

N −∫ r

−r A
ε
s,τ (xε)dτ , and, as ε → 0 we

get

lim sup
ε→0

−
∫ r

−r

Aε
s,τ (xε)ψ(τ)dτ ≤ −

∫ r

−r

Ã(s, 0, x′)ψN (τ)dτ +
1
N
Ã(s, 0, x′).

As we let N → +∞, we obtain (4.6).

Step 3. By Step 1 for ε ≤ min{ε0,∆3r−3} −∫ r

−r A
ε
s,τ (xε)dτ is bounded from below

by −∆
2r + 1

4r2ε1/3

∫
[s−ε1/3r,s+ε1/3r]∩Fj

∫
(−r,r)\Eη

ãM (ρ, 0, x′(t))dtdρ. Therefore

lim inf
ε→0

−
∫ r

−r

Aε
s,τ (xε)dτ ≥ −∆

2r
+

1
2r

∫
(−r,r)\Eη

ãM (s, 0, x′(t))dtχFj (s).

By passing to the limit, first as j → +∞, then as η → 0 and as ∆ → 0, and finally
as M → +∞, we get lim infε −

∫ r

−r A
ε
s,τ (xε)dτ ≥ −∫ r

−r Ã(s, 0, x′)dτ . Now we claim that
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for every ψ ∈ L∞(−r, r) there holds

lim inf
ε→0

−
∫ r

−r

Aε
s,τ (xε)ψ(τ)dτ ≥ −

∫ r

−r

Ã(s, 0, x′)ψ(τ)dτ. (4.7)

By Mikusinski’s theorem (cf. [10, Theorem 3.104, p. 113]) for every ψ ∈ L1(−r, r)
there exists a sequence of piecewise constant functions (ψk) such that ψk → ψ

in L1(−r, r) as k → +∞, where ψk(s) =
∑Nk

i=1 c
k
i χIi

k
(s), and Ii

k = (ai
k, b

i
k)

for i = 1, . . . , Nk are pairwise disjoint open intervals. For a subsequence
(ψkM ) such that ‖ψ − ψkM ‖L1(−r,r) ≤ 1

M2 there holds −∫ r

−r A
ε
s,τ (xε)ψ(τ)dτ ≥

−∫ r

−r A
ε,M
s,τ (xε)ψkM (τ)dτ − 1

M . As before, we pass to the limit, first as ε → 0, and
then as M → +∞, getting (4.7).

Step 4. Since the argument above can be carried out for arbitrary subsequence of
the sequence (Aε

s,τ (xε)), we get (4.4). To prove (4.5) we consider ψ ∈ L1(−r, r) and
a sequence (ψk) as in Step 3. Then we obtain the following bounds:

−
∫ r

−r

Aε,M
s,τ (xε)ψ(τ)dτ ≥ −

∫ r

−r

Aε,M
s,τ (xε)ψk(τ)dτ −M‖ψ − ψk‖L1(−r,r), (4.8)

−
∫ r

−r

Aε,M
s,τ (xε)ψ(τ)dτ ≤ −

∫ r

−r

Aε,M
s,τ (xε)ψk(τ)dτ +M‖ψ − ψk‖L1(−r,r). (4.9)

Finally, as we let ε→ 0 and k → +∞ in (4.8) and (4.9), we recover (4.5).

Next, we complete the second and the third step of the approach.

Proposition 4.2. If v ∈ H2
per(0, 1), then there holds ε−2/3Iε

A(v) =
∫ 1

0
ϕε

s(R
ε
sv)ds,

where ϕε
s : K → [0,+∞] is defined by

ϕε
s(x) := −

∫ r

−r

(ε2/3x′′2(τ) + ε−2/3W (x′(τ)) +Aε
s,τ (x)x2(τ))dτ, (4.10)

if x ∈ H2(−r, r) (ϕε
s(x) := +∞, otherwise). Furthermore, under assumptions (4.1)–

(4.3), it follows ϕε
s

Γ−→ϕs as ε→ 0 on K for a.e. s ∈ (0, 1), where ϕs : K → [0,+∞]
is defined by

ϕs(x) :=
A0

2r
|Sx′ ∩ (−r, r)| + Ã(s, 0, x′)−

∫ r

−r

x2(τ)dτ, (4.11)

if x ∈ S(−r, r) (ϕs(x) := +∞, otherwise).

Proof. To prove the lower bound, we consider a sequence (xε) such that xε → x

in K as ε → 0. Without loss of generality, we can assume that there holds
lim infε ϕ

ε
s(xε) < +∞ (otherwise there is nothing to prove). By (4.2) there

holds lim infε f
ε
α0

(xε) < +∞, where fε
α0

: K → [0,+∞] is defined as in (4.10),
with Aε

s,τ (x) replaced by α0. Then there exists a subsequence (not relabeled), such
that (xε) is FE sequence for (fε

α0
). By the theorem of Modica and Mortola (cf. [11])

(xε) is pre-compact in W1,1(−r, r), lim infε −
∫ r

−r(ε
2/3x′′ε

2(τ) + ε−2/3W (x′ε(τ)))dτ ≥
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A0
2r |Sx′ ∩ (−r, r)|, and x ∈ S(−r, r). By Lemma 4.1 the sequence (Aε,M

s,τ (xε))
converges to ÃM (s, 0, x′) weakly-star in L∞(−r, r) as ε → 0 for a.e. s ∈ (0, 1).
Consequently, x2

ε → x2 in L1(−r, r) as ε → 0 implies that −∫ r

−r A
ε,M
s,τ (xε)x2

ε(τ)dτ
converges to ÃM (s, 0, x′)−∫ r

−r x
2(t)dt as ε → 0 for a.e. s ∈ (0, 1). Then it follows

lim infε −
∫ r

−r A
ε
s,τ (xε)x2

ε(τ)dτ ≥ Ã(s, 0, x′)−∫ r

−r x
2(t)dt for a.e. s ∈ (0, 1) (where we

pass to the limit as M → +∞ by Fatou’s lemma). By the uniqueness of the
cluster point x we get lim infε ϕ

ε
s(xε) ≥ ϕs(x). The upper bound follows by [1,

Proposition 3.6]: for every x ∈ S(−r, r) there exists a sequence (xε) such that
xε ∈ H2(−r, r), Lip(xε) ≤ 1, xε → x in W1,1(−r, r) (and therefore xε → x in
L∞(−r, r)) as ε → 0 and limε f

ε
α0

(xε) = fα0(x), where fα0 : K → [0,+∞] is
defined as in (4.11), with Ã(s, 0, x′) replaced by α0. By Lemma 4.1 the sequence
(Aε

s,τ (xε)) converges to Ã(s, 0, x′) weakly in L1(−r, r) as ε → 0 for a.e. s ∈ (0, 1),
which gives limε −

∫ r

−r
Aε

s,τ (xε)x2
ε(τ)dτ = −∫ r

−r
Ã(s, 0, x′)x2(τ)dτ .

In the next corollary we show that there exist many FE sequences for (ϕε
s).

Corollary 4.3. If (4.1)–(4.3) hold, and if s �→ ∫ 1

0
h0(s, σ)dσ ∈ Lp0(0, 1) and

h1, h2 ∈ Lp0(0, 1) for some p0 ∈ (1,+∞], then for a.e. s ∈ (0, 1) there holds :
(xε) is FE sequence for (ϕε

s) if and only if (xε) is FE sequence for (fε
α0

). If r0 > 1,
we can allow p0 = 1.

Proof. The “only if” part follows by (4.2). To prove the “if” part, we
consider arbitrary FE sequence (xε) for (fε

α0
). By inequality ϕε

s(xε) ≤
fε

α0
(xε) + −∫ r

−r
Aε

s,τ (xε)x2
ε(τ)dτ and by (4.3) we estimate lim supε ϕ

ε
s(xε) ≤ C +

lim supε −
∫ r

−r H0(s+ε1/3τ)x2
ε(τ)dτ , whereH0(s) :=

∫ 1

0 h0(s, σ)dσ+c1h1(s)+c2h2(s),
1
2r‖xε‖q

Lq(−r,r) ≤ c1, 1
2r‖x′ε‖p

Lp(−r,r) ≤ c2, and s is the Lebesgue point of Hp0
0 . Then,

by an application of the Rellich imbedding theorem we have ‖x2
ε‖Lq0 (−r,r) ≤ C0,

where 1
p0

+ 1
q0

= 1. Hence, Hölder’s Inequality implies lim supε ϕ
ε
s(xε) ≤ C +

C0
2r (2r)p0H0(s) < +∞ for a.e. s ∈ (0, 1).

We have not been able to establish ϕs-uniform approximability of K even for
very simple functions a. We provide some partial results in Sec. 6. To avoid such
a difficulty, we use more flexible estimates below which yield successful completion
of the remaining steps. Crucial ingredient is a kind of strong convergence of the
lower-order term A(s, v, v′). We set I0

α(v) :=
∫ 1

0 (W (v′(s)) + αv2(s))ds, where v ∈
W1,1(0, 1), and A∞(s) :=

∫
R2 A(s, ξ)dν∞(ξ). Then we obtain the following result.

Proposition 4.4. If there holds (4.1)–(4.3) and if (vε) is FE sequence for
(ε−2/3Iε

A), then there holds :

δ(vε,v′
ε)

∗−⇀ 1
2
δ(0,−1) +

1
2
δ(0,1) in L∞

w∗((0, 1);P(R2)), (4.12)

lim
ε→0

A(s, vε, v
′
ε) = A∞(s) (a.e. s ∈ (0, 1)). (4.13)
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Proof. We simply note that every FE sequence for (ε−2/3Iε
A) is also a minimizing

sequence for I0
α0

. Then it is a well-known fact (cf. [1, p. 763] or [13, p. 36]) that,
under assumption (4.1), every minimizing sequence (wε) for I0

α0
share the properties

wε → 0 in L2(0, 1), δw′
ε

∗−⇀ 1
2δ−1 + 1

2δ1 in L∞
w∗((0, 1);P(R)). Thus, every given

subsequence (εn) has further subsequence (εnm) such that wεnm
(s) → 0 for a.e. s ∈

(0, 1) asm→ ∞. By [13, Corollary 3.4] we obtain (4.12). To verify (4.13), we use [13,
Corollary 3.3], getting lim infε→0A(s, vε, v

′
ε) ≥ A∞(s) for a.e. s ∈ (0, 1) for arbitrary

positive Carathéodory function a. On the other hand, by (4.1), (v′ε) is bounded
in Lr0(0, 1) and (by the Rellich imbedding theorem) (vε) is bounded in Lq(0, 1)
for every q ∈ [1,+∞). Therefore, by (4.3), the sequence σ �→ a(s, σ, vε(σ), v′ε(σ))
is bounded in L1(0, 1) for a.e s ∈ (0, 1). Then Chacon’s biting lemma (cf. [3]),
combined with the fundamental theorem of Young measures, provides

lim sup
ε→0

A(s, vε, v
′
ε) ≤ lim sup

ε→0

∫
(0,1)\Ej

a(s, σ, vε(σ), v′ε(σ))dσ +
∫ 1

0

hj(s, σ)dσ

=
∫

(0,1)\Ej

(
1
2
a(s, σ, 0,−1) +

1
2
a(s, σ, 0, 1)

)
dσ

+
∫ 1

0

hj(s, σ)dσ,

where (Ej) is a sequence of Borel measurable sets such that limj→+∞ λ(Ej)= 0,
Ej ⊆ (0, 1), hj(s, σ) := h0(s, σ)χEj (σ) + c1h1(s) + c2h2(s), ‖vε‖q

Lq(0,1) ≤ c1,
‖v′ε‖p

Lp(0,1) ≤ c2. At last, we pass to the limit as j → +∞ in the last inequality.

Before we present the proof of Γ-convergence result for the relaxed function-
als, we introduce some further notation. We define fε

s,∞, fs,∞ : K → [0,+∞] by
fε

s,∞(y) := −∫ r

−r(ε
2/3y′′2(τ) + ε−2/3W (y′(τ)) + A∞(s)y2(τ))dτ , if y ∈ H2(−r, r)

(fε
s,∞(y) := +∞, otherwise),

fs,∞(y) :=
A0

2r
|Sy′ ∩ (−r, r)| +A∞(s)−

∫ r

−r

y2(τ)dτ, (4.14)

if y ∈ S(−r, r) (fs,∞(y) := +∞, otherwise). Then by the theorem of Modica and
Mortola (cf. [11]) it follows

fε
s,∞

Γ−→ fs,∞ on K (a.e. s ∈ (0, 1)). (4.15)

To proceed, we define F ε
A, FA : YM((0, 1);K) → [0,+∞] by

F ε
A(ν) :=




∫ 1

0

〈νs, ϕ
ε
s〉ds if ν = δRεv for some v ∈ H2

per(0, 1),

+∞ otherwise,

(4.16)

FA(ν) :=




∫ 1

0

〈νs, ϕs〉ds if νs ∈ I(K) for a.e. s ∈ (0, 1),

+∞ otherwise.

(4.17)
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τ

xs τ

hs

Fig. 1. Sawtooth function xs ∈ Sper(0, hs), hs := ( 48A0
A∞(s)

)1/3.

Accordingly, FA∞ : YM((0, 1);K) → [0,+∞] is defined by FA∞(ν) :=
∫ 1

0
〈νs,

fs,∞〉ds, if νs ∈ I(K) for a.e. s ∈ (0, 1) (FA∞(ν) := +∞, otherwise).

Theorem 4.5. If (4.1)–(4.3) hold, then F ε
A

Γ−→FA∞ as ε → 0 on YM((0, 1);K).
Besides, if vε minimizes Iε

A, then (vε) satisfies δRεvε

∗−⇀ Ex in YM((0, 1);K) as
ε→ 0, where Ex(s) := εxs

for almost every s ∈ (0, 1), with xs ∈ Sper(0, hs) depicted
in Fig. 1.

Proof. First, we obtain the lower bound. If νε ∗−⇀ν in YM((0, 1);K) as ε → 0,
we can assume that there holds lim infε F

ε
A(νε) < +∞. By (4.16) and by extracting

a subsequence (which we do not relabel) such that liminf is actually a limit, for
sufficiently small ε we have νε = δRεvε

, whereby (vε) is FE sequence for (ε−2/3Iε
A).

Now, by Theorem 3.1, (4.15) and Fatou’s lemma, we estimate

lim inf
ε→0

F ε
A(δRεvε

) ≥ lim inf
ε→0

F ε
A∞(δRεvε

) + lim inf
ε→0

∫ 1

0

(Aε(s) −A∞(s))ε−2/3v2
ε(s)ds

≥ FA∞(ν) +
∫ 1

0

lim inf
ε→0

(Aε(s) −A∞(s))ε−2/3v2
ε(s)ds,

where Aε(s) := A(s, vε, v
′
ε). Then Corollary 3.3 in [13] yields the lower bound. Next,

we deal with the upper bound. Let ν ∈ YM((0, 1);K) be such that there holds νs ∈
I(K) for a.e. s ∈ (0, 1). We claim that there exists a sequence (vε) such that there
holds δRεvε

∗−⇀ν in YM((0, 1);K) as ε → 0 and lim supε F
ε
A(δRεvε

) ≤ FA∞(ν).

Theorem 3.4 in [1] and (4.15) provide F ε
AM∞

Γ−→FAM∞ on YM((0, 1);K) as ε → 0,
where AM∞(s) := min{A∞(s),M} and M > 0. More precisely, the upper bound is
achieved by proving the following property (cf. [1, pp. 788–789]): for every η > 0
and M > 0 there exist Mη > 0 and a sequence (vε) with properties

‖vε‖L∞(R) ≤Mηε
1/3, vε ∈ H2

per(0, 1), Lip(vε) ≤ 1, (4.18)

lim sup
ε→0

φ(δRε
svε − νs) ≤ η (a.e. s ∈ (0, 1)), (4.19)

lim sup
ε→0

F ε
AM∞

(δRεvε
) ≤ FAM∞(ν) + η. (4.20)

By (4.20) we immediately get

lim sup
ε→0

F ε
A∞(δRεvε

) ≤ FA∞(ν) +M
2

η

∫
T M

A∞

A∞(s)ds+ η, (4.21)
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where TM
A∞ := {s ∈ (0, 1) : A∞(s) > M}. Hence, (vε) is FE sequence for (ε−2/3Iε

A∞)
(and therefore minimizing sequence for I0

α0
) and there holds

δ(vε,v′
ε)

∗−⇀ 1
2
δ(0,−1) +

1
2
δ(0,1) in L∞

w∗((0, 1);P(R2)). (4.22)

We note that by (4.18) there holds |A(s, vε, v
′
ε) − A∞(s)| ≤ 2H(s) for a.e. s ∈

(0, 1), where, by (4.3), we have H(s) :=
∫ 1

0 maxξ1∈[−R,R],ξ2∈[−1,1] a(s, σ, ξ1, ξ2)dσ
for large enough R > 0. At this point we consider function aR such that
aR(s, σ, ξ1, ξ2) = a(s, σ, ξ1, ξ2) for every (ξ1, ξ2) ∈ [−R,R] × [−R,R] and
aR(s, σ, ·, ··) ∈ C0(R2). By (4.18) for sufficiently small ε and every σ ∈ R there
holds (vε(σ), v′ε(σ)) ∈ [−R,R] × [−R,R] and so AR(s, vε, v

′
ε) = A(s, vε, v

′
ε), where

AR(s, v, v′) :=
∫ 1

0
aR(s, σ, v(σ), v′(σ))dσ. By the fundamental theorem of Young

measures and by (4.22) there holds limεA(s, vε, v
′
ε) = limεAR(s, vε, v

′
ε) = A∞(s),

while the dominated convergence theorem and the fact that H ∈ L1(0, 1) imply
limε

∫ 1

0 |A(s, vε, v
′
ε) −A∞(s)|ds = 0. By (4.18) we get

F ε
A(δRεvε

) ≤ F ε
A∞(δRεvε

) +M
2

η

∫ 1

0

|A(s, vε, v
′
ε) −A∞(s)|ds.

Consequently, by (4.21) it follows

lim sup
ε→0

F ε
A(δRεvε

) ≤ FA∞(ν) +M
2

η

∫
T M

A∞

A∞(s)ds+ η. (4.23)

AsM → +∞ and η → 0, (4.23) and (4.20) amount to lim supε F
ε
A(δRεvε

) ≤ FA∞(ν)
and lim supε Φ(δRεvε

− ν) = 0. Regarding the second assertion, by [1, Proposition
5.8] we know K is fs,∞-uniformly approximable for a.e. s ∈ (0, 1), which, in turn,
implies that the unique minimizer for FA∞ is Ex (cf. [1, Theorem 3.12]). Therefore
ε-blowups of the minimizers (vε) generate Ex as ε→ 0.

Corollary 4.6. If there holds (4.1)–(4.3), then we have EA = EA,per =
E0

∫ 1

0 A
1/3
∞ (s)ds.

Proof. It is enough to prove that there holds EA ≥ E0

∫ 1

0
A

1/3
∞ (s)ds. Consider vε ∈

H2(0, 1) which minimizes Iε
A and a sequence of open intervals (ωn) such that ωn ⊂⊂

(0, 1) and ωn ↗ (0, 1) as n → +∞. By Theorems 4.5, 3.1 and Proposition 3.3, we
estimate lim infε

∫
ωn
ϕε

s(R
ε
svε)ds ≥ E0

∫
ωn
A

1/3
∞ (s)ds. Since for θ := s+ ε1/3τ there

holds

−
∫ r

−r

∫
ωn

(ε2v′′2ε (θ) +W (v′ε(θ)) +A(θ, vε, v
′
ε)v

2
ε(θ))dsdτ =

∫
ωn

ϕε
s(R

ε
svε)ds,

we derive EA ≥ E0

∫
ωn
A

1/3
∞ (s)ds. At last, we let n tend to infinity.

Corollary 4.7. If (4.1)–(4.3) hold, and if s �→ ∫ 1

0
h0(s, σ)dσ ∈ L∞(0, 1), h1, h2 ∈

L∞(0, 1), then there holds : (vε) is FE sequence for (ε−2/3Iε
A) if and only if (vε) is

FE sequence for (ε−2/3Iε
A∞).
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Proof. The “only if” part follows from the proof of the lower bound in
Theorem 4.5. To verify the “if” part, we note that for any FE sequence (vε) for
(ε−2/3Iε

A∞) there holds ε−2/3Iε
A(vε) ≤ ε−2/3Iε

A∞(vε) +
∫ 1

0
|A(s, vε, v

′
ε) − A∞(s)|

wε(s)ds, where wε(s) := ε−2/3v2
ε(s). Then wε ≥ 0, wε ∈ L∞(0, 1), ‖wε‖L1(0,1) ≤ c0.

We estimate lim supε ε
−2/3Iε

A(vε) ≤ C+lim supε 2
∫ 1

0
H0(s)wε(s)ds, where, by (4.3),

for suitable c1 > 0 and c2 > 0 we chooseH0(s) :=
∫ 1

0
h0(s, σ)dσ+c1h1(s)+c2h2(s) ∈

L∞(0, 1). In the end, we apply Hölder’s inequality.

In particular, Corollaries 4.3 and 4.7 show that Iε
A can be viewed as a lower-order

perturbation of Iε
a0

.

5. Identification of the Γ-Limit

In this section we prove that there holds FA = FA∞ .

Proposition 5.1. If a satisfies (4.2) and (4.3), then for every ν ∈ I(K) there holds
〈ν, fs,∞〉 ≥ 〈ν, ϕs〉 for a.e. s ∈ (0, 1), so that FA∞ ≥ FA.

Proof. Let s ∈ (0, 1) be given. Without loss of generality we can assume that
ν ∈ I(K) satisfies 〈ν, fs,∞〉 < +∞. Since K is fs,∞-uniformly approximable, by
[1, Corollary 5.11] there exists a sequence (xk) in K such that xk ∈ Sper,0(0, hk),
εxk

∗−⇀ν and limk→+∞〈εxk
, fs,∞〉 = 〈ν, fs,∞〉. On the other hand, by the lower-

semicontinuity of ϕs and Theorem 3.1 we deduce limk→+∞〈εxk
, ϕs〉 ≥ 〈ν, ϕs〉,

getting 〈ν, fs,∞〉 ≥ 〈ν, ϕs〉 for every ν ∈ I(K) and FA∞(ν) ≥ FA(ν) for every
ν ∈ YM((0, 1);K).

By Theorem 3.1 for any sequence (νε) such that νε
∗−⇀ν in YM((0, 1);K)

there holds lim infε F
ε
A(νε) ≥ FA(ν). One of the consequences of Theorem 4.5 is

the conclusion that FA∞ is an optimal lower bound, while FA is in principle only one
of possibly many lower bounds. In the following we establish optimality of FA thus
proving that FA = FA∞ . To proceed, we introduce the notation Sloc(R) to denote
the set of all functions in K which belong to S(−r, r) for every r > 0. We recall that
Ã(s, 0, ·) : K → [0,+∞] is defined by Ã(s, 0, y) :=

∫ 1

0 −∫ r

−r a(s, σ, 0, y(t))dtdσ, y ∈ K.
Then we can write Ã(s, 0, x′) = (Ã(s, 0, ·)◦D)(x), whereD : Sloc(R) → K is defined
by D(x)(t) := x′(t), t ∈ R, x ∈ Sloc(R), and where x′ is distributional derivative
of x (therefore |D(x)(t)| = 1 for a.e. t ∈ R). We define I0(K) := {ν ∈ I(K) :
〈ν, fα0〉 < +∞}. By [1, Corollary 5.11 and Theorem 3.4] (cf. [1, Remark, p. 782]),
〈ν, fα0〉 is independent of r for arbitrary ν ∈ I(K) and so I0(K) is independent
of r, convex and φ-closed (by the lower-semicontinuity of fα0). We define D# :
EI(K) ∩ I0(K) → P(K) by D#(εx) := εD(x), where x ∈ Sper(0, h) for some h > 0.
Then we have D#(εx) = 1

2δ−1 + 1
2δ1 for every x ∈ Sper(0, h) and every h > 0.

Thus D# is uniformly φ-continuous on EI(K) ∩ I0(K), and it can be extended
by continuity onto the φ-closure of EI(K) ∩ I0(K), which (by [1, Corollary 5.11])
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Relaxation of Ginzburg–Landau functional 15

equals I0(K). Moreover, there holds D#(ν) = 1
2δ−1 + 1

2δ1 and 〈ν, g ◦D〉 = 〈D#ν, g〉
for every g ∈ C(K) and every ν ∈ I0(K).

Lemma 5.2. If Ã(s, 0, ·) ∈ C(K) for a.e. s ∈ (0, 1), then for every ν ∈ I(K) such
that 〈ν, ϕs〉 < +∞ for a.e. s ∈ (0, 1) there holds 〈ν, Ã(s, 0, ·) ◦ D〉 = A∞(s) and
〈ν, ϕs〉 = 〈ν, fs,∞〉 for a.e. s ∈ (0, 1).

Proof. Consider ν ∈ I(K) such that 〈ν, ϕs〉 < +∞ for a.e. s ∈ (0, 1). Then by (4.3)
there holds 〈ν, fα0〉 < +∞, and we have fα0(x) < +∞ for ν-a.e. x ∈ K, which gives
x ∈ Sloc(R) for ν-a.e. x ∈ K. Therefore Sloc(R) ⊆ supp(ν) for every ν ∈ I0(K).
On the other hand 〈ν, fα0〉 =

∫
supp(ν)

fα0(x)dν(x) < +∞ provides x ∈ Sloc(R) for
ν-a.e. x ∈ supp(ν). Thus there exists a set E ⊂ K (which depends on ν) such
that E ⊂ supp(ν), ν(E) = 0 and Sloc(R) = supp(ν)\E. Hence, 〈ν, Ã(s, 0, ·) ◦ D〉
is well-defined and finite. By [1, Corollary 5.11] there exists a sequence (xk) in K

such that xk ∈ Sper,0(0, hk) and εxk

∗−⇀ν as k → +∞ in P(K). Continuity of D#

gives D#εxk

∗−⇀D#ν as k → +∞ in P(K), while by assumption Ã(s, 0, ·) ∈ C(K)
it follows 〈εxk

, Ã(s, 0, ·) ◦ D〉 → 〈ν, Ã(s, 0, ·) ◦ D〉 as k → +∞. At this point for
x ∈ Sper(0, h) we calculate

〈εx, Ã(s, 0, ·) ◦D〉 = −
∫ 1

0

−
∫ r

−r

−
∫ h−t

t

a(s, σ, 0, x′(ξ))dξdtdσ = A∞(s). (5.1)

We conclude that for every k ∈ N there holds 〈εxk
, Ã(s, 0, ·) ◦ D〉 = A∞(s) and

A∞(s) = 〈ν, Ã(s, 0, ·) ◦D〉. Therefore there also holds 〈ν, ϕs〉 = 〈ν, fs,∞〉.

In the next proposition we show that there are examples of a which satisfy
both (4.2) and (4.3) (for instance, if h2 = 0) as well as Ã(s, 0, ·) ∈ C(K) for a.e.
s ∈ (0, 1).

Proposition 5.3. Suppose that for every ξ1, ξ2 ∈ R and almost every s and σ

there holds :

a(s, σ, ξ1, ξ2) = b0(s, σ, ξ1)
2
π

arctan(ξ2) + c0(s, σ, ξ1) (5.2)

where b0, c0 are nonnegative, measurable in s and σ, continuous in ξ1, such that
b0(s, σ, ξ1) + c0(s, σ, ξ1) ≤ h0(s, σ) + |ξ1|qh1(s), 0 < α0 ≤ −b0(s, σ, ξ1) + c0(s, σ, ξ1).
Then Ã(s, 0, ·) ∈ C(K) for a.e. s ∈ (0, 1), and ϕε

s
Γ−→ϕs as ε → 0 on K for a.e.

s ∈ (0, 1). Moreover, there holds F ε
A

Γ−→FA as ε→ 0 on YM((0, 1);K).

Proof. Suppose that yn → y in K as n → +∞. By (2.1) we have
arctan(yn) ∗−⇀ arctan(y) in L∞(R). Then for every r > 0 it follows
−∫ r

−r
arctan(yn(t))dt → −∫ r

−r
arctan(y(t))dt, so that limn Ã(s, 0, yn) = Ã(s, 0, y).

By (5.2) a satisfies assumptions (4.2)–(4.3). Therefore, by Lemma 4.1, if (xε) is
FE sequence for (ϕε

s) which satisfies xε → x in W1,1(−r, r) as ε→ 0, then it follows
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Aε
s,τ (xε)−⇀Ã(s, 0, x′) in L1(−r, r) as ε → 0 and ϕε

s
Γ−→ϕs as ε → 0 on K for a.e.

s ∈ (0, 1). The last assertion now follows directly from Lemma 5.2.

Theorem 5.4. If a satisfies (4.2) and (4.3), then FA = FA∞ . Therefore the
sequence (F ε

A) has the commutation property.

Proof. First, we assume that a is independent of s, whereby we write Ã(0, ·)
(respectively, ϕ) instead of Ã(s, 0, ·) (respectively, ϕs). Consider arbitrary ν ∈ I(K)
such that 〈ν, ϕ〉 < +∞. By Urysohn’s lemma there exists a sequence of func-
tions (an) which satisfy (5.2) and (Ãn(0, ·) ◦ D)(x) → (Ã(0, ·) ◦ D)(x) for every
x ∈ Sloc(R) as n → +∞, where Ãn(0, y) :=

∫ 1

0 −∫ r

−r a
n(σ, 0, y(t))dtdσ. Thus∫

K(Ãn(0, ·) ◦ D)(x)dν(x) → ∫
K(Ã(0, ·) ◦ D)(x)dν(x) and Ãn(0, ·) → Ã(0, ·) D#ν-

almost everywhere on K as n → +∞. Now by Lemma 5.2 there holds 〈ν, Ã(0, ·) ◦
D〉 = 〈D#ν, Ã(0, ·)〉 = A∞, and, ultimately, FA = FA∞ . Next, we assume that a is
essentially bounded with respect to s. We consider a sequence of simple functions
(an) defined by an(s, σ, ξ) :=

∑Nn

k=1 a
k
n(σ, ξ)χωk

n
(s), (s, σ, ξ) ∈ (0, 1) × (0, 1) × R2,

where an ≤ a, an → a almost everywhere, ‖an‖L∞ ≤ ‖a‖L∞ , ωk
n ⊆ (0, 1)

are measurable sets such that λ((0, 1)\⋃Nn

k=1 ω
k
n) = 0, and α0 ≤ ak

n ≤ ‖a‖L∞ .
In accordance with the notation in Sec. 3, for a measurable set E ⊆ (0, 1) we
define FA;E as in (4.17), but with

∫ 1

0
replaced by

∫
E

. Then we can write FAn =∑
k FAk

n;ωk
n
, FAn,∞ =

∑
k FAk

n,∞;ωk
n
, where Ãk

n(0, y) :=
∫ 1

0 −∫ r

−r a
k
n(σ, 0, y(t))dtdσ and

Ak
n,∞ := 〈ν∞, Ãk

n(0, ·)〉. We already proved that there holds FAk
n;ωk

n
= FAk

n,∞;ωk
n
.

In effect, we have FAn = FAn,∞ , where Ãn(s, 0, y) :=
∫ 1

0 −∫ r

−r an(s, σ, 0, y(t))dtdσ
and An,∞(s) := 〈ν∞, Ãn(s, 0, ·)〉. Since Ãn(s, 0, ·) ≤ Ã(s, 0, ·) for a.e. s ∈ (0, 1)
implies FAn ≤ FA, as n → ∞ we get FA∞ ≤ FA. Then, by Proposition 5.1,
it follows FA∞ = FA. Indeed, we assume that a is integrable with respect to
s ∈ (0, 1). We set aM := min{a,M}, AM (s, v, v′) :=

∫ 1

0 a
M (s, σ, v(σ), v′(σ))dσ and

AM∞ := min{A∞,M}, where M > 0. Then FAM ≤ FA and FAM = FAM∞ . Finally,
we pass to the limit as M → ∞.

Corollary 5.5. For any a which satisfies (4.2) and (4.3) we have F ε
A

Γ−→FA as ε→
0 on YM((0, 1);K). In particular, FA : YM((0, 1);K) → [0,+∞] is independent of
r > 0.

Proof. The claims follow by Theorems 4.5 and 5.4, and [1, Remark, p. 782].

6. On Partial ϕs-Uniform Approximability

In this section we give some sufficient conditions which ensure the commutation
property in full generality (as stated in Definition 3.4). We also present some prop-
erties which necessarily follow by the commutation property. Our consideration is
inspired partly by [1, Theorem 2.12(iv)] (and subsequent remarks therein) and
partly by [1, Secs. 4 and 5]. In the following by Per(R) we denote the set of
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all periodic functions x ∈ K. If x ∈ K is h-periodic for some h > 0 we write
x ∈ Per(0, h) (if, in addition, there holds x(0) = x(h) = 0, we write x ∈ Per0(0, h)).

Definition 6.1. We say that K is uniformly approximable if for every ε > 0 there
exists h = h(ε) > 0 such that for every point x ∈ K we can find x̃ ∈ Per(0, h) which
satisfies −∫ h

0
d(Tτx, Tτ x̃)dτ ≤ ε.

Proposition 6.2. K is uniformly approximable. Moreover, for every ν ∈ I(K)
there exists a sequence (yk), yk ∈ Per0(0, hk), such that limk→+∞ φ(εyk

− ν) = 0.

Proof. By [1, Proposition 5.3] K is uniformly approximable. The proof of the
second assertion is obtained as in [1, Proposition 5.8]: by considering Rhx̃ (where,
for a given x ∈ K, x̃ ∈ K is chosen as in Definition 6.1) we can achieve Rhx̃(0) =
Rhx̃(h) = 0, −∫ h

0
d(TτRhx̃, Tτ x̃)dτ ≤ ε, and then we continue as in [1, Lemma 5.10

and Corollary 5.11].

Next, we introduce the following definition.

Definition 6.3. Consider f : K → [0,+∞]. We say that K is partially f -uniformly
approximable if for every ε > 0 there exists h = h(ε) > 0 such that for every point
x ∈ K we can find x̃ ∈ Per(0, h) which satisfies −∫ h

0 f(Tτ x̃)dτ ≤ −∫ h

0 f(Tτx)dτ + ε.

Then we obtain the approximation which is a kind of generalization of [1, Corol-
lary 5.11]:

Theorem 6.4. If K is partially f -uniform approximable, and if ν ∈ I(K) sat-
isfies 〈ν, f〉 < +∞, then there exists a sequence (εyk

), yk ∈ Per0(0, hk), such
that limk→+∞ φ(εyk

− ν) = 0, and a sequence (εxk
), xk ∈ Per(0, h̃k), such that

lim supk→+∞〈εxk
, f〉 ≤ 〈ν, f〉.

Proof. First assertion follows by Proposition 6.2. To prove the second assertion we
fix ε > 0 and ν ∈ I(K) such that 〈ν, f〉 < +∞. By [1, Theorem 4.15] there existN >

0, H > 0, zi ∈ Per(0, H), i = 1, . . . , N , such that ν̃ :=
∑N

i=1 σiεzi (where σi ∈ [0, 1],∑N
i=1 σi = 1) satisfies 〈ν̃, f〉 ≤ 〈ν, f〉 + ε. Therefore infµ∈EI(K)〈µ, f〉 ≤ 〈ν, f〉 + ε,

and there exists µε ∈ EI(K) such that infµ∈EI(K)〈µ, f〉 > 〈µε, f〉 − ε. Hence,
〈µε, f〉 ≤ 〈ν, f〉 + 2ε. If εk → 0 as k → +∞, we obtain lim supk〈εxk

, f〉 ≤ 〈ν, f〉,
where εxk

:= µεk
.

For a set Y ⊆ P(K) by [Y ]′ we denote the set of all cluster points of Y . For a
given x ∈ K and h > 0 we define µh

x := −∫ h

0
δTτ xdτ and we set ∆(x) := {µh

x : h > 0}.
Since limn→+∞ hn = h ∈ R\{0} implies µhn

x
∗−⇀µh

x in P(K) as n → +∞, we
deduce that every point of the set ∆(x) is its cluster point, so that ∆(x) ⊆ [∆(x)]′.
We set EI∞(x) := [∆(x)]′ ∩ I(K), EI∞(K) :=

⋃
x∈K EI∞(x). Then EI∞(K) is
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the set of all probability invariant measures “generated” by some x ∈ K. In the
following lemma we describe the structure of EI∞(K).

Lemma 6.5. For every x̃ ∈ Per(R) we have EI∞(x̃) = {εx̃}, and therefore
EI(K) ⊆ EI∞(K). For every x ∈ K\Per(R) the set EI∞(x) contains only cluster
points of ∆(x) generated by sequences (hn) such that hn → +∞.

Proof. If g ∈ C(K), we set g+ := max{g, 0} ∈ C(K), g− := min{g, 0} ∈ C(K).
Then g = g+ + g− and for h0-periodic x̃ ∈ K we estimate〈

h∗

h
εx̃, g

+

〉
≤ 〈µh

x̃, g
+〉 ≤

〈
h∗
h
εx̃, g

+

〉
,

〈
h∗
h
εx̃, g

−
〉

≤ 〈µh
x̃, g

−〉 ≤
〈
h∗

h
εx̃, g

−
〉
,

(6.1)

where h∗ := �hh−1
0 �h0 and h∗ := �hh−1

0 �h0. After summation of the cor-
responding left- and right-hand sides in (6.1), as we pass to the limit as
h → +∞, we get limh→+∞ h∗

h = limh→+∞ h∗
h = 1, η−x̃ = η+

x̃ = εx̃, where
η−x := lim infh→+∞ µh

x and η+
x := lim suph→+∞ µh

x. Next, we consider nonpe-
riodic x ∈ K and a sequence (hn) such that hn → 0. For τ ∈ R we cal-
culate 〈T#

τ µ
hn
x − µhn

x , g〉 = −∫ hn+τ

τ g(Tξx)dξ − −∫ hn

0 g(Tξx)dξ. An application of
L’Hospital’s rule implies limn→+∞〈T#

τ µ
hn
x − µhn

x , g〉 = g(Tτx) − g(x). Since for
every nonconstant x ∈ K there exists at least one τ ∈ R such that Tτx �= x,
by Urysohn’s lemma there exists g ∈ C(K) such that g(Tτx) �= g(x). This means
that measures η−x,0 := lim infh→0 µ

h
x and η+

x,0 := lim suph→0 µ
h
x are not invariant

(we similarly deal with the case when the sequence (hn) converges to h, where
h ∈ R\{0}). Finally, we consider the case when hn → +∞. Without loss of gen-
erality we can assume that (µh

x) weakly-star converges to some limit in µ ∈ P(K)
as h → +∞ (if necessary we pass to a subsequence). Then for τ > 0 there holds
|〈T#

τ µ − µ, g〉| ≤ limh→+∞ 1
h (

∫ τ

0 |g(Tξx)|dξ +
∫ h+τ

h |g(Tξx)|dξ) = 0, which proves
that the measures η±x are invariant.

For a given function f : K → [0,+∞] we define f# : P(K) → [0,+∞]
by f#(µ) := 〈µ, f〉, if µ ∈ I(K) (f#(µ) := +∞, otherwise). By [1, Remark
4.13, p. 803], if f is lower-semicontinuous, so is f#. We say that I(K) admits
approximation in f -energy at ν ∈ I(K) if there exists a sequence zk ∈ Per(R) such
that lim supk→+∞〈εzk

, f〉 ≤ 〈ν, f〉 and limk→+∞ φ(εzk
− ν) = 0. We say that I(K)

admits approximation in f -energy if I(K) admits approximation in f -energy at
every ν ∈ I(K). Now we are ready to state the following result.

Proposition 6.6. Suppose there holds :

(i) ϕ : K → [0,+∞] is lower-semicontinuous,
(ii) f : K → [0,+∞] is lower-semicontinuous,
(iii) f#(µ) = ϕ#(µ) for every µ ∈ EI(K),
(iv) K is f -uniformly approximable.
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Then the following conclusions hold :

(a) f# ≥ ϕ#.
(b) If K is partially ϕ-uniformly approximable, then minϕ# = min f#.
(c) If K is partially ϕ-uniformly approximable, and if ϕ# admits an unique min-

imizer ν on P(K), then f# admits an unique minimizer which equals ν, and
I(K) admits approximation in ϕ-energy at ν.

(d) If infµ∈EI∞(K) f
#(µ) = infµ∈EI∞(K) ϕ

#(µ), and if f# : P(K) →
[0,+∞] admits a minimizer ν ∈ EI(K), then K is partially ϕ-uniformly
approximable.

(e) If there exists M0 > 0 such that K is partially ϕM -uniformly approximable for
every M ≥ M0, where ϕM := min{ϕ,M}, and if f# : P(K) → [0,+∞] admits
a minimizer ν ∈ EI(K), then infµ∈EI∞(K) f

#(µ) = infµ∈EI∞(K) ϕ
#(µ).

Proof. (a) The claim follows by the lower-semicontinuity of ϕ and f -uniform
approximability of K (as in Proposition 5.1).

(b) By Theorem 6.4 for every ν ∈ I(K) such that 〈ν, ϕ〉 < +∞ there exists
a sequence (εxk

), xk ∈ Per(R), such that lim supk→+∞〈εxk
, ϕ〉 ≤ 〈ν, ϕ〉. By weak-

star compactness of P(K) there exists a subsequence (xkj ) and µ ∈ I(K) such
that εxkj

∗−⇀µ as j → +∞. By the lower-semicontinuity of f on K we get
lim infj→+∞〈εxkj

, f〉 ≥ 〈µ, f〉. Therefore by (iii) we have ϕ#(ν) ≥ f#(µ). By
the lower-semicontinuity of ϕ on K we get limj→+∞〈εxkj

, ϕ〉 ≥ 〈µ, ϕ〉, so that
ϕ#(ν) ≥ ϕ#(µ). If ν minimizes ϕ#, then µ also minimizes ϕ# and there holds
minϕ# ≥ f#(µ), i.e. minϕ# ≥ min f#. By (a) the converse is also true, and so we
have minϕ# = min f#.

(c) Suppose that the unique minimizer of ϕ# is ν. Consider arbitrary minimizer
ν̃ of f#. By f -uniform approximability of K there exists a sequence (zn), zn ∈
Per(R), such that εzn

∗−⇀ν̃ as n → +∞ and limn→+∞〈εzn , f〉 = 〈ν̃, f〉. By the
lower-semicontinuity of ϕ on K we get limn→+∞〈εzn , ϕ〉 ≥ 〈ν̃, ϕ〉. By (iii) it follows
min f# = f#(ν̃) ≥ ϕ#(ν̃) ≥ minϕ#. By (b) we actually have equalities instead of
inequalities in the last formula, which means that ν̃ also minimizes ϕ#. Thus ν̃ = ν

and 〈ν, f〉 = 〈ν, ϕ〉, which gives the desired approximation in ϕ-energy.
(d) We assume the opposite. Then there exists ε0 > 0 such that for every h > 0

there exists xh ∈ K with the following property: for every x̃ ∈ Per(0, h) there
holds −∫ h

0 ϕ(Tτxh)dτ < −∫ h

0 ϕ(Tτ x̃)dτ − ε0. We consider h̃ > 0 and x̃ ∈ Per(0, h̃)
such that 〈εx̃, f〉 = min{〈ν, f〉 : ν ∈ I(K)}. Then the estimate above holds
for every h such that hh̃−1 ∈ N. By compactness of K there exists a subse-
quence (xhj ) and x∞ ∈ K such that xhj → x∞ in K as j → +∞, where
limj→+∞ hj = +∞. Moreover, as ϕ is lower-semicontinuous on K and Tτ :
K → K is continuous (by [1, Proposition 5.3]), for every τ ∈ R there holds
lim infj→+∞(ϕ ◦ Tτ )(xhj ) ≥ (ϕ ◦ Tτ )(x∞). In effect, by Fatou’s lemma we get
lim infj

∫
R

( 1
hj

(ϕ(Tτxhj )χ(0,hj)(τ)) − 1
hj

(ϕ(Tτx∞)χ(0,hj)(τ)))dτ ≥ 0, and, for fur-

ther subsequence (xhjk
), limk(−∫ hjk

0
ϕ(Tτxhjk

)dτ −−∫ hjk

0
ϕ(Tτx∞)dτ) ≥ 0. By (iii) it
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follows

lim inf
k→+∞

−
∫ hjk

0

ϕ(Tτx∞)dτ ≤ lim inf
k→+∞

−
∫ hjk

0

ϕ(Tτxhjk
)dτ ≤ min

µ∈I(K)
〈µ, f〉 − ε0. (6.2)

At this point we observe that for any lower-semicontinuous ψ : K → [0,+∞] there
holds 〈η−x , ψ〉 ≤ ψ−(x), where ψ−(x) := lim infh→+∞ −∫ h

0
ψ(Tτx)dτ , x ∈ K. Indeed,

we recall that identity 〈η−x , g〉 = lim infh→+∞ −∫ h

0 g(Tτx)dτ holds not only for g ∈
C(K), but also for every bounded Borel function g : K → R (cf. [1, pp. 800–801]).
Therefore we have lim infh→+∞ −∫ h

0 ψ(Tτx)dτ ≥ lim infh→+∞ −∫ h

0 ψ
M (Tτx)dτ =∫

K ψM (y)dη−x (y), where ψM := min{ψ,M} and ψM↗ψ as M → +∞. As we
pass to the limit as M → +∞ in the last inequality, Fatou’s lemma yields
the claim. Since the estimate (6.2) can be obtained for arbitrary subsequence
(xhn) of the sequence (xh), we use the observation above to obtain 〈η−x∞ , ϕ〉 ≤
ϕ−(x∞) ≤ minµ∈I(K)〈µ, f〉−ε0. At last, by Lemma 6.5 we get infµ∈EI∞(K)〈µ, ϕ〉 ≤
infµ∈EI∞(K)〈µ, f〉 − ε0.

(e) By (a) there holds infµ∈EI∞(K) ϕ
#(µ) ≤ infµ∈EI∞(K) f

#(µ). To prove the
reverse inequality, we note that for ν ∈ EI(K) which minimizes f# on P(K)
by (iii) there holds infµ∈EI∞(K) f

#(µ) ≤ f#(ν) = ϕ#(ν) and for every δ > 0
there exists xδ ∈ K such that 〈η−xδ

, ϕ〉 ≤ infµ∈EI∞(K)〈µ, ϕ〉 + δ. On the other
hand, for M ≥ M0 by partial ϕM -uniform approximability of K for any ε > 0 we
can find hε > 0 and x̃ε ∈ Per(0, hε) such that 〈εx̃ε , ϕ

M 〉 ≤ 〈µhε
xδ
, ϕM 〉 + ε, where

µhε
xδ

:= −∫ hε

0
δTτ xδ

dτ . Then, we again use (iii) to conclude lim infε→0〈εx̃ε , f
M 〉 ≤

〈η−xδ
, ϕM 〉 ≤ 〈η−xδ

, ϕ〉 ≤ infµ∈EI∞(K)〈µ, ϕ〉 + δ. Since fM (x) → f(x) for every x ∈
K as M → +∞, by a generalized version of Fatou’s lemma we have 〈ν, f〉 ≤
lim infM→+∞〈εx̃εM

, fM 〉 ≤ infµ∈EI∞(K)〈µ, ϕ〉 + δ, where limM→+∞ εM = 0 and
(up to a subsequence) εx̃εM

∗−⇀ν in I(K) as M → +∞. Therefore 〈ν, f〉 ≤ 〈ν, f〉 ≤
infµ∈EI∞(K)〈µ, ϕ〉 + δ. The assertion follows by arbitrariness of δ.

Corollary 6.7. Under the assumptions of Proposition 6.6 there holds : If f# admits
a minimizer ν ∈ EI(K), then there holds :

(i) K is partially ϕ-uniformly approximable if and only if minϕ# = min f#.
(ii) If there exists M0 > 0 such that K is partially ϕM -uniformly approximable for

every M ≥M0, then K is partially ϕ-uniformly approximable.

Proof. By Proposition 6.6(b), it suffice to check the “if” part of (i). To this
end, we suppose that K is not partially ϕ-uniformly approximable and that there
holds minϕ# = min f#. By Proposition 6.6(d), there exists ε0 > 0 such that
infµ∈EI∞(K) ϕ

#(µ) ≤ infµ∈EI∞(K) f
#(µ) − ε0. This is, however, a clear contradic-

tion, because minϕ# ≤ infµ∈EI∞(K) ϕ
#(µ) and min f# = infµ∈EI∞(K) f

#(µ). To
prove (ii), we combine conclusions (e) and (d) in Proposition 6.6.

Corollary 6.8. If the assumptions of Proposition 6.6 are fulfilled and if ϕ# admits
a minimizer ν ∈ EI(K), then K is partially ϕ-uniformly approximable.
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Proof. We use assumption (iii) and Proposition 6.6(a), to conclude that ν ∈ EI(K)
minimizes f# and that there holds minϕ# = min f#. Then the claim follows by
Corollary 6.7(i).

The main result of this section establishes the connection between the commu-
tation property and partial ϕ-uniform approximability.

Theorem 6.9. If there exists fs : K → [0,+∞] such that K is fs-uniformly
approximable for a.e. s ∈ (0, 1) and F ε

ϕε
Γ−→Ff as ε → 0 on YM((0, 1);K), where

ϕε
s

Γ−→ϕs as ε→ 0 on K for a.e. s ∈ (0, 1), then there holds :

(i) (Sufficiency) If there holds ϕ#
s = f#

s for a.e. s ∈ (0, 1), then the sequence
(F ε

ϕε) has the commutation property.
(ii) (Necessity) If the sequence (F ε

ϕε) has the commutation property and if Ff

admits a minimizer ν such that νs ∈ EI(K) for a.e. s ∈ (0, 1), then K is
partially ϕs-uniformly approximable for a.e. s ∈ (0, 1).

Proof. Claim (i) follows by assumption (ii) in Proposition 6.6 and the definition of
Fϕ and Ff . We prove the claim (ii) by assuming the opposite. Then there exists a
measurable set E ⊆ (0, 1) of positive measure such that, for almost every s ∈ E, K

is not partially ϕs-uniformly approximable. Then Proposition 6.6(d) provides that
for a given s ∈ E there exists ε0(s) > 0 such that there holds infµ∈EI∞(K)〈µ, ϕs〉 ≤
infµ∈EI∞(K)〈µ, fs〉− ε0(s). Consequently, infµ∈EI∞(K)〈µ, ϕs〉 < infµ∈EI∞(K)〈µ, fs〉
for a.e. s ∈ E, and Fϕ;E �= Ff ;E . By the commutation property (respectively,

assumption (ii) in Proposition 6.6) we have F ε
ϕε

Γ−→Fϕ (respectively, F ε
ϕε

Γ−→Ff )

as ε → 0 on YM((0, 1);K), while by Proposition 3.3 it follows that F ε
ϕε;E

Γ−→
Fϕ;E (respectively, F ε

ϕε;E
Γ−→Ff ;E) as ε → 0 on YM(E;K). Therefore Fϕ;E =

Ff ;E , which, in turn, recovers partial ϕs-uniform approximability of K for a.e.
s ∈ (0, 1).

The model for the consideration in this section are functionals ϕs and fs,∞
considered in Sec. 4. By Theorems 4.5 and 5.4, functional (4.16) provides an example
where ϕs �= fs and ϕ#

s = f#
s for a.e. s ∈ (0, 1), whereby ϕs (respectively, fs) is

defined by (4.11) (respectively, (4.14)). If A(s, 0,−1) �= A(s, 0, 1), we conjecture
that K is not ϕs-uniform approximable, but we have not been able to prove it.
However, some conclusions are still available.

Corollary 6.10. Consider ϕs given by (4.11). Then K is partially ϕs-uniformly
approximable for a.e s ∈ (0, 1). Besides, for every ν ∈ YM((0, 1);K) such that
〈νs, ϕs〉 < +∞ for a.e. s ∈ (0, 1), there exists a sequence (εzs

k
), zs

k ∈ Sper,0(0, hk(s)),
such that limk→+∞〈εzs

k
, ϕs〉 = 〈νs, ϕs〉 and limk→+∞ φ(εzs

k
− νs) = 0 for a.e. s ∈

(0, 1) (i.e. I(K) admits approximation in ϕs-energy for a.e. s ∈ (0, 1)).
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Proof. To apply Theorem 6.9, we note that assumption (i) of Proposition 6.6
holds by Proposition 4.2, while assumptions (ii) and (iv) hold by [1, Theorem 4.3]
and [1, Proposition 5.8]. By [1, p. 778], identity (5.1) holds for arbitrary a which
satisfies (4.2) and (4.3), and therefore assumption (iii) holds as well. Then the first
assertion is an immediate consequence of Theorem 5.4, Theorem 3.12 in [1], and
Theorem 6.9(ii). We prove the second assertion by combining [1, Theorem 5.4 and
Corollary 5.11].

Roughly speaking, the analysis in [1] shows that the following principle holds:
f -uniform approximability of K yields approximation in f -energy. If, in addition,
conditions (3) and (4) described on [1, p. 783] are fulfilled, Γ-convergence of the
relaxed functionals is basically guaranteed (modulo the “gluing” construction in
[1, pp. 788–789]), which ensures that assumptions of Theorem 6.9 are fulfilled. By
[1, Corollary 6.10 and Lemma 3.8], the set of all piecewise constant Young mea-
sures µ ∈ YM((0, 1);K) such that µs ∈ EI(K) for a.e. s ∈ (0, 1) is FA-dense
in YM((0, 1);K) (cf. [1, Definition 3.7]), and the proof of Γ-convergence of the
sequence (F ε

A) now can be conducted exactly as in [1, Theorem 3.4]. We conclude
that it is not necessary to have ϕ-uniform approximability of K in order to obtain
approximation in ϕ-energy (therefore it is a sufficient, but not a necessary condi-
tion for Γ-convergence on YM((0, 1);K)). In the last corollary we deduce a further
sufficient condition for the commutation property in the general case.

Corollary 6.11. Suppose that ϕs, fs : K → [0,+∞] satisfy the assumptions of
Proposition 6.6 and Theorem 6.9 for a.e. s ∈ (0, 1), and that for a.e. s ∈ (0, 1)
there holds : K is partially ϕs-uniformly approximable and ϕ#

s admits an unique
minimizer on Bδ(µ) := {ν ∈ P(K) : φ(µ − ν) ≤ δ} for every δ > 0 and every
µ ∈ I(K) such that ϕ#

s (µ) < +∞. Then the sequence (F ε
ϕε) has the commutation

property.

Proof. We choose s ∈ (0, 1) such that the assumptions hold and we consider
f := fs and ϕ := ϕs. For arbitrary µ ∈ I(K) and ϕ#(µ) < +∞, we define
f#,µ

δ (ν) := f#(ν) (respectively, ϕ#,µ
δ (ν) := ϕ#(ν)) if ν ∈ Bδ(µ) and f#,µ

δ (ν) :=
+∞ (respectively, ϕ#,µ

δ (ν) := +∞), otherwise. Then f#,µ
δ and ϕ#,µ

δ are lower-
semicontinuous on P(K). By Proposition 6.6(c), we have minν∈Bδ(µ) ϕ

#,µ
δ (ν) =

minν∈Bδ(µ) f
#,µ
δ (ν). Then there holds ϕ#,µ

δ
Γ−→ϕ#,µ

0 and f#,µ
δ

Γ−→ f#,µ
0 as δ → 0

on P(K), where f#,µ
0 (ν) := f#(ν) (respectively, ϕ#,µ

0 (ν) := ϕ#(ν)) if ν = µ and
f#,µ
0 (ν) := +∞ (respectively, ϕ#,µ

0 (ν) := +∞), otherwise. Hence, as δ → 0 we
obtain minϕ#,µ

0 (ν) = min f#,µ
0 (ν), i.e. f#(µ) = ϕ#(µ). Therefore the assertion

follows by Theorem 6.9(i).
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[15] A. Raguž, Relaxation of Ginzburg–Landau functional with 1-Lipschitz penalizing
term in one dimension by Young measures on micro-patterns, Asymptotic Anal.
41(3–4) (2005) 331–361.
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