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Abstract: Quantitative structure–activity relationship (QSAR) analysis of 28 quinoline-arylamidine (CQArA) hybrids
against two leukemia cells, K562 and Raji, was performed. Multiple linear regression (MLR) models were obtained by
genetic algorithm. The best models involved the following descriptors: radial distribution function (RDF) descriptors,
GETAWAY (GEometry, Topology, and Atom-Weights AssemblY) descriptor, bond information content index, and dipole
moment. The best MLR models for K562 and Raji cells demonstrated satisfactory stability in internal and external
validation. Since the QSAR model for Raji cells has better predictive ability, two new highly potent CQArA analogues
were proposed based on it. The QSAR models revealed important physicochemical and structural requirements for the
antitumor activity: enhanced 3D molecular distribution of mass calculated at radius 11 Å from the center of molecule,
a higher number of terminal electronegative atoms, extension of the molecules’ central linker between quinoline and
arylamidine, higher ratio of single bonds and total number of atoms, and symmetric charge distribution. Molecular
docking study was applied to ensure the anticancer activity affinity to the binding site of the tyrosine-protein kinase
(c-SRC). It was confirmed that the most active compound binds on the pocket between the small and large lobes of
c-SRC, mostly throughout the hydrogen bonds and van der Waals interactions.
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1. Introduction
A major problem in chemotherapeutic treatment of cancer is drug resistance. In order to overcome this problem,
multiple cytotoxic drugs with different chemical structures and mechanisms of action have been employed.1

Hybrid anticancer drugs are designed and synthesized from two or more different bioactive moieties conjugated
into a single drug. Such multitarget anticancer agents have great therapeutic potential since they trigger two or
more cytocidal pharmacological mechanisms of action, acting in synergy to inhibit the growth of cancer cells.2,3

Considering their contribution in the discovery of a new anticancer therapy, the research on hybrid molecules
is rapidly evolving.

Chloroquine (CQ), a 7-chloro-4-aminoquinoline, has been the mainstay of malaria chemotherapy for years.
∗Correspondence: vrastija@fazos.hr
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A number of other existing antimalarial agents, as well as novel derivatives of CQ, have been tested as possible
cancer therapeutics.4−9 Hydroxychloroquine (HCQ), a CQ derivative, has recently been investigated in clinical
trials for cancer therapy.10 Arylamidines exhibited broad pharmacological activities, such as antiparasitic,11

antibacterial,12,13 and anticancer activity.14

Recently, we synthesized and evaluated the antitumor activity of a new class of hybrid molecules joining
these two pharmacophores, 7-chloroquinoline and arylamidine.15 The four series of molecular hybrids contain
a quinoline moiety, whereas the linkers between quinoline and arylamidine, the aryl core, and terminal amidine
moiety were modified. The investigated compounds showed higher efficacy against a human chronic myelogenous
leukemia cell line (K562) and lymphoblastoid cell line (Raji) than carcinoma cells. Recent advances have
implicated the role of tyrosine kinases in the pathophysiology of cancer. Their activity may acquire transforming
functions due to mutation(s), overexpression, and autocrine paracrine stimulation, leading to malignancy.
Selective tyrosine kinase inhibitors can block the oncogenic activation in cancer cells and can be applied as
a new mode of cancer therapy.16 Nonreceptor protein-tyrosine kinase (c-Src) is a protooncogene that plays key
roles in cell morphology, motility, proliferation, and survival.17 Numerous studies have shown evidence of an
association between c-Src kinases and leukemia, as Li18 summarized previously. Active site residues of Src
kinase are derived from both the small and large lobes of the kinase, which are moving relative to each other
and open or close the cleft. Any substances that block the interconversion of the open and closed forms of
the cleft could be inhibitors.17 Imatinib, sold under the brand name Gleevec (Novartis STI571), is used for
chronic myelogenous leukemia treatment. Series of inhibitors (DSA compounds), which are based on the central
chemical scaffold of imatinib, have been designed to bind to c-Src with equally high potency in the Asp-Phe-Gly
(DFG)-flipped conformation.19

In order to signify the importance of structural and chemical attributes for the anticancer activity
of 7-chloroquinoline-arylamidine (CQArA) hybrids and to improve further research on the mechanisms of
action of these compounds against leukemia cells and also to propose new analogues with improved activity,
quantitative structure–activity relationship (QSAR) analysis was performed. The interaction of CQArA hybrids
and protooncogene tyrosine-protein kinase Src in silico was evaluated by molecular docking based on the binding
mode of the DSA inhibitor.

2. Results and discussion
2.1. QSAR models

The best model obtained for anticancer activity against the K562 leukemia cell line is:

logGI50 = 2.48− 0.17RDF120m+ 0.08RDF150p− 9.32R2e+ (1)

Compounds in the test set, 9, 13, 18, 20, and 25, were selected by ranking method.
For antitumor activity against the Raji leukemia cell line, the best model is:

logGI50 = 5.69− 6.94BIC1− 0.11RDF110m− 0.2DIPX (2)

Compounds in the test set, 1, 2, 5, 11, and 20, were selected by random method.
Structures of analyzed compounds are presented in the Scheme. Experimental and calculated logGI50 by

Eqs. (1) and (2) are shown in Table 1. The values of descriptors included in the models of Eqs. (1) and (2) are
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Table 1. Experimentally obtained antitumor activities (logGI50exp)15 and calculated values (logGI50calc) by QSAR
models (1) and (2) for 28 CQArA hybrids against leukemia cell lines K562 and Raji, respectively.

K562 Raji
Compound logGI50exp logGI50calc logGI50 exp logGI50calc
1 1.94 1.89 1.96 2.07
2 1.51 1.71 1.72 1.86
3 1.92 1.86 1.71 1.88
4 1.23 1.67 1.41 1.55
5 1.27 1.19 1.29 1.24
6 1.69 1.81 1.61 1.83
7 1.79 1.50 1.71 1.79
8 2.00 1.64 2.00 1.68
9 2.00 1.77 2.05 2.06
10 1.84 1.86 1.68 1.59
11 1.78 1.96 1.67 1.68
12 1.74 1.75 1.62 1.70
13 1.44 1.61 1.61 1.69
14 1.33 1.27 1.70 1.51
15 0.86 1.19 0.79 0.99
16 1.69 1.48 1.77 1.59
17 2.00 1.78 2.00 1.93
18 1.89 1.83 1.94 1.80
19 1.89 1.73 1.99 1.73
20 1.72 1.60 1.71 1.68
21 2.00 2.04 2.00 1.86
22 0.89 1.13 0.72 0.57
23 1.54 1.27 1.47 1.33
24 1.24 1.03 1.29 1.42
25 1.18 1.30 1.45 1.50
26 1.06 1.21 1.23 1.40
27 0.93 0.96 1.44 1.50
28 1.12 1.31 1.28 1.59

given in the Supplemental Information, Table S1. The statistical results for the obtained models are presented
in Table 2.

Both models satisfy fitting criteria (R2 ≥ 0.60). In order to exclude the possibility that the models are
overfitted, the collinearity of descriptors included in the models of Eqs. (1) and (2) was evaluated by correlation
matrix (Tables 3 and 4). Low collinearity was confirmed by the values of correlation coefficient, R ≤ 0.7, and
verified by the low values of Kxx and ∆K ≥ 0.05 (Table 2).

The models also demonstrate satisfactory stability in internal and external validation: R2
ext ≥ 0.60;

RMSE and MAE close to zero; and RMSE tr < RMSE cv and small difference between CCC tr and CCC ext .20
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Table 2. The statistical results of QSAR models (1) and (2).

Model (1) Model (2)
Ntr 23 23
Nex 5 5
R2 0.71 0.78
R2

adj 0.66 0.75
s 0.23 0.18
F 15.35 22.46
Kxx 0.30 0.29
∆K 0.06 0.05
RMSEtr 0.21 0.17
MAEtr 0.17 0.15
CCC tr 0.83 0.88
Q2

LOO 0.58 0.62
RMSEcv 0.25 0.22
MAEcv 0.21 0.19
PRESScv 1.40 1.09
CCCcv 0.75 0.80
R2

Y scr –0.14 0.13
Q2

Y scr –0.27 –0.30
RMSEext 0.15 0.08
MAEext 0.14 0.07
PRESSext 0.12 0.03
R2

ext 0.84 0.96
Q2

F1 0.78 0.87
Q2

F2 0.74 0.85
Q2

F3 0.84 0.95
CCCext 0.81 0.94
r2m 0.43 0.75
�r2m 0.32 0.08
Applicability domain
N compounds outlier - -
N compounds out of app. dom. - 1 (22)

Table 3. Correlation matrix for the descriptors included in model (1).

RDF120m RDF150p R2e+

RDF120m 1
RDF150p 0.53 1
R2e+ –0.18 0.05 1
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R  CN  
      

a 1 2 3 4 5 6 7 

b 8 9 10  11  12  13  14  

c 15  16  17  18  19  20  21  

d 22  23  24  25  26  27  28  

Scheme. Structures of the analyzed compounds.

Table 4. Correlation matrix for the descriptors included in model (2).

BIC1 RDF110m DIPX
BIC1 1
RDF110m 0.17 1
DIPX –0.45 –0.51 1

The lower values of CCC ext , Q2
F1 ,Q2

F2 ,Q2
F3 , and r2m for model (1) indicate weaker external predictivity of

this model compared to model (2). In addition, CCC values for model (1) are lower than an arbitrary cut-off
value of 0.85, but it is not very restrictive.21 The leave-one-out (LOO) validation highlights that the model is
stable, robust, and not obtained by chance, since Q2

LOO > 0.5, R2
y scr, and Q2

y scr < 0.2, as R2
y scr > Q2

y scr.

Williams plots (Figure 1) were used in order to define the chemical domain of applicability for which
given QSAR models make reliable predictions.22 Inspection of the Williams plot for model (1) (Figure 1a)
revealed no outliers and no compounds outside of the hat value of leverage or warning leverage (h* = 0.52),
which means that all the predicted data for compounds belong to the chemical domain. Model (2) also has no
outliers, except compound 22, which slightly exceeds the critical hat value of leverage. This can be explained
by the fact that the applicability domain represents the “distance” of the compound from the experimental
model, and compound 22 has shown exceptionally high anticancer activity against the Raji leukemia line. For
that compound, prediction is not reliable and predicted values of these compounds must be used with reserve
(Figure 1b).

Despite the difference in the predictive potential of the proposed models, the included molecular descrip-
tors may aid in the elucidation of important physicochemical and structural requirements for the antitumor
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a)  

 
b)

Figure 1. Applicability domain of the QSAR models for antitumor activity: a) against K562 leukemia cell lines
calculated by model (1) and b) against Raji leukemia cell lines calculated by model (2).
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activity of CQArA hybrids. Two radial distribution function (RDF) descriptors are present in model (1). The
radial distribution function can be interpreted as the probability distribution of finding an atom in a spherical
volume of a certain radius.23 Therefore, the descriptor RDF120m included model (1) presents 3D molecular
distribution of mass in a spherical volume of radius 12 Å. The molecules with the largest molecular radius and
highest molecular weight have the highest values of descriptor RDF120m have (Table S1). According to the
negative sign of RDF120m in model (1), higher values of those descriptors are favorable for the exhibition of
antitumor activity. Similarly, the negative coefficient of descriptor RDF110m in model (2) implies that en-
hanced 3D molecular distribution of mass calculated at radius 11 Å from the specific geometrical centers of each
molecule increases the antitumor potential. Figure 2 presents the 3D distribution of the mass at 11 Å from the
center of the most active compound, 22.

Figure 2. Structure of the most active compound (22) against Raji cells with representation of distance between the
external atoms (nitrogen and chlorine) from the geometrical center of molecule.

The positive regression coefficient of RDF150p in model (1) suggests that enhanced atomic polarizability
at the spherical volume of radius 15 Å negatively influences the antitumor activity of CQArA compounds. The
value of that descriptor is strongly influenced by the number of carbon atoms in the external part of a molecule.
Difference in values of that descriptor is mostly visible between the isopropyl and isobutyl-substituted 10 and 11
and 17 and 18, respectively (Scheme 1). Descriptor R2e+ is a descriptor of R maximal autocorrelation of lag
2 weighted by Sanderson electronegativity, which belongs to the GETAWAY (GEometry, Topology, and Atom-
Weights AssemblY) descriptors. The given descriptor is derived from the representation of molecular structure
called the influence/distance matrix, R, where the elements of the molecular influence matrix are combined
with geometric interatomic distances in the molecule.24 It takes into account local aspects of the molecule, with
atomic electronegativity at topological distance 2. The most external atoms at the small interatomic space have
the highest influences on the value of R-GETAWAY descriptors. Therefore, molecules with a higher number
of terminal electronegative atoms (nitrogen) have higher values of R2e+ (Table S1) and consequently lower
values of logGI50 , according to the model (1). Thus, the highest values of R2e+ are seen for the two most
active compounds, 15 and 22. Those molecules possess a strongly polarized nitrile group with an electrophilic
carbon atom. Nitriles have a nonbonding electron pair localized on the nitrogen atom in sp hybrid orbitals,
which makes them much less basic than amines and better hydrogen bond acceptors. Furthermore, involving a
2-aminoethanol linker in compounds 15 and 22, compared to compounds 1 and 8, which also have a terminal
nitrile group, but shorter linker to 7-CQ, increased the value of R2e+ (Table S1) and enhanced antitumor
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activities against the growth of K562 cells. As we pointed out previously, extension of the molecules’ central
linker can improve the antiproliferative effect since it enhances the flexibility and adaptability of the molecular
conformation when binding to DNA.15

Descriptor BIC1 is the bond information content index (neighborhood symmetry of 1-order) that belongs
to the information indices. The BIC descriptors take into account the number of bonds and bond orders. More
saturated molecules with lower total number of atoms have greater values of BIC1. According Eq. (2), these
structural properties enhanced the activity of molecules. Dipole moment along the x axis (DIPX) is a third
variable in Eq. (2). It is an important structural feature of the analyzed CQArA compounds since the most
highly polar bond, C-Cl, is placed near the xaxis (Figure 2). The negative sign of DIPX in model (2) implies
that an enhanced value of DIPX is favorable for the antitumor activity of CQArA compounds. For example,
the two most active compounds, 15 and 22, have DIPX close to zero, compared to inactive compounds 17
and 18 with DIPX values over –5 (Figure 3). These observations suggest that the inclusion of terminal polar
groups, such as a nitrile group, makes the molecule less polar due to symmetric charge distribution.

Figure 3. Dipole moments of the two most active compounds (15, 22) and the two least active compounds (17, 18).

The results of QSAR analysis could help to discover new compounds with possibly great antitumor
potential. We propose two molecules as new potential anticancer agents. Activity against Raji leukemia cells
has been predicted by means of model (2) (Figure 4). Antitumor activities of the proposed compounds are
logGI50calc = 0.02 and –0.29 for 29 and 30, respectively. Compared to compound 15, proposed molecule 29 has
an extended central linker between 7-CQ and arylamidine by one -CH2 - group, which resulted in enhancement of
the calculated activity. Involving the second nitrile group on the benzimidazole, the polar charge is distributed
more symmetrically, which makes a molecule less polar and potentially extremely powerful.
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Figure 4. Structures of the proposed molecules with promising antiproliferative effects against leukemia Raji cell line.
Activities have been predicted according to model (2).

2.2. Molecular docking study

Molecular docking studies provide virtual screening of different molecules as potential ligands to predict their
ability to interact with given target candidates. Potential ligand molecules are ranked using various scoring
functions.25 For the present study we have chosen protooncogene tyrosine-protein kinase c-Src (PDB ID: 3G6H)
as a target molecule. Compounds were ranked by total energy of predicted pose in the binding site. Docking
results for the seven best ranking CQArA compounds are tabulated in Table 5. Results were compared with
docking results of bonded ligand pyridinyl triazine (DSA1, PDB ID: G6H).19

Table 5. Ranking of the screened compounds by docking study.

Compound (pose numb.) Total energy/kcal mol−1 vdW HBond Elec
22 (1) –137.64 –124.22 –13.424 0
29 (0) –135.57 –125.29 –10.28 0
28 (0) –129.18 –118.68 –10.5 0
30 (1) –127.79 –118.29 –9.5 0
27 (0) –125.93 –118.93 –7 0
8 (0) –121.05 –113.09 –7.9542 0
12 (0) –120.21 –105.67 –14.54 0
G6H –118.94 –102.72 –16.223 0
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As shown in Table 5, compound 22, 2-{4-[2-(7-chloroquinolin-4-ylamino)ethoxy]phenyl}-1Hbenzo[d]imidazole-
6-carbonitrile, has the biggest negative total energy (–137.64 kcal/mol), which is consistent with the fact that 22
is also the most active compound (Table 1). After compound 22, compound 29 appears in the ranking, followed
by compound 30, both proposed by the QSAR study. Their high energy-based scoring functions confirm their
possible high antitumor activity predicted by QSAR.

The binding site of tyrosine kinase was defined according to the inhibitor DSA1.19 The structure of the
Src kinase domain consists of a small amino-terminal (N) lobe (residues 267–337) and large carboxyl-terminal
(C) lobe (residues 341–520) connected by a “hinge”. The N lobe contains antiparallel β -sheet structures and
an α -helix (αC-helix). The larger C lobe is predominantly α -helical and contains a flexible activation loop,
which starts with a DFG motif. The ATP binding pocket of Src lies deep in the cleft between the two lobes.
The two lobes move relative to each other and can open or close the cleft.17 A “gatekeeper” is a single residue
in the ATP binding pocket located in the hinge region between the N and C lobes of the kinase that separates
the adenine binding site from an adjacent hydrophobic pocket.26 Molecular docking confirmed that, similar
to DSA1, compound 22 is located in the cavity between two lobes of c-Src (Figures 5 and 6). Interactions of
compound 22 with c-Src in the binding site are presented in Figure 7. Compound 22 forms hydrogen bonds
with Tyr-340 via nitrogen from the nitrile group and π -alkyl hydrophobic interactions of the benzimidazole ring
with Leu-273 and Leu-393 in the hinge region. For comparison, DSA1 in the same region forms the hydrogen
bond of the exocyclic nitrogen from the trimethoxyaniline ring and nitrogens from the triazine ring.19 Key
interactions are H bonds between amino groups from the 2-aminoethanol linker and Asp-404 and the quinolone
nitrogen atom and Tyr-382 in the DFG motif. Hydrogen bond interactions with the hinge region indicate that
compound 22 is a potent tyrosine kinase inhibitor.

Figure 5. vdW surface representation of a segment of c-Src active site cleft with docked compound 22.

In addition, other interactions are mediated through van der Waal (vdW) and hydrophobic contacts with
Val-402, Glu-310, Asp-404, Met-314, and Ala-403 (see Figure 6). Similar to DSA1, compound 22 is connected
with a glutamate residue in the αC helix (Glu-310) and Asp-404 and Ala-403 in the DFG motif. Asp-404 is the
first residue of the activation loop found in the large lobe of c-SRC. The chloroquinoline group of 22 occupied
the specificity pocket by hydrophobic interactions with Val-377, Leu-322, Leu-317, and His-384. Likewise, the
3-trifluoromethylphenyl group of DSA1 is anchored into the hydrophobic pocket composed of the side chain
Val-313, Leu-317, Leu 322, Val-377, Tyr-382, and Val-402.19
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Figure 6. Cavity of c-Src with docked compound 22: P-loop (turquoise); helix αC (red). Figure 7 shows the interactions
of compound 22 with c-Src in binding site.

Our results are consistent with the previous results of a docking study of azaacridine derivatives,27 which
revealed that the amido moiety formed two hydrogen bonds with Glu-310 and Asp-404 in the DFG out-pocket
of c-SRC. This is in agreement with previously QSAR findings that the 2-aminoethanol linker (compounds 15–
28) between quinoline and arylamidine enhanced anticancer activity compared to the other compounds (1–14)
without an amino group in the central linker.

2.3. Conclusions
In the present work, the QSAR analysis of anticancer activities of 7-chloroquinoline-arylamidine hybrids against
two leukemia cell lines, Raji and K562, has been performed. The best obtained QSAR models revealed
that important physicochemical and structural requirements for the anticancer activity of CQArA hybrids
are enhanced 3D molecular distribution of mass calculated at radius 11 Å from the geometrical center of the
molecule; the higher number of terminal electronegative atoms; extension of the molecules’ central linker between
the quinoline and arylamidine parts, which should contain an amino group; a higher ratio of single bonds and
total number of atoms; and symmetric charge distribution that leads to the less polar molecule. According to
the predictive model for anticancer activity against Raji cells, two new potent quinolone-arylamidine analogues
were proposed.

Molecular docking has confirmed the importance of the terminal nitrile group and amino groups from the
2-aminoethanol linker for enhanced binding affinity toward tyrosine kinase. Our study suggests that CQArA
hybrids could be developed as novel tyrosine kinase inhibitors in the treatment of leukemia.
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Figure 7. Interactions of compound 22 with c-Src in binding site: a) 3D representation; b) 2D representation (green =
hydrogen bond; purple = π -σ interactions; light purple = π - π interactions; pink = alkyl and π -alkyl interactions).
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3. Experimental

3.1. Dataset
The synthesis and evaluation of anticancer activity derivatives were described in our previous study.15 Structures
of the analyzed compounds are presented in the Scheme. Anticancer activities, expressed as the concentration
achieving 50% cell growth inhibition (GI50 /µM) against leukemia cell lines (Raji and K562), were converted
in the form of the logarithm (logGI50) and are presented in Table 1. For the inactive compounds whose GI50
values were estimated as 100, logGI50 was set to 2.

3.2. QSAR

3.2.1. Descriptor calculation

The 3D structures of 28 molecules were optimized applying Avogadro 1.2.0 (University of Pittsburgh, Pittsburgh,
PA, USA) using the molecular mechanics force field (MM+) .28 Subsequently, all the structures were submitted
to geometry optimization using the semiempirical PM3 method.29 Two sets of descriptors were generated us-
ing Parameter Client (Virtual Computational Chemistry Laboratory, http://146.107.217.178/lab/pclient/), an
electronic remote version of the Dragon program, and ADMEWORKS ModelBuilder 7.9.1.0 (Fujitsu Kyushu
Systems Limited). In order to reduce the huge number of calculated descriptors (1728), zero value descriptors
were first excluded from the initial pool. Further exclusion was performed using QSARINS-Chem 2.2.1 (Univer-
sity of Insubria, Varese, Italy): constant and semiconstant descriptors, i.e. those having chemical compounds
with a constant value for more than 80%, and descriptors that were too intercorrelated (> 85%) were rejected.30

After reducing the number of calculated descriptors, the number of remaining descriptors in the pool was 492.

3.2.2. Regression analysis and validation of models

Two algorithms were used for creating the training and test sets (20%), a random method and a ranking method,
using QSARINS. The best QSAR models were obtained with a genetic algorithm (GA) using QSARINS. The
number of descriptors (I) in the multiple regression equation was limited to three. The models were assessed
by fitting criteria and internal cross-validation using the LOO method. Robustness of QSAR models was tested
by Y-randomization test: the coefficient of determination (R2

Y scr) and cross-validated correlation coefficient
(Q2

Y scr) should be significantly lower than the original model.
Fitting criteria included the coefficient of multiple determination (R2) , adjusted coefficient (R2

adj) ,

cross-validated correlation coefficient using LOO method (Q2
LOO) , global correlation among descriptors (Kxx),

difference in correlation between the block of X variables plus response Y (Kxy) and Kxx in models (∆K) ,
standard deviation of regression (s) , and Fisher ratio (F ) . Internal validations also included the following
parameters: root-mean-square error of the training set (RMSE tr) , root-mean-square error of the training set
determined through cross-validated LOO method (RMSE cv) , concordance correlation coefficient of the training
set (CCC tr) , test set using LOO cross-validation (CCC cv) , mean absolute error of the training set (MAE tr) ,
mean absolute error of the internal validation set (MAE cv) , and predictive residual sum of squares determined
through cross-validated LOO method (PRESS cv) in the training set.31−33

Investigation of the applicability domain22 of prediction models was performed by leverage plot (Williams
plots) using QSARINS.

263



RASTIJA et al./Turk J Chem

3.2.3. Molecular docking

The molecular docking of the compounds (1–30) was performed with iGEMDOCK (BioXGEM, Taiwan).
Crystal coordinates of the c-Src (PDB ID: 3G6H) in the complex with DSA compound (PDB ID: G6H) were
downloaded from the Protein Data Bank (PDB, https://www.rcsb.org/). In the first step, the structure of c-Src
was prepared, including the removal of water molecules and optimized protein structure using BIOVIA Discovery
Studio 4.5 (Dassault Systèmes, France). The binding site of the protein was defined according the bonded
ligand (PDB ID: G6H). After preparing the protein target and set of optimized structures of 28 compounds
as ligands, genetic parameters were set (population size: 200; generations: 70; number of solution or poses:
2). Each compound in the library was docked into the binding site and protein–compound interaction profiles
of electrostatic (Elec), hydrogen-bonding (Hbond), and vdW interactions were generated. Finally, compounds
were ranked by combining the pharmacological interactions and energy-based scoring function. Energy-based
scoring function or total energy (E) is: E = vdW + Hbond + Elec.34
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