Nalazite se na CroRIS probnoj okolini. Ovdje evidentirani podaci neće biti pohranjeni u Informacijskom sustavu znanosti RH. Ako je ovo greška, CroRIS produkcijskoj okolini moguće je pristupi putem poveznice www.croris.hr
izvor podataka: crosbi

Experimental Spinal Stenosis in Cats: New Insight in Mechanisms of Hydrocephalus Development (CROSBI ID 228396)

Prilog u časopisu | izvorni znanstveni rad | međunarodna recenzija

Klarica, Marijan ; Jukić, Tomislav ; Miše, Branko ; Kudelić, Nenad ; Radoš, Milan ; Orešković, Darko Experimental Spinal Stenosis in Cats: New Insight in Mechanisms of Hydrocephalus Development // Brain pathology, 26 (2016), 6; 701-712. doi: 10.1111/bpa.12337

Podaci o odgovornosti

Klarica, Marijan ; Jukić, Tomislav ; Miše, Branko ; Kudelić, Nenad ; Radoš, Milan ; Orešković, Darko

engleski

Experimental Spinal Stenosis in Cats: New Insight in Mechanisms of Hydrocephalus Development

In our new experimental model of cervical stenosis without inflammation we have tested hypothesis that cranio-spinal communication impairment could lead to hydrocephalus development. Spinal and cranial cerebrospinal fluid (CSF) space separation was obtained with positioning of plastic semiring in epidural space at C2 level in cats. Brain ventricles planimetry, and CSF pressure recording in lateral ventricle (LV) and lumbar subarachnoid space (LSS) were performed in acute and subchronic experiments. In all experiments opening CSF pressures were normal. However, in acute experiments, an infusion of artificial CSF into the LV led to increase of CSF pressure and significant gradient pressure development between LV and LSS due to limited pressure transmission. After 3 or 6 weeks spinal cord atrophy was observed at the site of cervical stenosis, and pressure transmission from LV to LSS was improved as a consequence of spinal tissue atrophy. Planimetry of both the coronal brain slices and the ventricles’ surface showed that control ventricular surface was 0.6 ± 0.1% (n = 5), and 1.6 ± 0.2% (n = 4) in animals with subchronic cervical stenosis (P < 0.002). These results support the mentioned hypothesis claiming that CSF volume cranio-spinal displacement impairment could start pathophysiological processes leading to development of hydrocephalus.

cerebrospinal fluid ; cerebrospinal fluid pressure ; cervical stenosis ; hydrocephalus ; hypothesis of cerebrospinal fluid physiology

nije evidentirano

nije evidentirano

nije evidentirano

nije evidentirano

nije evidentirano

nije evidentirano

Podaci o izdanju

26 (6)

2016.

701-712

objavljeno

1015-6305

1750-3639

10.1111/bpa.12337

Povezanost rada

Temeljne medicinske znanosti

Poveznice
Indeksiranost