Nalazite se na CroRIS probnoj okolini. Ovdje evidentirani podaci neće biti pohranjeni u Informacijskom sustavu znanosti RH. Ako je ovo greška, CroRIS produkcijskoj okolini moguće je pristupi putem poveznice www.croris.hr
izvor podataka: crosbi !

Physical properties of δ-FeZn10 complex intermetallic (CROSBI ID 592920)

Prilog sa skupa u zborniku | sažetak izlaganja sa skupa | međunarodna recenzija

Jazbec, S. ; Koželj, P. ; Vrtnik, S. ; Jagličić, Z. ; Popčević, Petar ; Ivkov, Jovica ; Stanić, Denis ; Smontara, Ana ; Feuerbacher, M. ; Dolinšek, J. Physical properties of δ-FeZn10 complex intermetallic // Proceedings of C-MAC Days 2012. 2012

Podaci o odgovornosti

Jazbec, S. ; Koželj, P. ; Vrtnik, S. ; Jagličić, Z. ; Popčević, Petar ; Ivkov, Jovica ; Stanić, Denis ; Smontara, Ana ; Feuerbacher, M. ; Dolinšek, J.

engleski

Physical properties of δ-FeZn10 complex intermetallic

We report electrical, magnetic and thermal properties of the δ-FeZn10 phase in the zinc-rich domain of the Fe–Zn system. The δ-FeZn10 phase possesses high structural complexity typical of complex metallic alloys: a giant unit cell comprising 556 atoms, a polyhedral atomic order with icosahedrally-coordinated environments, fractionally occupied lattice sites and statistically disordered atomic clusters that introduce intrinsic disorder into the structure. Structural disorder results in suppression of the electrical and heat transport phenomena, making δ-FeZn10 poor electrical and thermal conductor. Structural complexity results in complex electronic structure that is reflected in the opposite signs of the thermoelectric power and the Hall coefficient. The δ-FeZn10 phase is paramagnetic down to the lowest investigated temperature of 2 K with a significant interspin coupling of an antiferromagnetic type. Specific heat indicates the formation of short-range-ordered spin clusters at low temperatures, very likely a precursor of a phase transition to a collective magnetic state that would take place below 2 K. The magnetoresistance of δ-FeZn10 is sizeable, amounting 1.5 % at 2 K in 9 T field. The electrical resistivity exhibits a maximum at about 220 K and its temperature dependence could be explained by the theory of slow charge carriers, applicable to metallic systems with weak dispersion of the electronic bands, where the electron motion changes from ballistic to diffusive upon heating.

metals and alloys; heat capacity; electrical and thermal conduction in crystalline metals and alloys

This work was done within the activities of the European Integrated Center for the Development of New Metallic Alloys and Compounds - C-MAC. The paper was presented as a talk by Ana Smontara.

nije evidentirano

nije evidentirano

nije evidentirano

nije evidentirano

nije evidentirano

Podaci o prilogu

2012.

objavljeno

Podaci o matičnoj publikaciji

Proceedings of C-MAC Days 2012

Podaci o skupu

C-MAC Days 2012

predavanje

10.12.2012-13.12.2012

Kraków, Poljska

Povezanost rada

Fizika

Poveznice