Nalazite se na CroRIS probnoj okolini. Ovdje evidentirani podaci neće biti pohranjeni u Informacijskom sustavu znanosti RH. Ako je ovo greška, CroRIS produkcijskoj okolini moguće je pristupi putem poveznice www.croris.hr
izvor podataka: crosbi

Propagation of positional error in 3D GIS : estimation of the solar irradiation of building roofs (CROSBI ID 221177)

Prilog u časopisu | izvorni znanstveni rad | međunarodna recenzija

Biljecki, Filip ; Heuvelink, Gerard B.M. ; Ledoux, Hugo ; Stoter, Jantien Propagation of positional error in 3D GIS : estimation of the solar irradiation of building roofs // International journal of geographical information science, 29 (2015), 12; 2269-2294. doi: 10.1080/13658816.2015.1073292

Podaci o odgovornosti

Biljecki, Filip ; Heuvelink, Gerard B.M. ; Ledoux, Hugo ; Stoter, Jantien

engleski

Propagation of positional error in 3D GIS : estimation of the solar irradiation of building roofs

While error propagation in GIS is a topic that has received a lot of attention, it has not been researched with 3D GIS data. We extend error propagation to 3D city models using a Monte Carlo simulation on a use case of annual solar irradiation estimation of building rooftops for assessing the efficiency of installing solar panels. Besides investigating the extension of the theory of error propagation in GIS from 2D to 3D, this paper presents the following contributions. We (1) introduce varying XY/Z accuracy levels of the geometry to reflect actual acquisition outcomes ; (2) run experiments on multiple accuracy classes (121 in total) ; (3) implement an uncertainty engine for simulating acquisition positional errors to procedurally modelled (synthetic) buildings ; (4) perform the uncertainty propagation analysis on multiple levels of detail (LODs) ; and (5) implement Solar3Dcity – a CityGML-compliant software for estimating the solar irradiation of roofs, which we use in our experiments. The results show that in the case of the city of Delft in the Netherlands, a 0.3/0.6 m positional uncertainty yields an error of 68 kWh/m2/year (10%) in solar irradiation estimation. Furthermore, the results indicate that the planar and vertical uncertainties have a different influence on the estimations, and that the results are comparable between LODs. In the experiments we use procedural models, implying that analyses are carried out in a controlled environment where results can be validated. Our uncertainty propagation method and the framework are applicable to other 3D GIS operations and/ or use cases. We released Solar3Dcity as open-source software to support related research efforts in the future.

error propagation; uncertainty; CityGML; 3D GIS; photovoltaic potential

nije evidentirano

nije evidentirano

nije evidentirano

nije evidentirano

nije evidentirano

nije evidentirano

Podaci o izdanju

29 (12)

2015.

2269-2294

objavljeno

1365-8816

10.1080/13658816.2015.1073292

Povezanost rada




Elektrotehnika, Geodezija, Računarstvo

Poveznice
Indeksiranost