Nalazite se na CroRIS probnoj okolini. Ovdje evidentirani podaci neće biti pohranjeni u Informacijskom sustavu znanosti RH. Ako je ovo greška, CroRIS produkcijskoj okolini moguće je pristupi putem poveznice www.croris.hr
izvor podataka: crosbi

Distance and tube zeta functions of fractals and arbitrary compact sets (CROSBI ID 227238)

Prilog u časopisu | izvorni znanstveni rad | međunarodna recenzija

Lapidus, Michel L. ; Radunović, Goran ; Žubrinić, Darko Distance and tube zeta functions of fractals and arbitrary compact sets // Advances in mathematics, 307 (2017), 1215-1267. doi: 10.1016/j.aim.2016.11.034

Podaci o odgovornosti

Lapidus, Michel L. ; Radunović, Goran ; Žubrinić, Darko

engleski

Distance and tube zeta functions of fractals and arbitrary compact sets

Recently, the first author has extended the definition of the zeta function associated with fractal strings to arbitrary bounded subsets $A$ of the $N$-dimensional Euclidean space ${; ; ; ; ; \mathbb R}; ; ; ; ; ^N$, for any integer $N\ge1$. It is defined by $\zeta_A(s)=\int_{; ; ; ; ; A_{; ; ; ; ; \delta}; ; ; ; ; }; ; ; ; ; d(x, A)^{; ; ; ; ; s-N}; ; ; ; ; \D x$ for all $s\in\Ce$ with $\operatorname{; ; ; ; ; Re}; ; ; ; ; \, s$ sufficiently large, and we call it the {; ; ; ; ; \em distance zeta function}; ; ; ; ; of $A$. Here, $d(x, A)$\label{; ; ; ; ; d(x, A)}; ; ; ; ; denotes the Euclidean distance from $x$ to $A$ and $A_{; ; ; ; ; \delta}; ; ; ; ; $ is the $\delta$-neighborhood of~$A$, where $\d$ is a fixed positive real number. We prove that the abscissa of absolute convergence of $\zeta_A$ is equal to $\overline\dim_BA$, the upper box (or Minkowski) dimension of~$A$. Particular attention is payed to the principal complex dimensions of $A$, defined as the set of poles of $\zeta_A$ located on the critical line $\{; ; ; ; ; \mathop{; ; ; ; ; \mathrm{; ; ; ; ; Re}; ; ; ; ; }; ; ; ; ; s=\overline\dim_BA\}; ; ; ; ; $, provided $\zeta_A$ possesses a meromorphic extension to a neighborhood of the critical line. We also introduce a new, closely related zeta function, $\tilde\zeta_A(s)=\int_0^\d t^{; ; ; ; ; s-N-1}; ; ; ; ; |A_t|\, \D t$, called the {; ; ; ; ; \em tube zeta function}; ; ; ; ; of $A$. Assuming that $A$ is Minkowski measurable, we show that, under some mild conditions, the residue of $\tilde\zeta_A$ computed at $D=\dim_BA$ (the box dimension of $A$), is equal to the Minkowski content of $A$. More generally, without assuming that $A$ is Minkowski measurable, we show that the residue is squeezed between the lower and upper Minkowski contents of $A$. We also introduce {; ; ; ; ; \em transcendentally quasiperiodic sets}; ; ; ; ; , and construct a class of such sets, using generalized Cantor sets, along with Baker's theorem from the theory of transcendental numbers.

zeta function ; distance zeta function ; tube zeta function ; fractal set ; fractal string ; box dimension ; principal complex dimensions ; Minkowski content ; Minkowski measurable set ; residue ; Dirichlet integral ; transcendentally quasiperiodic set.

preprint: https://arxiv.org/abs/1506.03525

nije evidentirano

nije evidentirano

nije evidentirano

nije evidentirano

nije evidentirano

Podaci o izdanju

307

2017.

1215-1267

objavljeno

0001-8708

10.1016/j.aim.2016.11.034

Povezanost rada

Matematika

Poveznice
Indeksiranost