Nalazite se na CroRIS probnoj okolini. Ovdje evidentirani podaci neće biti pohranjeni u Informacijskom sustavu znanosti RH. Ako je ovo greška, CroRIS produkcijskoj okolini moguće je pristupi putem poveznice www.croris.hr
izvor podataka: crosbi

Mathematical model of the MenD-catalyzed 1,4-addition (Stetter Reaction) of α-ketoglutaric acid to acrylonitrile (CROSBI ID 247204)

Prilog u časopisu | izvorni znanstveni rad | međunarodna recenzija

Sudar, Martina ; Vasić-Rački, Đurđa ; Müller, Michael ; Walter, Alexandra ; Findrik Blažević, Zvjezdana Mathematical model of the MenD-catalyzed 1,4-addition (Stetter Reaction) of α-ketoglutaric acid to acrylonitrile // Journal of biotechnology, 268 (2018), 71-80. doi: 10.1016/j.jbiotec.2018.01.013

Podaci o odgovornosti

Sudar, Martina ; Vasić-Rački, Đurđa ; Müller, Michael ; Walter, Alexandra ; Findrik Blažević, Zvjezdana

engleski

Mathematical model of the MenD-catalyzed 1,4-addition (Stetter Reaction) of α-ketoglutaric acid to acrylonitrile

The Stetter reaction, a conjugate umpolung reaction, is well known for cyanide-catalyzed transformations of mostly aromatic aldehydes. Enzymatic Stetter reactions, however, have been largely unexplored, especially with respect to preparative transformations. We have investigated the kinetics of the MenD-catalyzed 1, 4-addition of -ketoglutaric acid to acrylonitrile which has shown that acrylonitrile, while an interesting candidate, is a poor substrate for MenD due to low affinity of the enzyme for this substrate. The kinetic model of the reaction was simplified to double substrate Michaelis–Menten kinetics where the reaction rate linearly depends on acrylonitrile concentration. Experiments at different initial concentrations of acrylonitrile under batch, repetitive batch, and fed-batch reactor conditions were carried out to validate the developed mathematical model. Thiamine diphosphate dependent MenD proved to be quite a robust enzyme ; nevertheless, enzyme operational stability decay occurs in the reactor. The spontaneous reactivity of acrylonitrile towards polymerization was also taken into account during mathematical modeling. Almost quantitative conversion of acrylonitrile was achieved in all batch reactor experiments, while the yield of the desired product was dependent on initial acrylonitrile concentration (i.e., the concentration of the stabilizer additive). Using the optimized reactor parameters, it was possible to synthesize the product, 6-cyano-4-oxohexanoic acid, in a concentration of 250 mM. The highest concentration of product was achieved in a repetitive batch reactor experiment. A fed- batch reactor experiment also delivered promising results, especially regarding the short reaction time needed to achieve a 200 mM concentration of product. Hence, the enzymatic Stetter reaction with a highly reactive acceptor substrate can be performed on a preparative scale, which should enable similar transformations with acrylate, methacrylate, and methyl vinyl ketone.

enzyme ; carboligation ; kinetic model ; optimization ; reactor selection

nije evidentirano

nije evidentirano

nije evidentirano

nije evidentirano

nije evidentirano

nije evidentirano

Podaci o izdanju

268

2018.

71-80

objavljeno

0168-1656

1873-4863

10.1016/j.jbiotec.2018.01.013

Trošak objave rada u otvorenom pristupu

Povezanost rada

Biotehnologija, Kemijsko inženjerstvo

Poveznice
Indeksiranost