One-dimensional model and numerical solution to the viscous and heat-conducting micropolar real gas flow with homogeneous boundary conditions (CROSBI ID 280196)
Prilog u časopisu | izvorni znanstveni rad | međunarodna recenzija
Podaci o odgovornosti
Bašić-Šiško, Angela ; Dražić, Ivan ; Simčić, Loredana
engleski
One-dimensional model and numerical solution to the viscous and heat-conducting micropolar real gas flow with homogeneous boundary conditions
In this paper, we analyze the micropolar, viscous, polytropic, and heat-conducting real gas, whereby we assume the generalized form of pressure function in the sense that pressure is the affine function of temperature and power function of mass density. Using the stated thermodynamical and constitutive assumptions, we derive a one- dimensional model based on balance laws, first in the Eulerian and then in the Lagrangian description. We solve the corresponding problem with homogeneous boundary conditions numerically using the Faedo-Galerkin method, whereby we analyze the performance of different ODE solvers.
micropolar real gas ; generalized pressure function ; numerical solution
nije evidentirano
nije evidentirano
nije evidentirano
nije evidentirano
nije evidentirano
nije evidentirano
Podaci o izdanju
195
2022.
71-87
objavljeno
0378-4754
1872-7166
10.1016/j.matcom.2021.12.024
Povezanost rada
Matematika