Self-learning model predictive control based on the sequence of controllable sets (CROSBI ID 655819)
Prilog sa skupa u zborniku | izvorni znanstveni rad | međunarodna recenzija
Podaci o odgovornosti
Petrović, Luka ; Ileš, Šandor ; Matuško, Jadranko
engleski
Self-learning model predictive control based on the sequence of controllable sets
This paper presents a stabilizing model predictive control (MPC) algorithm based on the off-line computation of sequence of 1-step controllable sets for linear parameter varying systems and a parameter learning technique that improves its performance. The presented MPC algorithm guarantees non-monotone convergence towards a suitably chosen terminal set regardless of the system parameters, while the parameter learning technique is used to improve performance. The benefits of such an approach are shown in application of the proposed algorithm on a laboratory rotary inverted pendulum system.
model predictive control, LPV systems, control invariant sets, parameter learning, constrained least squares
nije evidentirano
nije evidentirano
nije evidentirano
nije evidentirano
nije evidentirano
nije evidentirano
Podaci o prilogu
359-364.
2017.
objavljeno
10.1109/edpe.2017.8123230
Podaci o matičnoj publikaciji
Matuško, Jadranko ; Jakopović, Željko
Zagreb: Hrvatsko društvo za komunikacije, računarstvo, elektroniku, mjerenja I automatiku (KoREMA)
978-1-5386-3379-3
1339-3944
Podaci o skupu
predavanje
04.10.2017-06.10.2017
Dubrovnik, Hrvatska